@inproceedings{zhang-graf-2025-mathematical,
title = "Mathematical Computation and Reasoning Errors by Large Language Models",
author = "Zhang, Liang and
Graf, Edith",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-main.45/",
pages = "417--424",
ISBN = "979-8-218-84228-4",
abstract = "We evaluate four LLMs (GPT-4o, o1, DeepSeek-V3, DeepSeek-R1) on purposely challenging arithmetic, algebra, and number-theory items. Coding final answers and step-level solutions correctness reveals performance gaps, improvement paths, and how accurate LLMs can strengthen mathematics assessment and instruction."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-graf-2025-mathematical">
<titleInfo>
<title>Mathematical Computation and Reasoning Errors by Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edith</namePart>
<namePart type="family">Graf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84228-4</identifier>
</relatedItem>
<abstract>We evaluate four LLMs (GPT-4o, o1, DeepSeek-V3, DeepSeek-R1) on purposely challenging arithmetic, algebra, and number-theory items. Coding final answers and step-level solutions correctness reveals performance gaps, improvement paths, and how accurate LLMs can strengthen mathematics assessment and instruction.</abstract>
<identifier type="citekey">zhang-graf-2025-mathematical</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-main.45/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>417</start>
<end>424</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mathematical Computation and Reasoning Errors by Large Language Models
%A Zhang, Liang
%A Graf, Edith
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84228-4
%F zhang-graf-2025-mathematical
%X We evaluate four LLMs (GPT-4o, o1, DeepSeek-V3, DeepSeek-R1) on purposely challenging arithmetic, algebra, and number-theory items. Coding final answers and step-level solutions correctness reveals performance gaps, improvement paths, and how accurate LLMs can strengthen mathematics assessment and instruction.
%U https://aclanthology.org/2025.aimecon-main.45/
%P 417-424
Markdown (Informal)
[Mathematical Computation and Reasoning Errors by Large Language Models](https://aclanthology.org/2025.aimecon-main.45/) (Zhang & Graf, AIME-Con 2025)
ACL
- Liang Zhang and Edith Graf. 2025. Mathematical Computation and Reasoning Errors by Large Language Models. In Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers, pages 417–424, Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States. National Council on Measurement in Education (NCME).