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Abstract 

This study explores the use of large language models 

to simulate human responses to Likert-scale items. A 

DeBERTa-base model fine-tuned with item text and 

examinee ability emulates a graded response model 

(GRM). High alignment with GRM probabilities and 

reasonable threshold recovery support LLMs as 

scalable tools for early-stage item evaluation. 

1 Introduction 

Field-testing is essential for developing any 

assessments as it serves to evaluate the statistical 

quality of newly developed items before the 

operational use. However, it remains one of the 

most resource-intensive and time-consuming 

stage in developing a test. Traditional approaches 

require human examinees to try out items, posing 

challenges related to sample availability, test 

security, item exposure, and scheduling . 

(AlKhuzaey et al., 2023; Hsu et al., 2018; Morizot 

et al., 2007). These challenges are growing as item 

banks must scale rapidly to support contemporary 

tests such as adaptive testing, multilingual 

formats, and artificial intelligent (AI)-generated 

content.  

In response, early attempts predicted item 

difficulty using text-based features like syntax, 

semantics, word counts, embeddings, and 

readability indices (AlKhuzaey et al., 2023; 

Benedetto et al., 2023). Others used natural 

language processing (NLP) techniques to estimate 

item difficulty or discrimination (Benedetto et al., 

2021; Zhou & Tao, 2020), but their accuracy 

remains limited. Importantly, these models often 

overlook distractors and fail to capture the full 

complexity of the human test-taking process 

(Benedetto et al., 2021). 

More recent work has been exploring whether 

large language models (LLMs) can partially or 

fully simulate examinee responses to streamline 

item evaluation without sacrificing psychometric 

validity. For example, Lu and Wang’s (2024) 

“generative students” prompt GPT-4 to mimic 45 

learner profiles with different knowledge states, 

achieving a moderate correlation with 

undergraduate item scores (r ≈ .72) but relying on 

expert-defined misconceptions and a tiny, single-

topic item set. Liu, Bhandari, and Pardos (2024) 

go broader by blending six distinct LLMs into a 

50-member ensemble, reproducing human Rasch 

difficulties on a small college-algebra pool (𝑟 =

 .93 ) yet still showing a compressed ability 

spread. Collectively, these studies confirm the 

promise of LLM-based field-testing while 

exposing the need for scalable methods that 

reduce expert overhead, widen domain coverage, 

and capture the full spectrum of item functioning. 

Maeda (2025) moves furthest toward full AI 

substitution by fine-tuning 61 DeBERTa-v3 

models, each tied to a specific latent ability, and 

embedding a two parameter logistic (2-PL) loss to 

predict option-level probabilities. Across 466 

English-grammar items, the system matched 

human proportion-correct with 𝑟 =  .82 and zero 

mean bias, delivering plausible discrimination 

and distractor statistics and suggesting substantial 

cost and security gains. Yet achieving this 

required training 61 large models exposing heavy 

computational demand, and several extreme items 

still failed to calibrate accurately.  

Building on Maeda’s (2025) foundation, our 

approach leverages a single LLM that takes both 

item features such item and domain texts and a 

student’s latent ability (θ) as input to predict 

selection probabilities of item’s options, 

effectively emulating the graded response model 
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(GRM; Samejima, 1969). Rather than training 

separate models for each ability level, we 

condition predictions on continuous θ values and 

allow the model to learn item parameters 

implicitly from item features. This study aims to 

investigate if the proposed architecture enables 

realistic response simulation for field test Likert-

scale items, supports scalable data generation, and 

reduces computational overhead while preserving 

psychometric structure, positioning it as a cost-

efficient alternative for pretesting in large-scale 

assessments. 

2 Background 

2.1 Transformer Language Models 

Transformer-based language models such as 

BERT (Devlin et al., 2018) are pre-trained on 

large text corpora and can be fine-tuned for 

various NLP tasks, including classification, 

summarization, and question answering. These 

models tokenize input text, convert it into 

embeddings, and process the sequence through 

multiple encoder layers to capture rich contextual 

information. 

In this study, we used the DeBERTa-base model 

(He et al., 2021), an advanced variant of BERT 

and RoBERTa. DeBERTa improves 

representation learning by separately encoding the 

content and relative position of each token and 

computing distinct attention weights for both. 

This structure enhances the model’s ability to 

capture nuanced word relationships, making it 

well-suited for complex language understanding 

tasks. 

2.2 Graded Response Model 

The Graded Response Model (GRM; Samejima, 

1969) is a widely used  item response theory (IRT) 

model for analyzing ordinal polytomous item 

responses, such as rating scales or multi-point 

rubrics in educational assessments. GRM models 

the probability that an examinee’s latent ability 𝜃𝑗 

exceeds a series of ordered thresholds for item i. 

Each item has a discrimination parameter 𝑎𝑖 and 

a set of threshold (difficulty) parameters 𝑏𝑖𝑘, one 

for each score category boundary. The probability 

of responding in category k is defined by the 

difference between cumulative logistic functions 

across adjacent thresholds: 

𝑃(𝑋𝑖𝑗 = 𝑘 |𝜃𝑗) = 𝑃𝑖𝑘
∗ (𝜃𝑗) −  𝑃𝑖(𝑘+1)

∗ (𝜃𝑗) (1) 

where 

𝑃𝑖𝑘
∗ (𝜃𝑗) =  

1

1 + exp [−𝑎𝑖(𝜃𝑗 − 𝑏𝑖𝑘)]
 

(2) 

 

The GRM assumes monotonicity, 

unidimensionality, and local independence, and it 

enables estimation of both person ability and item 

parameters on a common scale. It is especially 

well-suited for assessments where responses 

reflect degrees of correctness or agreement rather 

than binary outcomes. For detailed discussion, see 

Samejima (1969) or Baker & Kim (2004). 

2.3 AI-Based Field-Test Data Generation 

Pipeline 

This approach builds on Maeda’s (2025) 

architecture but ease its computational cost by 

training a single generalized model instead of 

separate models per ability level and eliminating 

the sampling process, supporting scalable and 

flexible field test data generation for Likert-scale 

items. The model is trained on operational items 

with known GRM-based probabilities, using both 

item features and latent ability (𝜽)  as inputs. 

Once trained, the model generalizes to predict 

probabilities for new items by conditioning on the 

item’s text representation and examinee ability. 

Simulated responses are generated by sampling 

from the predicted probabilities, enabling 

psychometric analyses such as pre-calibration and 

item screening without requiring real student 

administrations. The AI-based field test data 

simulation pipeline is provided in Figure A1. 

 Process Item Features Data 

We used items of the Devereux Student Strengths 

Assessment (DESSA). It is a standardized,  

strength-based behavioral rating scale developed 

to assess social-emotional competencies in 

children and adolescents (LeBuffe, et. al., 2009). 

The DESSA has eight empirically derived 

domains: self-awareness, social awareness, , self-

management, goal-directed behavior, relationship 

skills, personal responsibility, decision making, 

and optimistic thinking (Shapiro & LeBuffe, 

2004).  Items are rated on a 5-point Likert scale 

(from “never” to “almost always”) and yield 

standard scores with T-score interpretation.  
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Taking advantage of Likert-scale with same 

options across items, we only included item stem 

and its domain information as a text input 

enabling the model items as unified constructs and 

deeper theta-text interaction. Item stems were 

paired with the item’s domain label (e.g., 

“Domain: Self-Awareness”) to provide semantic 

context. The resulting domain-qualified text was 

used as input features in training the model to 

predict graded response probability distribution 

overall possible options (see Figure A2). 

Calculate Conditional IRT Probabilities 

To generate model training targets, we used the 

GRM (Samejima, 1969) to compute the 

conditional probability of each ordinal response 

category. A total of 1,000 examinee ability levels 

( 𝜽 ) were sampled from a standard normal 

distribution 𝑁(𝜇 = 0, 𝜎2 = 1) , which closely 

approximates the ability distribution of the target 

population, 𝜇 = −0.002, 𝜎2 = 0.98. 

For each item-person pair, we used the item's 

GRM parameters, discrimination parameter 𝑎𝑖 

and threshold parameters 𝑏𝑖𝑘 , to compute the 

probability of a response in category 𝑘 as given in 

equation 1. This yields a vector of conditional 

probabilities across all response categories for 

each item-𝜃 pair. These probability vectors were 

used as target labels in training the model to 

emulate the GRM response function. 

Fine-tune transformers with item features and 

theta 

The fine-tuning pipeline employs DeBERTa-base 

as the text encoder, leveraging its disentangled-

attention backbone to yield a 768-dim CLS 

embedding that captures both content and 

relative-position information efficiently (He et al., 

2021). To make the single latent-ability estimate 

𝜃 competitive in that high-dimensional space, the 

model feeds 𝜃  through a dedicated 

“ThetaEncoder” sub-network before 

concatenation. This process let the network learn 

either a simple or a richly nonlinear 

transformation as needed. It is first passed through 

three hidden layers (sizes 64 → 128→ 256 with 

GELU activations, LayerNorm, and dropout 

followed by tanh), producing a 𝜃-embedding that 

shares scale and distributional properties with the 

transformer hidden states. This vector is 

concatenated with the original CLS embedding, 

giving a 1536-dim joint feature on which a 

dropout-regularized linear head (1536 → 5) 

predicts raw logits that are converted to predictive 

probabilities via soft-max before any loss is 

computed. Optimization uses cross-entropy with 

soft targets: for every training example the target 

distribution is the five-category probability vector 

produced by Samejima’s graded-response IRT 

model, and the loss 

𝐶𝐸𝐿 =  − ∑ 𝑃𝑘
𝑘

𝑙𝑜𝑔𝑃̂𝑘 
(3) 

 

encourages the network to reproduce the entire 

curve rather than just the arg-max label. Because 

𝜃 now enters through hundreds of weights instead 

of one and the loss supplies dense probabilistic 

feedback, the model learns item-specific category 

curves that vary smoothly with ability. 

Generate Item Responses 

Once the fine-tuned LLM model has produced a 

five-element probability vector 𝑃̂𝑖𝑗𝑘 =

(𝑃̂𝑖𝑗0, … , 𝑃̂𝑖𝑗4) for examinee 𝑗 on item 𝑖, to mimic 

human-like stochasticity probability based 

sampling is used to generate a concrete response 

rather than deterministic arg-max which can 

distort the latent-response surface and inflate 

slope estimates later in calibration. A complete 

response matrix is produced in this way for both 

training and field-test items for further 

psychometric analysis.  

3 Methods 

This study uses DESSA items to simulate a 

scenario where some set of previously calibrated 

items are available for training, while a smaller set 

of new items, represented only by their text, 

requires field-testing. Item parameters derived 

from prior field-testing are treated as true item 

parameters for both training and evaluation. 

The dataset included 50 DESSA items, a 

standardized, strength-based behavioral rating 

scale developed to assess social-emotional 

competencies in children and adolescents. The 

instrument encompasses eight empirically derived 

domains: self-awareness, social awareness, self-

management, goal-directed behavior, relationship 
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skills, personal responsibility, decision making, 

and optimistic thinking. Each item is rated on a 5-

point Likert scale (from “never” to “almost 

always”). All items had been previously 

calibrated using the GRM based on responses 

from a nationally representative sample of 1,350 

middle school students. Among the 1,350 

respondents, 2.5 %, 8.4 %, 26.3 %, 35.0 %, and 

27.7 % endorsed categories 0, 1, 2, 3, and 4, 

respectively. Overall, nearly two-thirds of the 

calibration sample endorse the item at a high 

level, while only about one in ten fall at the 

negative end of the scale. 

To simulate the field-testing context, the items 

were randomly divided into 85% training items 

(𝑛 = 38) and 15% field-test items (𝑛 = 12), with 

the constraint that the field-test subset included at 

least one item from each SEL domain. The 

training items served as calibrated, operational 

items, used to fine-tune the language model and 

anchor the score scale during calibration. The 

field-test items, excluded from model training, 

represented new, uncalibrated items used to 

evaluate model generalization and calibration 

accuracy. 

The DeBERTa-base model (He et al., 2021) was 

fine-tuned using the item features (domain label 

and item text) from the 38 training items, along 

with 1,000 latent ability values (𝜃) sampled from 

a standard normal distribution, 𝑁(0,1) , which 

reflects the target population’s ability distribution. 

The AdamW optimizer (Loshchilov & Hutter, 

2017) was used to minimize the CEL between the 

GRM-derived target probabilities and the model’s 

predictions (James et al., 2023). Fine-tuning was 

conducted using the PyTorch library (Paszke et 

al., 2019) on a Google Colab Pro instance 

equipped with a NVIDIA A100 Tensor Core 

40GB GPU. The model was trained for 15 epochs 

with a batch size of 16 per device, a learning rate 

of 2 × 10−5 , and a weight decay of 0.01. Item 

response data were generated based on 𝑃̂𝑖𝑗𝑘  for all 

training and field-test items.  

To assess the psychometric quality of the 

generated data, field-test items were calibrated 

using the GRM. (Samejima, 1969). The mean and 

variance of the latent ability ( 𝜃)  were freely 

estimated, while the parameters of the training 

items were anchored by fixing them to their 

known discrimination (𝑎𝑖 ) and threshold (𝑏𝑖𝑘 ) 

values, ensuring that field-test items were placed 

on the same scale. Calibration was conducted 

using the mirt package in R (Chalmers, 2012). 

Item parameters previously obtained from field-

testing with real human examinees were treated as 

true values. Estimates derived from the model 

were evaluated against these true values using 

mean signed bias, mean absolute error (MAE), 

root mean squared error (RMSE), and Pearson 

correlation coefficients (𝑟) for each parameter. 

4 Results 

Table A1 shows that the average item parameters 

are generally comparable between the training (38 

items) and testing sets (12 items). Standard 

deviations are also consistent across sets, with 

slightly more variation in the testing items’ 

thresholds, likely due to fewer items. Overall, 

these similarities suggest that the item parameter 

distributions are almost balanced across the 

training and testing subsets. 

Figure 1 demonstrates that the model’s predicted 

probabilities track the true category probabilities 

almost perfectly in testing set (r = 0.97). The 

better trend observed on the training set (r = 0.99), 

too. This tight alignment indicates that the model 

captured the underlying response tendencies with 

high fidelity which is an essential prerequisite for 

downstream psychometric uses such as stochastic 

response simulation and item‐parameter recovery.  

However, when we translated these well-

calibrated probability vectors into single 

categorical responses (via one draw per item to 

 

Figure 1: Predicted versus True Probabilities 
across Response Categories for Testing Items 
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mimic human variability rather than using 

deterministic arg-max sampling), discrimination 

among adjacent score levels became more 

challenging, especially for the rarer categories (0-

1). Table A2 details this pattern, reporting 

precision, recall, and F1 for every category, 

together with the overall Cohen’s κ that reflects 

agreement beyond chance. In brief, the model 

delivers highly calibrated probabilities and 

moderate-to-strong categorical accuracy where it 

matters most (levels 2–4), while the expected drop 

in metrics for the low-frequency categories 

reflects both class imbalance and the deliberate 

injection of sampling noise. 

 

Figure 2 showing field test items’ predicted and 

true IRT parameters and Table 1 indicating 

overall numerical fit indices of those parameters 

together provide a consistent picture. For 

discrimination parameter (a), estimates were 

weakly and negatively correlated with the true 

values ( r = –0.13 ), showing both noticeable 

scatter in Figure 2 and moderate error (RMSE ≈ 

0.33). The slight negative bias ( −0.07 ) and 

compressed range suggested the model flattens 

steep items and inflates shallow ones. For 

difficulty thresholds (b’s), recovery improved 

monotonically from 𝑏₁ to 𝑏₄. The first threshold 

was the noisiest (𝑅𝑀𝑆𝐸 ≈  0.59, 𝑟 =  0.28), but 

accuracy doubled for the upper thresholds (𝑏₃, 𝑏₄) 

where RMSE fell below 0.25 and correlations 

climbed above 0.60. The bias pattern was small 

and positive for 𝑏₂ − 𝑏₄, implying a slight right-

shift of predicted step locations. Overall, slopes 

were poorly recovered, whereas later thresholds 

were estimated with moderate precision; early 

thresholds remained a concern. 

Figure 3 overlays the true (solid) and predicted 

(dashed) category response curves for a sample of 

items. For most items the ordering of curves was 

preserved and each predicted peak occurred near 

the true modal 𝜃 , confirming that the threshold 

structure was broadly captured. Consistent with 

the numeric bias, predicted curves often shift 

rightward, especially for the 𝑏₁  and 𝑏₂  steps, 

causing lower categories to dominate a wider 𝜃-

range than intended. Flattened peaks and broader 

overlaps reflected the underestimated 

discriminations, explaining why slope recovery 

was weak yet the model still yielded plausible 

probabilities. 

5 Conclusions 

AI-based field-testing approach in this study aims 

to improve the efficiency of traditional pretesting 

by simulating human examinee responses using 

AI, thereby reducing or if possible, eliminating 

the need for large-scale human data collection. 

Specifically, we investigated if the proposed 

approach could emulate graded response model 

by using a single DeBERTa-base model with item 

text and examinee 𝜃  to generate realistic 

responses to Likert-type rating scale items. The 

current study demonstrated that IRT statistics 

Parameter Bias MAE RMSE r 

a -0.07 0.30 0.33 -0.13 

𝑏1 -0.06 0.48 0.59 0.28 

𝑏2 0.05 0.31 0.37 0.57 

𝑏3 0.05 0.19 0.24 0.63 

𝑏4 0.07 0.17 0.21 0.73 

Table 1. Parameter Recovery Metrics for Testing 

Items 

 

 

Figure 2: Scatterplots of Predicted versus True 

Item Parameters for Testing Items 

 

 

 

Figure 3: Predicted versus True Category Curves 

by Testing Items 
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derived from AI-generated responses show 

moderate alignment with those obtained from 

human examinees. This suggests that the 

proposed architecture can approximate key 

features of human response behavior in rating-

scale assessments and serve as a scalable tool for 

early-stage item evaluation. 

Item-parameter recovery paints a nuanced picture: 

the model captures later thresholds (𝑏₃ − 𝑏₄) with 

reasonable precision (𝑅𝑀𝑆𝐸 ≤  0.25, 𝑟 ≥  0.63) 

and preserves the qualitative ordering of category 

response curves, yet it underestimates 

discrimination (𝑎) and the earliest threshold (𝑏₁). 

These findings suggest that the architecture 

faithfully encodes item difficulty structure but 

still compresses slope information, a pattern 

consistent with the “flattened ICC” or items with 

negative discriminations documented in 

transformer-generated response data (Byrd & 

Srivastava, 2022; Maeda, 2025). 

This study, while promising, has several 

limitations that warrant consideration. First, the 

item pool was restricted to a small set of Likert-

type social-emotional learning items, limiting the 

generalizability of findings to other domains. 

Second, although the use of stochastic sampling 

from predicted probabilities offers a realistic 

alternative to deterministic predictions, it also 

introduces additional variance that can inflate 

classification error and reduce parameter recovery 

precision. Future implementations should 

incorporate multiple draws from the predicted 

probability distributions to reduce Monte Carlo 

variance by using Rubin’s Rule (1987). Third, 

item parameter estimation was conducted on a 

relatively small number of training and testing 

items, which may limit the robustness of recovery 

analyses, particularly for slope parameters. 

Benedetto (2023) showed that the predictive 

power of transformers increased with increasing 

training sample size; therefore, the results of the 

current study may increase with larger number of 

training items. Finally, the study relied on a single 

pretrained DeBERTa model; further work is 

needed to explore how different model 

architectures, sizes, and fine-tuning strategies 

influence response quality and psychometric 

fidelity. 

By modeling probabilistic item responses through 

a single transformer-based model and evaluating 

their psychometric viability, this study offers a 

scalable pathway toward AI-enhanced pretesting 

workflows. While improvements are needed, 

particularly in recovering item discriminations, 

the strong probability calibration and promising 

threshold estimates position this approach as a 

compelling tool to reduce workload and improve 

the speed and consistency in the traditional field-

testing pipelines, especially in low-resource or 

early development contexts. 
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A Appendices 

 

 Parameters Training 

Items 

Testing 

Items 

All 

Items 

Mean a 1.49 1.56 1.51 

𝑏1 -3.32 -3.36 -3.33 

𝑏2 -1.94 -2.07 -1.97 

𝑏3 -0.47 -0.60 -0.50 

𝑏4 0.96 0.79 0.92 

SD a 0.28 0.31 0.28 

𝑏1 0.70 0.45 0.65 

𝑏2 0.52 0.39 0.49 

𝑏3 0.40 0.31 0.38 

𝑏4 0.40 0.30 0.38 

Table A1: Descriptive Statistics of Calibrated 

Item Parameters by Dataset 

Data Category Precision Recall F1-

Score 

Kappa r 

Training 0 0.13 0.12 0.13 0.16 0.99 

1 0.22 0.23 0.22 

2 0.36 0.35 0.36 
3 0.39 0.39 0.39 

4 0.48 0.49 0.49 

Testing 0 0.08 0.07 0.08 0.16 0.97 

1 0.19 0.21 0.20 

2 0.35 0.36 0.35 

3 0.38 0.39 0.38 

4 0.52 0.50 0.51 

Table A2: Per-category Classification Metrics with 

Overall Cohen’s κ and Probability Correlation 
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Figure A1: AI-Based Field-Test Data Generation 

Pipeline 

 

 

An example of DESSA items: 

Domain: Self-Awareness 

I can recognize my strengths. 

0. Never 

1. Rarely 

2. Sometimes 

3. Often 

4. Almost Always 

 

Text consumed by the LLM model after 

processing item features data: 

Domain: Self-Awareness Item: I can recognize my 

strengths. 

Figure A2: DESSA Item Example and 

Corresponding Preprocessed LLM Input Text 
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