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Abstract

Advancements in artificial intelligence and
transformer-based language models have sig-
nificantly influenced educational assessment,
particularly in the development of Auto-
mated Essay Scoring (AES) systems. This
study examines the effectiveness of the GPT-
2 small model in evaluating student essays
from the Automated Student Assessment Prize
(ASAP) dataset'.It also explores the effect
of a back-translation data augmentation tech-
nique(translating essays into Turkish and then
back into English) On model performance.
Evaluation metrics include Cohen’s kappa and
Quadratic Weighted Kappa (QWK). The model
achieved QWK scores ranging from 0.60 to
0.80 across essay sets, with a peak of 0.77 on
Essay Set 5. Notably, back translation led to
substantial improvements, particularly in Essay
Set 8, where QWK increased by 33%. These
findings highlight the potential of data augmen-
tation to mitigate class imbalance and improve
scoring robustness. However, the limited se-
mantic depth of the GPT-2 small model points
to the need for more advanced, rubric-aware
architectures. The study underscores the impor-
tance of balanced data distributions in enhanc-
ing the validity and fairness of AES systems.

Keywords: artificial intelligence, language mod-
eling, automated essay scoring (AES), GPT-based
models, GPT-2

1 Introduction

Recent advances in large language models (LLMs),
particularly those developed under the Generative
Pretrained Transformer (GPT) architecture, have
significantly influenced Automated Essay Scoring
(AES). Early AES systems relied on surface-level
linguistic features and traditional machine learning
algorithms (Kumar and Boulanger, 2020; Klebanov
and Madnani, 2022), while more recent approaches
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have incorporated transformer-based models ca-
pable of capturing deeper semantic and syntactic
patterns (Taghipour and Ng, 2016). Among these,
encoder-only architectures such as BERT (Devlin
et al., 2019) and DistilBERT (Sanh et al., 2019)
have been widely applied to AES tasks, achieving
strong performance and serving as reliable base-
lines (Firoozi et al., 2023; Wang et al., 2022).

In contrast, decoder-based generative models,
particularly GPT variants, have received com-
paratively limited attention in AES despite their
proven success in other natural language process-
ing applications. Recent studies have demonstrated
that advanced generative models such as GPT-3.5
and GPT-4 can achieve near human-level perfor-
mance in essay scoring benchmarks (Mizumoto
and Eguchi, 2023; Xiao et al., 2025; Yamashita,
2025). However, these models are proprietary and
resource-intensive, limiting their accessibility for
educational researchers and practitioners. Smaller,
open-source alternatives like GPT-2 remain under-
explored in AES, even though evidence from re-
lated classification tasks indicates that fine-tuned
GPT-2 can rival or surpass BERT-based hybrids in
performance (Bouchiha et al., 2025). This observa-
tion supports the need for systematic evaluation of
GPT-2 in AES, both as a practical and a method-
ological contribution.

Another persistent challenge in AES is the lim-
ited size and imbalance of available datasets, which
can compromise model generalization and fair-
ness (Jong et al., 2022; Guo et al., 2024). Data
augmentation techniques such as back-translation
have been proposed as a potential solution, offering
greater linguistic diversity and reducing the effects
of class imbalance (Lun et al., 2020). Yet, it re-
mains unclear whether performance improvements
attributed to back-translation derive from genuine
linguistic variation or simply from the increased
size of training data. Addressing this ambiguity
requires careful experimental design that controls
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for training size and duplication.

This study makes two key contributions. First,
it provides a controlled evaluation of GPT-2 for
AES on the ASAP dataset, positioning it against
established encoder-based baselines and recent
parameter-efficient fine-tuning approaches such as
LoRA (Liu et al., 2024). Second, it investigates
the effect of back-translation as a data augmenta-
tion strategy under controlled conditions, clarifying
whether observed improvements stem from data di-
versity rather than dataset expansion alone.

The study is guided by two research questions:

1. How reliably can a fine-tuned GPT-2 model
score essays from the ASAP dataset compared
to established baselines?

2. To what extent does back-translation improve
GPT-2’s AES performance beyond the effect
of increasing training set size?

2 Related Work

2.1 Overview of Automated Essay Scoring

Automated Essay Scoring (AES) refers to the use
of computational methods to evaluate and score stu-
dent essays (Shermis, 2014). While manual scoring
is often time-consuming and prone to rater incon-
sistency, AES offers efficiency, objectivity, and
scalability, making it an increasingly valuable tool
in educational contexts (Yan et al., 2020).

ing, frequency-based
JTFIDF,

ML models
(eg. LR, RF, SVM)

+Deep Leaming Models
(e:g. CNN, RN, LSTM)

“Transformer models (e.g. GPT,
BERT)

Figure 1: The AES Process described in Four Steps
(Gierl et al., 2014).

As can be seen in Figure 1, the AES process
consists of four steps: text preprocessing, feature
extraction, model training, and performance evalu-
ation (Gierl et al., 2014). To detail, it involves the
preprocessing (Step 1) and conversion of essays
written in a training environment into numerical
vectors using text representation techniques (Step
2), combining these vectors with machine learn-
ing algorithms or deep learning networks to create
a scoring model (Step 3), and automatically as-
signing scores using this model and evaluating the
scoring model to see if it can predict human scoring
(Step 4). Advances in machine learning and natural
language processing have significantly improved

the first three stages, particularly through enhanced
text representation and modeling techniques (?).

Early feature extraction methods employed
frequency-based techniques, such as term fre-
quency (TF) and TF-IDF (Salton et al., 1975),
but these approaches were unable to capture se-
mantic meaning. Later, word embedding models
like Word2Vec and GloVe (Mikolov et al., 2013)
improved semantic representation but were still
context-independent. Contextual embedding mod-
els such as ELMo, BERT, and GPT addressed this
limitation by incorporating surrounding context
into each word’s representation (Peters et al., 2018;
Radford et al., 2018; Liu et al., 2020). These ad-
vances improved the quality of input features used
in scoring models.

Earlier AES studies employed deep neural net-
works (DNNs) and recurrent neural networks
(RNNs) to model sequential patterns in text
(Alikaniotis et al., 2016; Tay et al., 2018). RNNs
often struggle with capturing long-range dependen-
cies and information across time steps; however,
they are designed to suit the sequence-to-sequence
design effectively (Nugaliyadde et al., 2019). This
limitation has motivated the use of transformer-
based architectures, which replace recurrence with
attention mechanisms. The self-attention mecha-
nism introduced by Vaswani et al. (2017) enables
the model to learn dependencies across all posi-
tions in a sequence simultaneously, resulting in a
richer representation of global structure and seman-
tic relationships. As a result, transformer models
such as GPT have become increasingly prevalent
in recent AES research.

2.2 Transformer-Based Architectures in AES

In 2017, the paper ‘Attention Is All You Need’
revolutionized the field of natural language pro-
cessing (NLP) by introducing the transformer ar-
chitecture (see Figure 2) (Vaswani et al., 2017).
This model leveraged self-attention mechanisms to
capture long-range semantic and syntactic depen-
dencies in text. In AES tasks, encoder-only trans-
formers such as BERT ( Devlin et al., 2019) and
RoBERTa have also demonstrated state-of-the-art
performance in both predictive and analytic scor-
ing (Firoozi et al., 2023; Klebanov and Madnani,
2022).

These models provide robust contextual embed-
dings and strong baselines for AES. These models
are typically fine-tuned on prompt-specific essay
datasets, where only the top classification layer is
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updated while the encoder layers provide contextu-
alized embeddings. This parameter-efficient strat-
egy has proven effective in score prediction, espe-
cially under constrained computational resources.
However, their reliance on bidirectional masked
language modeling may limit their utility in genera-
tive tasks and document-level coherence modeling.
Although rubric-integrated encoder architectures
have improved interpretability and alignment with
human scoring rubrics (Liu et al., 2020), their gen-
eralization across unseen prompts and diverse dis-
course structures remains limited.

Figure 2: Transformer Architecture (Vaswani et al.,
2017).

These limitations have motivated research on
decoder-based models, which are inherently more
suited to sequence-level generation and whole-
document representation. Importantly, GPT-2 has
not only been effective in generative tasks but
has also demonstrated competitive performance
in classification settings. For instance, GPT-2
has matched or even surpassed BERT-based hy-
brids in hierarchical text classification (Bouchiha
et al., 2025), performed strongly in text classifica-
tion and natural language inference benchmarks
(Montesinos, 2020), and shown competitive results
against BERT in low-resource classification tasks
(Wang et al., 2024). Such findings indicate that
GPT-2 is a viable model for AES, where both clas-
sification accuracy and generative capabilities are
critical.

2.3 Decoder-Only Transformers: The GPT
Family

Decoder-only models, particularly the GPT series
introduced by OpenAl, are trained with autore-
gressive objectives and unidirectional attention,
which makes them inherently generative (Radford
et al., 2018, 2019). GPT-2 expanded this architec-
ture to 1.5 billion parameters and demonstrated

strong transfer performance. Subsequent mod-
els such as GPT-3, GPT-3.5, and GPT-4 further
scaled capacity and achieved near human-level ac-
curacy in AES benchmarks under zero-shot and
few-shot prompting conditions (Mizumoto and
Eguchi, 2023; Yancey et al., 2023; Gunduz and
Gierl, 2024). GPT-4 also introduced multimodal
input processing, although its architecture and train-
ing data remain undisclosed

While these larger models have shown impres-
sive results, their proprietary nature restricts repro-
ducibility and accessibility. In contrast, GPT-2 re-
mains fully open-source and scalable across differ-
ent sizes, making it a practical option for academic
and educational research. Importantly, GPT-2 has
proven effective beyond generative applications.
Prior studies have shown that fine-tuned GPT-2
can outperform BERT-based hybrids in hierarchical
text classification (Bouchiha et al., 2025), perform
strongly in text classification and natural language
inference benchmarks (Montesinos, 2020), and
achieve competitive results against BERT in low-
resource classification tasks (Wang et al., 2024).

These findings indicate that GPT-2 is not only
cost-efficient and accessible but also capable of
delivering robust performance in classification-
oriented tasks. Nevertheless, systematic evalua-
tions of GPT-2 on AES benchmark datasets such
as ASAP remain limited. This study addresses
this gap by providing a controlled and reproducible
assessment of GPT-2 for essay scoring, with par-
ticular attention to the role of data augmentation.

2.4 Recent Applications of GPT-Based AES

In recent years, GPT models have been increasingly
applied to educational assessment tasks, including
both short-answer and essay scoring. One line of
research has focused on data augmentation to miti-
gate class imbalance.Fang et al. (2023) employed
GPT-4 to generate synthetic responses for minority
scoring classes, which improved the performance
of a DistilBERT scoring model. Similarly, Gaddi-
pati et al. (2020) compared transfer learning mod-
els such as ELMo, BERT, GPT, and GPT-2 for
short-answer grading, showing that while ELMo
provided strong baselines, transformer-based mod-
els offered greater scalability for downstream use.
Several studies have investigated larger GPT mod-
els for direct scoring. Mizumoto and Eguchi
(2023) evaluated GPT-3 on TOEFL essays and
reported that combining linguistic features with
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Model | Architecture Parameters | Training Data | Release Date
GPT-1 12H Decoder 117M BookCorpus 2018
GPT-2 12-48H Decoder | 1.5B WebText 2019
GPT-3 Modified GPT-2 | 175B CC + WebText | 2020
GPT-3.5 | Undisclosed 175B - Mar 2022
GPT-4 Undisclosed ~1.7T - Mar 2023
Table 1: Overview of OpenAI’s GPT-n series.

Model | Params | Layers | Hidden | Input

Small 117M 12 768 768

Medium | 345M 24 1024 1024

Large 774M 36 1280 1280

XL 1558M | 48 1600 1600

Table 2: GPT-2 Model Configurations across Four Sizes.

model outputs improved agreement with human
raters. Yancey et al. (2023) assessed GPT-3.5 and
GPT-4 on essays from English language learners,
finding that GPT-4 achieved performance compara-
ble to state-of-the-art Automated Writing Evalua-
tion (AWE) systems, though alignment varied by
learners’ first language. Henkel et al. (2023) used
GPT-4 for scoring short-answer reading compre-
hension tasks in low- and middle-income countries,
demonstrating its potential in resource-limited ed-
ucational contexts.Obata et al. (2023) tested Chat-
GPT for essay scoring in English and Japanese
and showed that validity improved when combined
with linguistic features.Xiao et al. (2025) further
argued that GPT-3.5 and GPT-4 are most effective
when augmenting human raters in hybrid scoring
systems.

Despite these advances, most work has con-
centrated on proprietary models such as GPT-
3.5 and GPT-4, limiting reproducibility and trans-
parency. Benchmark studies on open-source mod-
els remain scarce. Gunduz and Gierl (2024) com-
pared GPT-3.5 and GPT-4 under different prompt-
ing conditions on the ASAP dataset, but no sys-
tematic evaluation of GPT-2 has yet been con-
ducted. Considering GPT-2’s accessibility, scala-
bility, and demonstrated competitiveness in classifi-
cation tasks (Bouchiha et al., 2025; Wang et al.,
2024), further investigation is warranted. This
study addresses this gap by fine-tuning GPT-2 on
the ASAP dataset and evaluating the effects of back-
translation as a data augmentation strategy, offering
a reproducible and transparent alternative to propri-
etary systems.

2.5 Data Augmentation and Back-Translation
in AES

Data augmentation is widely used in NLP to im-
prove generalization and mitigate label imbalance
through techniques such as synonym replacement,
paraphrasing, and translation-based methods (Wei
and Zou, 2019). In AES, augmentation helps bal-
ance score distributions and enrich training data
diversity (Lun et al., 2020; Jong et al., 2022).
Back-translation, which generates paraphrases
by translating text into a target language and back,
has been shown to increase linguistic variety and
robustness in low-resource tasks (Sennrich et al.,
2016; Edunov et al., 2018). In AES, augmentation
methods have been applied to enrich training data
(e.g., (Firoozi, 2023; Guo et al., 2024)), yet the
specific impact of back-translation on score distri-
butions, particularly under imbalanced data condi-
tions, remains underexplored. This study addresses
this gap by applying back-translation to the ASAP
dataset under controlled conditions, clarifying its
contribution beyond simple dataset expansion.

3 Method

3.1 Dataset

This study utilizes the Automated Student Assess-
ment Prize (ASAP) dataset, developed under the
sponsorship of the Hewlett Foundation in 2012,
to encourage scalable and reliable approaches to
AES (Shermis, 2014). The dataset comprises eight
distinct essay sets written by students in Grades 7
through 10, encompassing various genres, includ-
ing narrative, persuasive, and expository writing.
Each essay set varies in terms of grade level, rubric
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type, essay length, and scoring range (see Table 3).
Essays were scored by two or three expert raters
using holistic, trait-based, or composite rubrics.
The score ranges and aggregation methods for do-
main scores differ across sets. Table 3 summarizes
the specific score ranges for Rater 1, Rater 2, and
the derived domain score used for model training.
Among the essay sets, Set 4 stands out for its rela-
tively balanced score distribution across all score
categories. As shown in Table 3, both individual
rater scores and the domain score span the full
range from O to 3, with sufficient representation in
each category. This balanced distribution is particu-
larly beneficial for training reliable AES models, as
it reduces the risk of class imbalance and supports
more effective learning dynamics.

3.2 Data Preprocessing

Text Preprocessing. To prepare the essays for
model input, standard text preprocessing steps were
applied. All texts were lowercased and lemmatized
using the NLTK library (Bird et al., 2009). The
cleaned essays were then tokenized using the GPT-
2 tokenizer from the Hugging Face Transformers li-
brary (Wolf et al., 2019). Since transformer models
require fixed-length input, padding and truncation
were used to standardize sequence lengths.

Score Preprocessing. Each essay was scored
by two or three raters, and domain scores were
computed according to the scoring rules in Table
3. However, some sets (Essay Sets 1, 7, and 8)
had wide or unbalanced score ranges. To improve
model performance, these scores were rescaled into
fewer ordinal categories. For instance, Set 1 do-
main scores (2—12) were converted to a 1-6 ordinal
scale. Similarly, Set 7 scores (0—24) were mapped
to a 0-3 scale, and Set 8 scores (0-60) were com-
pressed into six ordinal categories based on trait
aggregation logic (see Table 3).

3.3 Model Development

GPT-2 Architecture. The model developed in this
study builds upon the GPT-2 architecture (see Fig-
ure 3), a decoder-only transformer pretrained on
over 8 million web pages (Radford et al., 2019).
GPT-2 generates contextualized word embeddings
using masked self-attention and is optimized for
predicting the next token. Among its four variants,
the smallest version—GPT-2 Small (124M param-
eters, 12 decoder layers, 768 hidden units)—was
selected due to computational efficiency. All train-
ing was conducted using Google Colab Pro (Tesla

V100 GPU, 32GB RAM). Each decoder block in

GPT-2 small model
DECODER

DECODER
DECODER
DECODER

DECODER

%, 7

Figure 3: GPT-2 Small Architecture.

GPT-2 includes masked multi-head self-attention,
a feedforward network, residual connections, and
layer normalization (Vaswani et al., 2017). The in-
put sequence is processed from left to right, making
the model suitable for both generative and classifi-
cation tasks.

Classification Head. To adapt GPT-2 for AES,
we added a task-specific classification head on top
of the pretrained transformer (see Figure 4). This
consisted of a dropout layer (with rates of 0.1, 0.2,
and 0.5 tested) followed by a fully connected linear
layer that maps the last hidden state of the model to
a fixed number of score classes per essay set (e.g., 4
classes in Essay Set 4). The num_labels parameter
was dynamically set based on the scoring range of
each set. All training was performed on Google
Colab Pro using the Hugging Face Transformers
library (Wolf et al., 2019). The small-scale GPT-2
variant enabled faster iteration while maintaining
competitive performance for AES tasks.

CLASSIFICATION MODEL

Classt || Class2 || Class3 | | Classn

Linear layer
Drop out

DECODER
DECODER

DECODER
DECODER

“Text & Position Encoding

Figure 4: Classification Model Architecture.

3.4 Experimental Setup and Hyperparameter
Tuning

All essays were tokenized using the GPT-2 tok-
enizer from the HuggingFace Transformers library.
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Set Grade Essay Type Train Size Avg. Len. Rubric Type Raters Score Range Domain Score Explanation
1 8 Persuasive 1783 350 Holistic 2 2-12 Sum of R1 and R2 (2-12)
2a 10 Persuasive 1800 50 Trait 2 1-6 Equals R1’s score (1-6)
2b 10 Persuasive 1800 50 Trait 2 14 Equals R1’s score (1-4)
3 10 Source-Dep. 1726 50 Holistic 2 0-3 Max(R1, R2) (0-3)
4 10 Source-Dep. 1772 50 Holistic 2 0-3 Near max(R1, R2) (0-3)
5 8 Source-Dep. 1805 50 Holistic 2 04 Near max(R1, R2) (0-4)
6 10 Source-Dep. 1800 50 Holistic 2 04 Near max(R1, R2) (0-4)
7 7 Expository 1569 50 Composite 2 0-12 Sum of R1 and R2 (0-24)
8 10 Expository 723 50 Composite 3 0-30 R1+R2 or R3 used (0-60)

Table 3: Descriptive Statistics and Scoring Guidelines for the Eight ASAP Essay Sets.

Essays exceeding the maximum sequence length
of 1,024 tokens (as imposed by the GPT-2 Small
architecture) were truncated.

The pre-trained GPT-2 Small model was initial-
ized with default configurations: 12 decoder layers,
768-dimensional hidden states and embeddings, 12
self-attention heads, GELU activation, and dropout
probability of 0.1 across embedding, attention, and
fully connected layers. Layer normalization used
an epsilon value of le-5. In total, the model con-
tains approximately 117M parameters. To adapt
GPT-2 for essay scoring, a linear classification head
with dropout was appended. The number of output
classes was defined per essay set.

To adapt GPT-2 for essay scoring, a linear clas-
sification head with dropout was appended. The
number of output classes was defined per essay set
using the num_labels parameter. The final hidden
state of the first token was passed to the classifi-
cation layer. Model training was optimized using
the AdamW optimizer (Kingma, 2014) with a fixed
learning rate of le-4 and categorical cross-entropy
loss. The loss function for k classes is defined in
Equation 1

k
L(y,9) =—>_ yilog(i) (1)
=1

where y is the one-hot true label and 3 is the
predicted class distribution.

To ensure robust evaluation, each essay set was
randomly partitioned into training (60%), valida-
tion (20%), and test (20%) subsets following stan-
dard practice.

3.5 Data Augmentation Strategy

The distribution of essays across score levels is
utilized by the GPT-2 Small architecture, which
features the performance and generalizability of

AES models. To address this, we employed data
augmentation to enhance the training set, particu-
larly for underrepresented classes.

Text Augmentation. Text data augmentation
involves generating additional samples by modi-
fying existing texts, without requiring new data
collection. Common methods include synonym
replacement (SR), random insertion (RI), random
swap (RS), and random deletion (RD), which intro-
duce lexical variability while preserving sentence
structure (Firoozi, 2023).

Back-Translation. Among these methods, back-
translation has emerged as a particularly effective
strategy for producing fluent and semantically con-
sistent variations. This technique translates a sen-
tence into an intermediate language and back to the
original, creating paraphrased versions that enrich
the training data. In our study, the source language
was English, and the target language was Turk-
ish. We translated English essays into Turkish and
then back into English using the Google Translate
API. Turkish was intentionally chosen as the pivot
language due to its agglutinative morphology and
syntactic divergence from English, contributing to
greater linguistic variety in the augmented texts.

This method was selectively applied: in bal-
anced sets (e.g., Set 4), each score class was aug-
mented by 20% following the strategy proposed
in Firoozi’s Doctoral Thesis (Firoozi, 2023), while
in imbalanced sets, score levels with fewer than
50 samples were doubled. This targeted approach
aimed to reduce class imbalance, minimize model
bias, and improve performance across the entire
score spectrum. The augmentation process is illus-
trated in Figure 5.
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Translate

Target Language
(Turkish)

A mother is a person who g there are only
four pieces of pie for five people, promptly
‘announces she never did care for pie.

Back-translate

Translate Bir anne, bes kisi icin sadece

dort parca pasta oldugunu
goren bir kisidir, derhal asla
pastayi umursamadigini
duyurur.

A mother is a person who that there are
only four pieces of cake for five people, and
immediately announces that she never cares.

Back-Translate

Figure 5:
Pipeline.

Back-Translation Data Augmentation

3.6 Performance Metrics

To evaluate the effectiveness of the AES model, we
employed multiple metrics capturing both agree-
ment with human raters and classification perfor-
mance.

Cohen’s Kappa. Cohen’s Kappa (k) measures
inter-rater agreement corrected for chance, and is
commonly used to assess the consistency between
model predictions and human scores. It is defined

as:
_P,—P

A )

where F, is the observed agreement and F, is the
expected agreement by chance. Agreement levels
are interpreted based on the guidelines by Landis
and Koch (1977).

Quadratic Weighted Kappa (QWK). QWK ex-
tends Cohen’s Kappa by penalizing disagreements
based on the distance between score levels, mak-
ing it especially suitable for ordinal tasks, such
asutilized the GPT-2 Small architecture, featurings:

(i—j)°

Wi = TN 12 3)

2

The QWK score is then defined by:

2 i, Wij Oij

QWK =1-—
Zi,j wij Eij

“4

Accuracy. Accuracy reflects the proportion
of essays for which the predicted score exactly
matches the human-assigned score. Although it
does not account for ordinal distance between mis-
classified levels, it remains a useful baseline metric
for evaluating overall classification correctness.

4 Results

4.1 Hyperparameter Settings

To optimize performance, we fine-tuned key hy-
perparameters for each essay set, as detailed in

Table 4. All models used the GPT-2 Small archi-
tecture with 768-dimensional token embeddings,
1024-dimensional positional encodings, and 12 de-
coder layers.

A classification head consisting of a dropout and
a linear layer was appended to map outputs to a
variable number of score classes (num_labels) per
essay set. Dropout rates were adjusted individually;
Sets 1 and 2a performed best with 0.5, while 2b, 3,
5,7, and 8 performed best with 0.1.

A fixed learning rate of le-4 was used across
sets, optimized via the AdamW optimizer. Epochs
and batch size varied by set, reflecting differences
in convergence behavior and dataset size. For exam-
ple, Set 6 performed best with 30 epochs, dropout
0.3, and batch size 2.

4.2 RQI1: AES Model Performance

The fine-tuned GPT-2 model demonstrated moder-
ate scoring reliability across the eight essay sets.
On average, it achieved a Quadratic Weighted
Kappa (QWK) of 0.68, Cohen’s Kappa of 0.43, and
classification accuracy of 61%. According to the
interpretability thresholds proposed by Williamson
et al. (2012), the model explained a substantial
portion of human scoring variance. These results
suggest that even the most minor GPT-2 variant can
offer competitive performance in AES tasks under
computational constraints.

4.3 RQ2: Effect of Data Augmentation

Back-translation-based data augmentation led to
notable performance improvements. The average
QWK score increased from 0.68 to 0.74 (+0.06),
while Cohen’s Kappa rose from 0.43 to 0.48
(+0.05). This gain was most evident in essay sets
with initially imbalanced score distributions, con-
firming the effectiveness of targeted augmentation
in enhancing agreement between machine predic-
tions and human raters.

5 Discussion

This study examined the performance of the open-
source GPT-2 model for AES on the ASAP dataset,
with a focus on fine-tuning and back-translation-
based data augmentation. Results show that even
the most minor GPT-2 variant, when fine-tuned
with optimized hyperparameters, achieved a com-
petitive average QWK score of 0.68 (close to
human-level performance at 0.74) and outper-
formed GPT-3.5 in certain sets.The model per-
formed best in balanced essay sets with sufficient
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Parameter

1 2a 2b 3 4 5 6 7 8
Embedding Dim. 768 768 768 768 768 768 768 768 768
Positional Encoding 1024 1024 1024 1024 1024 1024 1024 1024 1024
Decoder Layers 12 12 12 12 12 12 12 12 12
Num Labels 6 6 4 4 4 5 5 4 6
Dropout Rate 0.5 0.1 0.5 0.2 0.2 0.1 0.1 0.3 0.1
Learning Rate le-4 le-4 le-4 le-4 le-4 le-4 le-4 le-4 le-4
Epochs 20 25 35 20 30 20 30 20 30
Batch Size 2 2 2 4 2 2 2 1 2

Table 4: Final selection of Hyperparameters used for Fine-tuning GPT-2 across all Essay Sets.

Model 1

2a 2b 3 4 5 6 7 8 Average
GPT-2 075 064 066 071 074 077 073 077 043 0.68
Human Raters 0.71 078 072 081 0.86 074 077 0.68 0.63 0.74
Discrepancy 004 0.14 0.06 0.10 0.12 0.03 -0.04 009 0.18 0.06

Table 5: Comparison of GPT-2 and Human Raters using QWK across all Essay Sets.

Essay Set 1 2a 2b 3 4 5 6 7 8

Before BT 1783 1800 1800 1726 1772 1805 1800 1569 723
After BT 1875 1831 1829 1765 2124 1829 1844 1676 1220
Discrepancy +92 +31 +29 +39 +352 +24 +44 +107  +497

Table 6: Comparison of Training Dataset Size Before and After Back-Translation for each Essay Set.

Model Performance 1 2a 2b 3 4 5 6 7 8 Average
GPT-2 Cohen’s Kappa  0.52 0.46 0.45 0.41 0.43 0.45 0.40 0.41 0.31 0.43
QWK 0.75 0.64 0.66 0.71 0.74 0.77 0.73 0.71 0.45 0.68
Accuracy 0.67 0.61 0.63 0.61 0.60 0.66 0.58 0.60 0.53 0.61
GPT-2 + BT  Cohen’s Kappa  0.54 0.50 0.53 0.47 0.48 0.47 0.43 0.49 0.38 0.48
QWK 0.79 0.65 0.68 0.77 0.81 0.79 0.79 0.74 0.60 0.74
Accuracy 0.72 0.62 0.74 0.62 0.68 0.64 0.67 0.67 0.59 0.66
Discrepancy  Cohen’s Kappa  +0.02 +0.04 +0.08 +0.06 +0.05 +0.03 +0.01 +0.08 +0.11 +0.05
QWK +0.04 +0.01 +40.02 +0.06 +0.06 +0.02 +0.06 +0.03 +0.15 +0.06
Accuracy +0.05 +0.01 +0.11 +0.01 +0.09 +0.02 +0.06 +0.07 +0.06 +0.05

Table 7: Comparison of GPT-2 Model Performance Before and After Back-Translation (BT) across all Essay Sets.
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training data, while lower reliability was observed
in sparse or imbalanced sets such as Set 8. Data
augmentation proved particularly effective for un-
derrepresented score classes, improving both QWK
and Cohen’s Kappa scores and reducing class im-
balance. These findings affirm the value of tuning
smaller, accessible models for educational NLP
tasks, highlighting the trade-off between model
complexity and interpretability in low-resource
contexts.

In conclusion, GPT-2, despite its smaller archi-
tecture, offers substantial potential for AES when
carefully fine-tuned and supported by data aug-
mentation. Its open-source nature and customiz-
able hyperparameters make it a practical choice for
scalable, interpretable assessment systems. Back-
translation significantly improved performance in
low-resource score categories, demonstrating its
value in addressing data sparsity. These results
reinforce that high-quality AES systems can be de-
veloped without relying solely on larger proprietary
models, and suggest future directions in combining
linguistic measures and augmentation techniques
to enhance model robustness and fairness.

6 Limitations and Future Work

Despite promising results, this study has sev-
eral limitations. First, it focuses exclusively on
classification-based essay scoring and does not in-
corporate rubric-specific features, which are central
to many human scoring protocols. The absence of
rubric-aligned modeling limits interpretability and
may hinder the effectiveness of feedback-oriented
applications. Second, the dataset includes essay
sets with imbalanced score distributions and small
sample sizes, which may constrain generalizabil-
ity, particularly in underrepresented categories.
Third, experiments were limited to the GPT-2
Small model; while acceptable, tuning significantly
improved performance, larger models (e.g., GPT-
3, GPT-4) could better capture complex linguis-
tic structures if similarly fine-tuned. Lastly, only
one augmentation strategy—back-translation—was
explored. Future work should investigate rubric-
aware scoring frameworks, incorporate alternative
augmentation methods (e.g., synonym substitution,
sentence permutation), and evaluate larger-scale
models on more balanced datasets to improve the
robustness and educational utility of AES systems.
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