@inproceedings{demirkaya-etal-2025-simulating,
title = "Simulating Rating Scale Responses with {LLM}s for Early-Stage Item Evaluation",
author = "Demirkaya, Onur and
Wei, Hsin-Ro and
Johnson, Evelyn",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-main.41/",
pages = "385--392",
ISBN = "979-8-218-84228-4",
abstract = "This study explores the use of large language models to simulate human responses to Likert-scale items. A DeBERTa-base model fine-tuned with item text and examinee ability emulates a graded response model (GRM). High alignment with GRM probabilities and reasonable threshold recovery support LLMs as scalable tools for early-stage item evaluation."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="demirkaya-etal-2025-simulating">
<titleInfo>
<title>Simulating Rating Scale Responses with LLMs for Early-Stage Item Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Onur</namePart>
<namePart type="family">Demirkaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Ro</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Evelyn</namePart>
<namePart type="family">Johnson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84228-4</identifier>
</relatedItem>
<abstract>This study explores the use of large language models to simulate human responses to Likert-scale items. A DeBERTa-base model fine-tuned with item text and examinee ability emulates a graded response model (GRM). High alignment with GRM probabilities and reasonable threshold recovery support LLMs as scalable tools for early-stage item evaluation.</abstract>
<identifier type="citekey">demirkaya-etal-2025-simulating</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-main.41/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>385</start>
<end>392</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Simulating Rating Scale Responses with LLMs for Early-Stage Item Evaluation
%A Demirkaya, Onur
%A Wei, Hsin-Ro
%A Johnson, Evelyn
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84228-4
%F demirkaya-etal-2025-simulating
%X This study explores the use of large language models to simulate human responses to Likert-scale items. A DeBERTa-base model fine-tuned with item text and examinee ability emulates a graded response model (GRM). High alignment with GRM probabilities and reasonable threshold recovery support LLMs as scalable tools for early-stage item evaluation.
%U https://aclanthology.org/2025.aimecon-main.41/
%P 385-392
Markdown (Informal)
[Simulating Rating Scale Responses with LLMs for Early-Stage Item Evaluation](https://aclanthology.org/2025.aimecon-main.41/) (Demirkaya et al., AIME-Con 2025)
ACL
- Onur Demirkaya, Hsin-Ro Wei, and Evelyn Johnson. 2025. Simulating Rating Scale Responses with LLMs for Early-Stage Item Evaluation. In Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers, pages 385–392, Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States. National Council on Measurement in Education (NCME).