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Abstract

This study explores the use of large language models
to simulate human responses to Likert-scale items. A
DeBERTa-base model fine-tuned with item text and
examinee ability emulates a graded response model

(GRM). High alignment with GRM probabilities and
reasonable threshold recovery support LLMs as
scalable tools for early-stage item evaluation.

1 Introduction

Field-testing is essential for developing any
assessments as it serves to evaluate the statistical
quality of newly developed items before the
operational use. However, it remains one of the
most resource-intensive and time-consuming
stage in developing a test. Traditional approaches
require human examinees to try out items, posing
challenges related to sample availability, test
security, item exposure, and scheduling
(AlKhuzaey et al., 2023; Hsu et al., 2018; Morizot
etal., 2007). These challenges are growing as item
banks must scale rapidly to support contemporary
tests such as adaptive testing, multilingual
formats, and artificial intelligent (AI)-generated
content.

In response, early attempts predicted item
difficulty using text-based features like syntax,
semantics, word counts, embeddings, and
readability indices (AlKhuzaey et al.,, 2023;
Benedetto et al., 2023). Others used natural
language processing (NLP) techniques to estimate
item difficulty or discrimination (Benedetto et al.,
2021; Zhou & Tao, 2020), but their accuracy
remains limited. Importantly, these models often
overlook distractors and fail to capture the full
complexity of the human test-taking process
(Benedetto et al., 2021).
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More recent work has been exploring whether
large language models (LLMs) can partially or
fully simulate examinee responses to streamline
item evaluation without sacrificing psychometric
validity. For example, Lu and Wang’s (2024)
“generative students” prompt GPT-4 to mimic 45
learner profiles with different knowledge states,
achieving a moderate correlation  with
undergraduate item scores (r = .72) but relying on
expert-defined misconceptions and a tiny, single-
topic item set. Liu, Bhandari, and Pardos (2024)
go broader by blending six distinct LLMs into a
50-member ensemble, reproducing human Rasch
difficulties on a small college-algebra pool (r
93) yet still showing a compressed ability
spread. Collectively, these studies confirm the
promise of LLM-based field-testing while
exposing the need for scalable methods that
reduce expert overhead, widen domain coverage,
and capture the full spectrum of item functioning.

Maeda (2025) moves furthest toward full Al
substitution by fine-tuning 61 DeBERTa-v3
models, each tied to a specific latent ability, and
embedding a two parameter logistic (2-PL) loss to
predict option-level probabilities. Across 466
English-grammar items, the system matched
human proportion-correct with r = .82 and zero
mean bias, delivering plausible discrimination
and distractor statistics and suggesting substantial
cost and security gains. Yet achieving this
required training 61 large models exposing heavy
computational demand, and several extreme items
still failed to calibrate accurately.

Building on Maeda’s (2025) foundation, our
approach leverages a single LLM that takes both
item features such item and domain texts and a
student’s latent ability (8) as input to predict
selection probabilities of item’s options,
effectively emulating the graded response model
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(GRM; Samejima, 1969). Rather than training
separate models for each ability level, we
condition predictions on continuous 6 values and
allow the model to learn item parameters
implicitly from item features. This study aims to
investigate if the proposed architecture enables
realistic response simulation for field test Likert-
scale items, supports scalable data generation, and
reduces computational overhead while preserving
psychometric structure, positioning it as a cost-
efficient alternative for pretesting in large-scale
assessments.

2 Background
2.1 Transformer Language Models

Transformer-based language models such as
BERT (Devlin et al., 2018) are pre-trained on
large text corpora and can be fine-tuned for
various NLP tasks, including classification,
summarization, and question answering. These
models tokenize input text, convert it into
embeddings, and process the sequence through
multiple encoder layers to capture rich contextual
information.

In this study, we used the DeBERTa-base model
(He et al., 2021), an advanced variant of BERT
and RoBERTa. DeBERTa improves
representation learning by separately encoding the
content and relative position of each token and
computing distinct attention weights for both.
This structure enhances the model’s ability to
capture nuanced word relationships, making it
well-suited for complex language understanding
tasks.

2.2 Graded Response Model

The Graded Response Model (GRM; Samejima,
1969) is a widely used item response theory (IRT)
model for analyzing ordinal polytomous item
responses, such as rating scales or multi-point
rubrics in educational assessments. GRM models
the probability that an examinee’s latent ability 6;
exceeds a series of ordered thresholds for item i.
Each item has a discrimination parameter a; and
a set of threshold (difficulty) parameters b;j, one
for each score category boundary. The probability
of responding in category k is defined by the
difference between cumulative logistic functions
across adjacent thresholds:

P(Xi; = k |6;) = P (6;) = Pigesn)(6)) (M
where

1 2
P* (6. =
lk( ]) 1+ exp [—ai(Hj - bik)]
The GRM assumes monotonicity,

unidimensionality, and local independence, and it
enables estimation of both person ability and item
parameters on a common scale. It is especially
well-suited for assessments where responses
reflect degrees of correctness or agreement rather
than binary outcomes. For detailed discussion, see
Samejima (1969) or Baker & Kim (2004).

2.3 AI-Based Field-Test Data Generation
Pipeline

This approach builds on Maeda’s (2025)
architecture but ease its computational cost by
training a single generalized model instead of
separate models per ability level and eliminating
the sampling process, supporting scalable and
flexible field test data generation for Likert-scale
items. The model is trained on operational items
with known GRM-based probabilities, using both
item features and latent ability (@) as inputs.
Once trained, the model generalizes to predict
probabilities for new items by conditioning on the
item’s text representation and examinee ability.
Simulated responses are generated by sampling
from the predicted probabilities, enabling
psychometric analyses such as pre-calibration and
item screening without requiring real student
administrations. The Al-based field test data
simulation pipeline is provided in Figure A1.

Process Item Features Data

We used items of the Devereux Student Strengths
Assessment (DESSA). It is a standardized,
strength-based behavioral rating scale developed
to assess social-emotional competencies in
children and adolescents (LeBuffe, et. al., 2009).
The DESSA has eight empirically derived
domains: self-awareness, social awareness, , self-
management, goal-directed behavior, relationship
skills, personal responsibility, decision making,
and optimistic thinking (Shapiro & LeBuffe,
2004). Items are rated on a 5-point Likert scale
(from “never” to “almost always”) and yield
standard scores with T-score interpretation.
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Taking advantage of Likert-scale with same
options across items, we only included item stem
and its domain information as a text input
enabling the model items as unified constructs and
deeper theta-text interaction. Item stems were
paired with the item’s domain label (e.g.,
“Domain: Self-Awareness”) to provide semantic
context. The resulting domain-qualified text was
used as input features in training the model to
predict graded response probability distribution
overall possible options (see Figure A2).

Calculate Conditional IRT Probabilities

To generate model training targets, we used the
GRM (Samejima, 1969) to compute the
conditional probability of each ordinal response
category. A total of 1,000 examinee ability levels
(0) were sampled from a standard normal
distribution N(u = 0,62 = 1), which closely
approximates the ability distribution of the target
population, u = —0.002, 02 = 0.98.

For each item-person pair, we used the item's
GRM parameters, discrimination parameter a;
and threshold parameters b;,, to compute the
probability of a response in category k as given in
equation 1. This yields a vector of conditional
probabilities across all response categories for
each item-60 pair. These probability vectors were
used as target labels in training the model to
emulate the GRM response function.

Fine-tune transformers with item features and
theta

The fine-tuning pipeline employs DeBERTa-base
as the text encoder, leveraging its disentangled-
attention backbone to yield a 768-dim CLS
embedding that captures both content and
relative-position information efficiently (He etal.,
2021). To make the single latent-ability estimate
0 competitive in that high-dimensional space, the
model feeds 6 through a  dedicated
“ThetaEncoder” sub-network before
concatenation. This process let the network learn
either a simple or a richly nonlinear
transformation as needed. It is first passed through
three hidden layers (sizes 64 — 128— 256 with
GELU activations, LayerNorm, and dropout
followed by tanh), producing a 8-embedding that
shares scale and distributional properties with the
transformer hidden states. This vector is

concatenated with the original CLS embedding,
giving a 1536-dim joint feature on which a
dropout-regularized linear head (1536 — 5)
predicts raw logits that are converted to predictive
probabilities via soft-max before any loss is
computed. Optimization uses cross-entropy with
soft targets: for every training example the target
distribution is the five-category probability vector
produced by Samejima’s graded-response IRT
model, and the loss

CEL = —Z P, logP, @)
k

encourages the network to reproduce the entire
curve rather than just the arg-max label. Because
6 now enters through hundreds of weights instead
of one and the loss supplies dense probabilistic
feedback, the model learns item-specific category
curves that vary smoothly with ability.

Generate Item Responses

Once the fine-tuned LLM model has produced a
five-element  probability p

(P 00 e P, j4) for examinee j on item i, to mimic
human-like stochasticity —probability based
sampling is used to generate a concrete response
rather than deterministic arg-max which can
distort the latent-response surface and inflate
slope estimates later in calibration. A complete
response matrix is produced in this way for both
training and field-test items for further
psychometric analysis.

vector  Pyj =

3 Methods

This study uses DESSA items to simulate a
scenario where some set of previously calibrated
items are available for training, while a smaller set
of new items, represented only by their text,
requires field-testing. Item parameters derived
from prior field-testing are treated as true item
parameters for both training and evaluation.

The dataset included 50 DESSA items, a
standardized, strength-based behavioral rating
scale developed to assess social-emotional
competencies in children and adolescents. The
instrument encompasses eight empirically derived
domains: self-awareness, social awareness, self-
management, goal-directed behavior, relationship

387



skills, personal responsibility, decision making,
and optimistic thinking. Each item is rated on a 5-
point Likert scale (from ‘“never” to “almost
always”). All items had been previously
calibrated using the GRM based on responses
from a nationally representative sample of 1,350
middle school students. Among the 1,350
respondents, 2.5 %, 8.4 %, 26.3 %, 35.0 %, and
27.7 % endorsed categories 0, 1, 2, 3, and 4,
respectively. Overall, nearly two-thirds of the
calibration sample endorse the item at a high
level, while only about one in ten fall at the
negative end of the scale.

To simulate the field-testing context, the items
were randomly divided into 85% training items
(n = 38) and 15% field-test items (n = 12), with
the constraint that the field-test subset included at
least one item from each SEL domain. The
training items served as calibrated, operational
items, used to fine-tune the language model and
anchor the score scale during calibration. The
field-test items, excluded from model training,
represented new, uncalibrated items used to
evaluate model generalization and calibration
accuracy.

The DeBERTa-base model (He et al., 2021) was
fine-tuned using the item features (domain label
and item text) from the 38 training items, along
with 1,000 latent ability values (8) sampled from
a standard normal distribution, N(0,1), which
reflects the target population’s ability distribution.
The AdamW optimizer (Loshchilov & Hutter,
2017) was used to minimize the CEL between the
GRM-derived target probabilities and the model’s
predictions (James et al., 2023). Fine-tuning was
conducted using the PyTorch library (Paszke et
al., 2019) on a Google Colab Pro instance
equipped with a NVIDIA A100 Tensor Core
40GB GPU. The model was trained for 15 epochs
with a batch size of 16 per device, a learning rate
of 2x 107°, and a weight decay of 0.01. Item
response data were generated based on P ji forall
training and field-test items.

To assess the psychometric quality of the
generated data, field-test items were calibrated
using the GRM. (Samejima, 1969). The mean and
variance of the latent ability (8) were freely
estimated, while the parameters of the training
items were anchored by fixing them to their

known discrimination (a;) and threshold (b;;)
values, ensuring that field-test items were placed
on the same scale. Calibration was conducted
using the mirt package in R (Chalmers, 2012).
Item parameters previously obtained from field-
testing with real human examinees were treated as
true values. Estimates derived from the model
were evaluated against these true values using
mean signed bias, mean absolute error (MAE),
root mean squared error (RMSE), and Pearson
correlation coefficients (r) for each parameter.

4 Results

Table A1 shows that the average item parameters
are generally comparable between the training (38
items) and testing sets (12 items). Standard
deviations are also consistent across sets, with
slightly more variation in the testing items’
thresholds, likely due to fewer items. Overall,
these similarities suggest that the item parameter
distributions are almost balanced across the
training and testing subsets.

Figure 1 demonstrates that the model’s predicted
probabilities track the true category probabilities
almost perfectly in testing set (» = 0.97). The
better trend observed on the training set (» = 0.99),
too. This tight alignment indicates that the model
captured the underlying response tendencies with
high fidelity which is an essential prerequisite for
downstream psychometric uses such as stochastic
response simulation and item-parameter recovery.

o.a

Predicted Probability

0.0 0.2 0.4 o6 0.8 10
True Probability

Figure 1: Predicted versus True Probabilities
across Response Categories for Testing Items

However, when we translated these well-
calibrated probability vectors into single
categorical responses (via one draw per item to
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mimic human variability rather than using
deterministic arg-max sampling), discrimination
among adjacent score levels became more
challenging, especially for the rarer categories (0-
1). Table A2 details this pattern, reporting
precision, recall, and F1 for every category,
together with the overall Cohen’s «x that reflects
agreement beyond chance. In brief, the model
delivers highly calibrated probabilities and
moderate-to-strong categorical accuracy where it
matters most (levels 2—4), while the expected drop
in metrics for the low-frequency -categories
reflects both class imbalance and the deliberate
injection of sampling noise.

Predicied 8
Pradictad
Predicted b2

z . 3 3 " ' 18
True a True b True b2

Predicted b3
Predicted b4

True b3 True bé

Figure 2: Scatterplots of Predicted versus True
Item Parameters for Testing Items
Figure 2 showing field test items’ predicted and
true IRT parameters and Table 1 indicating
overall numerical fit indices of those parameters
together provide a consistent picture. For
discrimination parameter (a), estimates were
weakly and negatively correlated with the true
values ( » = —0.13 ), showing both noticeable
scatter in Figure 2 and moderate error (RMSE =
0.33). The slight negative bias (—0.07 ) and
compressed range suggested the model flattens
steep items and inflates shallow ones. For
difficulty thresholds (b’s), recovery improved
monotonically from b4 to by. The first threshold
was the noisiest (RMSE = 0.59,r = 0.28), but
accuracy doubled for the upper thresholds (bs, bs)
where RMSE fell below 0.25 and correlations
climbed above 0.60. The bias pattern was small
and positive for b, — by, implying a slight right-
shift of predicted step locations. Overall, slopes
were poorly recovered, whereas later thresholds

were estimated with moderate precision; early
thresholds remained a concern.

Parameter  Bias MAE RMSE r
a -0.07 0.30 0.33 -0.13
b, -0.06 0.48 0.59 0.28
b, 0.05 0.31 0.37 0.57
b3 0.05 0.19 0.24 0.63
by 0.07 0.17 0.21 0.73
Table 1. Parameter Recovery Metrics for Testing
Items

Figure 3 overlays the true (solid) and predicted
(dashed) category response curves for a sample of
items. For most items the ordering of curves was
preserved and each predicted peak occurred near
the true modal 8, confirming that the threshold
structure was broadly captured. Consistent with
the numeric bias, predicted curves often shift
rightward, especially for the b; and b, steps,
causing lower categories to dominate a wider 0-
range than intended. Flattened peaks and broader
overlaps reflected the underestimated
discriminations, explaining why slope recovery
was weak yet the model still yielded plausible
probabilities.

Figure 3: Predicted versus True Category Curves
by Testing Items

5 Conclusions

Al-based field-testing approach in this study aims
to improve the efficiency of traditional pretesting
by simulating human examinee responses using
Al, thereby reducing or if possible, eliminating
the need for large-scale human data collection.
Specifically, we investigated if the proposed
approach could emulate graded response model
by using a single DeBER Ta-base model with item
text and examinee 6 to generate realistic
responses to Likert-type rating scale items. The
current study demonstrated that IRT statistics
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derived from Al-generated responses show
moderate alignment with those obtained from
human examinees. This suggests that the
proposed architecture can approximate key
features of human response behavior in rating-
scale assessments and serve as a scalable tool for
early-stage item evaluation.

Item-parameter recovery paints a nuanced picture:
the model captures later thresholds (b3 — b,) with
reasonable precision (RMSE < 0.25,r = 0.63)
and preserves the qualitative ordering of category
response  curves, yet it underestimates
discrimination (a) and the earliest threshold (b,).
These findings suggest that the architecture
faithfully encodes item difficulty structure but
still compresses slope information, a pattern
consistent with the “flattened ICC” or items with
negative  discriminations  documented in
transformer-generated response data (Byrd &
Srivastava, 2022; Maeda, 2025).

This study, while promising, has several
limitations that warrant consideration. First, the
item pool was restricted to a small set of Likert-
type social-emotional learning items, limiting the
generalizability of findings to other domains.
Second, although the use of stochastic sampling
from predicted probabilities offers a realistic
alternative to deterministic predictions, it also
introduces additional variance that can inflate
classification error and reduce parameter recovery
precision. Future implementations should
incorporate multiple draws from the predicted
probability distributions to reduce Monte Carlo
variance by using Rubin’s Rule (1987). Third,
item parameter estimation was conducted on a
relatively small number of training and testing
items, which may limit the robustness of recovery
analyses, particularly for slope parameters.
Benedetto (2023) showed that the predictive
power of transformers increased with increasing
training sample size; therefore, the results of the
current study may increase with larger number of
training items. Finally, the study relied on a single
pretrained DeBERTa model; further work is
needed to explore how different model
architectures, sizes, and fine-tuning strategies
influence response quality and psychometric
fidelity.

By modeling probabilistic item responses through
a single transformer-based model and evaluating
their psychometric viability, this study offers a
scalable pathway toward Al-enhanced pretesting
workflows. While improvements are needed,
particularly in recovering item discriminations,
the strong probability calibration and promising
threshold estimates position this approach as a
compelling tool to reduce workload and improve
the speed and consistency in the traditional field-
testing pipelines, especially in low-resource or
early development contexts.
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A Appendices

Parameters Training Testing  All
Items Items  Items
Mean a 1.49 1.56 1.51
by -3.32 -3.36 -3.33
b, -1.94 -2.07 -1.97
b3 -0.47 -0.60 -0.50
by 0.96 0.79 0.92
SD a 0.28 0.31 0.28
by 0.70 0.45 0.65
b, 0.52 0.39 0.49
b3 0.40 0.31 0.38
by 0.40 0.30 0.38

Table Al: Descriptive Statistics of Calibrated
Item Parameters by Dataset

Data Category  Precision Recall  Fl1- Kappa r
Score
Training 0 0.13 0.12 0.13 0.16  0.99
1 0.22 0.23 0.22
2 0.36 0.35 0.36
3 0.39 0.39 0.39
4 0.48 0.49 0.49
Testing 0 0.08 0.07 0.08 0.16 097
1 0.19 0.21 0.20
2 0.35 0.36 0.35
3 0.38 0.39 0.38
4 0.52 0.50 0.51

Table A2: Per-category Classification Metrics with

Overall Cohen’s k and Probability Correlation
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Figure Al: Al-Based Field-Test Data Generation

Pipeline

An example of DESSA items:
Domain: Self-Awareness
I can recognize my strengths.

0. Never

1. Rarely

2. Sometimes

3.  Often

4.  Almost Always

Text consumed by the LLM model after
processing item features data:

Domain: Self-Awareness Item: I can recognize my
strengths.

Figure A2: DESSA Item Example and
Corresponding Preprocessed LLM Input Text
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