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Abstract

Transformer-based language models are archi-
tecturally constrained to process text of a fixed
maximum length. Essays written by higher-
grade students frequently exceed the maxi-
mum allowed length for many popular open-
source models. A common approach to ad-
dressing this issue when using these models
for Automated Essay Scoring is to truncate the
input text. This raises serious validity con-
cerns as it undermines the model’s ability to
fully capture and evaluate organizational el-
ements of the scoring rubric, which requires
long contexts to assess. In this study, we eval-
uate several models that incorporate architec-
tural modifications of the standard transformer
architecture to overcome these length limita-
tions using the Kaggle ASAP 2.0 dataset. The
models considered in this study include fine-
tuned versions of XLNet, Longformer, Mod-
ernBERT, Mamba, and Llama models.

1 Introduction

Automated Essay Scoring (AES) is the application
of statistical models to approximate the grading of
essays by a human using a rubric. The initial mod-
els employed for AES were based on word fre-
quencies and hand-crafted features (Page, 2003).
The methods and models applied to AES have
closely followed those used in more general Natu-
ral Language Processing (NLP) applications. The
models employed in AES include recurrent and
convolutional neural networks (Taghipour and Ng,
2016), models with attention mechanisms (Dong
et al., 2017), and transformer-based large language
models (LLM) (Rodriguez et al., 2019). Currently,
LLMs are readily used to perform AES in research
and large-scale assessment (Lottridge et al., 2023).

The first transformer-based LLM to be ap-
plied to AES was the Bidirectional Encoder-based
Representations by Transformers (BERT) (Devlin
et al., 2018). Since BERT arrived on the scene,
the BERT model and its derivatives have readily

provided state-of-the-art results in a wide range of
downstream NLP tasks (Wang et al., 2019). The
key to the success of these LLMs has been due to
the transformer architecture (Vaswani et al., 2017)
and to the ability to pretrain the model weights on
a large corpus of unlabeled data on a semisuper-
vised task such as next-token prediction (Radford
et al., 2018) or masked-word prediction (Devlin
et al., 2018). While we often say that the pretrain-
ing provides the model with some limited “under-
standing”, the model weights are simply encoding
enough information to encode the necessary word-
probability functions.

Transformer-based models are deep feed-
forward networks utilizing residual connections
between layers that help stabilize training and pre-
vent vanishing gradients (Vaswani et al., 2017).
Each layer uses a multiheaded attention mecha-
nism, similar to those used in recurrent networks
(Graves et al., 2013). The input is defined by the
addition of a positional embedding and a word em-
bedding, which also defines the fixed length of
the feedforward network. Since the computing
power required by the attention mechanism scales
quadratically with length, the length chosen for
BERT was 512 (Devlin et al., 2018). This length
became something of a standard for the most pop-
ular transformer-based LLMs.

The need for models that could overcome the
limitations imposed by the transformer architec-
ture became an active area of research shortly
after BERT’s release. We selected five differ-
ent models that employ distinct approaches to ad-
dressing this challenge. These include versions
of XLNet (Yang et al., 2019), Longformer (Belt-
agy et al., 2020), ModernBERT (Warner et al.,
2024), Mamba (Gu and Dao, 2024), and a gen-
erative Llama model (AI@Meta, 2024) fine tuned
for scoring using parameter-efficient methods (Xu
et al., 2023). We give a brief explanation as to how
each of these models addresses this limitation in
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§2. The most novel of these approaches is applied
in the Mamba model, which is the only pretrained
language model in this study that uses the state-
space model (SSM) (Gu et al., 2021). For SSMs,
the computing power required scales linearly with
the length of the input.

To understand the limitations of AES, re-
searchers introduced the Automated Student As-
sessment Prize (ASAP) Dataset using the Kag-
gle platform (Shermis and Hamner, 2013). This
Dataset consists of essay responses to eight
prompts, some of which were assessed using trait
scoring and some of which were assessed using a
simpler holistic rubric. While this dataset became
the definitive benchmark for AES methods, most
essay responses possessed fewer than 512 tokens.
This meant that, while LLMs showed superior per-
formance with respect to traditional AES criteria
(Williamson et al., 2012), the dataset did not ade-
quately test the length issues that are often critical
in the application of LLMs in large-scale assess-
ment (Lottridge et al., 2023).

A second dataset, known as the Persuasive
Essays for Rating, Selecting, and Understand-
ing Argumentative and Discourse Elements (PER-
SUADE) corpus (Crossley et al., 2022), which
was originally designed to evaluate the perfor-
mance of models that annotate the argumentative
components of essays, was later extended to the
Automated Student Assessment Prize v2 (ASAP
2.0) (Crossley et al., 2025). We will describe the
dataset in more detail below, but many responses
in the ASAP 2.0 dataset are too long for most lan-
guage models.

This article is organized as follows: We use
§2 to highlight the characteristically different ap-
proaches of the models chosen for this study. This
is followed by §3 in which we describe the data
used and the training methods. We have two dif-
ferent training regimes: one regime for classifica-
tion models, such as those obtained by appending
a classification, and another regime for generative
LLMs. This is followed by the results in §4 and a
discussion in §5.

2 Models

In this section, we discuss each model used in this
study and why we chose to include it. We have
attempted to illustrate if and how these models
circumvent the architecturally imposed length re-
strictions of the standard transformer architecture.

2.1 DeBERTa
The DeBERTa model has a context length of 512.
It has been chosen for this study to provide a
strong benchmark for models typically used for
AES. It is widely regarded as one of the best-
performing models in a range of tasks. The
model was trained as a discriminator, similarly
to the ELECTRA models (Clark et al., 2020).
The DeBERTa models also deviate from the stan-
dard BERT model by disentangling the word-
embedding from the positional embedding (He
et al., 2021).

2.2 Longformer
The Longformer model attempts to reconcile the
need for local attention with a selective form of
global attention. The local attention is applied in
the form of a sliding window, similar to atten-
tion using convolutional units (Wu et al., 2019)
coupled with a form of global attention only ap-
plied to special tokens (Beltagy et al., 2020), such
as the beginning, ending, and mask tokens. This
model still possesses a length limitation, however,
by only using attention selectively, the computa-
tional burden is mitigated, allowing for pretraining
over larger context lengths.

2.3 XLNet
The XLNet model uses the recurrent definition
of attention introduced by the Transformer-XL
model (Dai et al., 2019). These models have re-
cently been discussed for essays, where the long
context was useful in accurately annotating the
argumentative components of essays (Ormerod
et al., 2023). Almost all masked-language mod-
els are encoder-only models; however, the XLNet
model is also distinguished as one of the few de-
coder models that was autoregressively pretrained
as a masked-language model (Yang et al., 2019).

To demonstrate the recurrence, suppose any
input sequence of length L is denoted sτ =
[xτ,1, . . . , xτ,L] while the hidden state for n-th
layer associated with sτ is hnτ ∈ RL×d. The recur-
rence relation defining hnτ+1 as a function of hn−1

τ

and hn−1
τ+1 is given as follows:

h̃n−1
τ+1 = [SG(hn−1

τ ) ◦ hn−1
τ+1 ], (1a)

qnτ+1 = hn−1
τ+1Wq, (1b)

knτ+1 = h̃n−1
τ+1Wk, (1c)

vnτ+1 = h̃n−1
τ+1Wv, (1d)

hnτ+1 = MHA(qnτ+1, k
n
τ+1, v

n
τ+1), (1e)
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where SG is the stop gradient, [x ◦ y] is the con-
catenation operation of two sequences, and MHA
is an abbreviation for the typical multiheaded at-
tention mechanism for the transformer layer. The
recurrence is built into the definition of h̃nτ , affect-
ing the keys and values. Digging deeper into (1)
tells us that while the definition allows for infinite
input lengths, there is a functional limitation of the
architecture in which the output of any token is
only a function of at most LD of the previous to-
kens where D is the depth of the network. The
base and large pretrained models released with
(Yang et al., 2019) has L = 512 and D = 12
and D = 24 respectively. This effectively caps
the practical length to 6, 000 and 12, 000 for these
models, respectively.

2.4 ModernBERT

The ModernBERT model is an encoder-based
masked language model benefiting from much of
the research that has been conducted since BERTs
release (Warner et al., 2024). In particular, appli-
cations of generative LLMs have pushed the con-
text length limitations in ways that the previous
models stated above have not. The key to the con-
text length of 8196 has been the Rotational Posi-
tion Embedding (RoPE) (Su et al., 2024). There
is a pretraining step in which the model is trained
at short lengths with a large rotational component,
then further trained on a model that interleaves ro-
tational embedding with small and large rotational
values to capture contributions from close and dis-
tant tokens. This method, developed in (Fu et al.,
2024), was key to extending the context length
for a range of popular models such as the herd of
Llama models (AI@Meta, 2024).

2.5 Llama

The Llama series is a family of open-source gen-
erative LLMs from Meta (AI@Meta, 2024). The
models have become as ubiquitously associated
with open-source generative models as BERT was
to masked language models. These generative
models use RoPE (Su et al., 2024) in combination
with the methods used to extend context lengths
to 128k (Fu et al., 2024). In terms of archi-
tecture, the Llama models are a variant of the
decoder-only transformer-based models, utilizing
RMSNorm layers and a particular activated fully
connected layer. We present this architecture in
Figure 1, paying particular attention to the linear
layers normalizing the input into the multi-headed

attention (MHA) mechanism.

RMSNorm

MHA

Lk Lq Lv

FFN SwiGLU

RMSNorm

+

+

Input

Output
Llama
Layer

Figure 1: A layer of the Llama decoder-only architec-
ture.

As a generative model, it was trained to pre-
dict the next token (Radford et al., 2018), followed
by instruction tuning (Chung et al., 2022), fol-
lowed by a reinforcement learning phase to make
the models more useful (Kaufmann et al., 2024).
These models come in a variety of sizes. The latest
models include multi-modal capabilities; however,
the models employed in this article are limited to
text.

2.6 State-Space Models

This novel architecture completely replaces the
transformer layer and attention with a simpler sys-
tem based on discretizations of the state-space
model (SSM). The SSM is a family of differential
equations specified by the matrix equations

x′(t) = Ax(t) +Bu(t), (2a)

y(t) = Cx(t) +Du(t), (2b)

where x, u, and y are vectors and A,B,C, and
D are matrices. This is a class of models broadly
used in control theory. A standard discretization
of (2) provides us with the recurrence relation of
the form

ht = Aht−1 +Bxt, (3a)

x = Cht. (3b)
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A Mamba Layer, in contrast with the Transformer
Layer, uses (3) as one component in addition to
linear projections, a convolutional layer, and acti-
vation functions, as shown in Figure 2.

Input

Output

SSM

σ
σ

×

conv

Lin

Lgate

Lout

Mamba
Layer

Figure 2: A single layer of the Mamba model.

The Mamba blocks can be computed with lin-
ear complexity, making them well-suited for long
context tasks (Gu et al., 2021). This claim has
been validated empirically by the superior per-
formance of the Jamba models, which is an en-
semble of transformer and Mamba layers (Lieber
et al., 2024), on RULER benchmarks (Hsieh et al.,
2024). As we seek longer and longer context
lengths, models with linear complexity may be fa-
vorable from an efficiency standpoint.

2.7 Data

The reason we chose the ASAP 2.0 dataset (Cross-
ley et al., 2025) is that this dataset provides a
much-needed update of the original ASAP dataset
(Shermis and Hamner, 2013), which could be con-
sidered to be saturated at this point. This dataset,
derived as an extension of the PERSUADE corpus
(Crossley et al., 2022), consists of essays written
by students from grades 6 to 10 on a wide range of
prompts.

Since a key feature of this study is our ability to
handle long contexts, it is important to consider
the length and grade level characteristics of the
data. Because we are using a variety of LLMs,
each of which has adopted different subword tok-
enizations (Kudo and Richardson, 2018), we have
no unified notion of what defines a token. In lieu

of a uniform tokenization, we will report the word
count reported in the dataset. These length char-
acteristics have been presented in Table 1.

Train Test

Avg. Avg.
Grade Count Words Count Words

6 2094 292.2 527 268.3
8 1648 339.9 921 295.9
9 4002 426.1 0 -
10 9563 385.8 5973 356.4

Total 17307 376.1 7421 342.7

Table 1: The size and length characteristics of the
ASAP 2.0 dataset.

To evaluate the data, we use the standard met-
rics specified for AES (Williamson et al., 2012).
The main metric used is the agreement statistic
known as quadratic weighted kappa (QWK). Gen-
erally, the weighted kappa is specified by the equa-
tion

κ = 1−
∑

i,j Wi,jOi,j∑
i,j Wi,jEi,j

(4)

where Oi,j is the observed agreement between the
first rater giving a score of i and the second rater a
score of j, and Ei,j is the expected agreement only
assuming the two raters’ general distribution. This
becomes QWK under the weighting

Wi,j =
(i− j)2

(n− 1)2

where n is the number of scores. It is generally
understood that this is a measure of agreement
above random chance, where a QWK of 1 is per-
fect agreement and -1 is perfect disagreement. In
practical terms, lower scores represent the level
of reliability between raters (McHugh, 2012), and
our models should be compared against human-
human agreements (Williamson et al., 2012). The
QWK between the raters is reported to be 0.745

3 Methods

In order to perform essay scoring using LLMs, we
distinguish two different cases. We call the first
case traditional LLM-based scoring, where the un-
derlying LLM is a masked-language model, such
as BERT (Devlin et al., 2018), or a next word
predictor such as the Generative Pretrained Trans-
former (GPT) (Radford et al., 2018). The second
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class of models considered was generative, which
are distinguished by typically possessing an order
of magnitude more parameters, and being trained
in three phases: pretaining, instruction tuning, and
reinforcement (OpenAI, 2023).

3.1 Traditional LLM based scoring
The typical procedure for traditional scoring is to
convert a next word or masked word prediction
model into a classifier by removing the linear head
that would otherwise predict a token and append,
in its place, a classification head with as many tar-
gets as there are scores (Rodriguez et al., 2019).
The classification head is randomly initialized.

To train each of these models, 10% of the
training set was designated as a development
set. The models were trained by applying the
Adam optimizer with a weight decay mechanism
(Loshchilov and Hutter, 2019) to the cross-entropy
loss function. An initial learning rate of 10−6 and
a linear learning rate scheduler that reduces the
learning rate to 0 over 10 epochs was used with
a batch size of either 4 or 1 due to the length of
some essays. The QWK was optimized on the de-
velopment set using an early stopping mechanism.

To fine-tune our Mamba models for classifica-
tion, we appended a learnable classification head,
however, we were required to effectively freeze
the weights associated with the SSM, Lgate, and
the convolutional layer (See Figure 2). Full model
training seemed to readily lead to model col-
lapse, perhaps due to the requirement that certain
weights take a particular form (Gu et al., 2021).
Hence, we fine-tuned the embedding layer and the
associated Lin and Lout weights of every layer.
This is a memory-efficient way to fine-tune that
provides excellent results. We used the Adam op-
timizer above with a learning rate of 10−5 and a
batch size of 8.

3.2 Generative LLM based scoring
Many attempts in the literature seek to optimize
the prompting of closed-source generative mod-
els to yield higher agreement rates (Xiao et al.,
2024). While this is an interesting approach, we
believe fine-tuning is necessary to obtain reason-
able success. Due to the large size of the mod-
els, in order to do this with reasonable computa-
tional resources, we need to employ parameter-
efficient methods (Xu et al., 2023). These methods
can be applied without reference to an API and,
hence, can be effectively employed securely, and

privately, generating a fraction of the carbon emis-
sions (Bulut et al., 2024).

In the case of fine-tuning generative models, the
dataset used mimics an instruction set the model
has been trained on. This means that any element
of the training set appears to be a user prompting
the model to score an essay to a rubric (Ormerod
and Kwako, 2024). To do this, we used the follow-
ing prompt template:

User
Assign a **Score** to the
**Essay** using the **Rubric**
provided.

**Rubric**: {rubric}

**Essay**:

Assistant
**Score**: {score}

This template highlights the important aspects
by using markdown, due to the formatting of the
corpus the model was trained on. Given that vari-
ations in prompting can have a significant bear-
ing on the results, we exploit this by allowing the
model to summarize and rephrase the rubric in 20
different ways. We optimized the variation of the
rubric by evaluating the QWK of the model before
fine-tuning on a development set that consisted of
10% of the training set.

We apply the method of low-rank adapters
(Hu et al., 2021) and quantization (QLoRA) by
(Dettmers et al., 2023). To apply QLoRA to a
model, we must specify which linear layers to ap-
ply the adapter to, the rank of the adapter, scal-
ing factors, the usual learning rate, and batch size.
Concerning Figure 1, we seek to apply low-rank
adapters to Lq, Lk, and Lv in the Llama model.

4 Results

The study evaluated various long-context lan-
guage models on the ASAP 2.0 dataset to as-
sess their effectiveness in automated essay scor-
ing (AES). Models tested included traditional
encoder-only architectures like DeBERTa-Base
and XLNet-Base, extended-context models such
as Longformer and ModernBERT, a state-space
model (Mamba-130m), and generative decoder-
based models like Llama-3.2-8B.
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Grade
Model Reference L Model Size Overall 6 8 10

Human (Crossley et al., 2025) inf 0.745
DeBERTa-Base (He et al., 2021) 512 183M 0.790 0.696 0.659 0.800
XLNet-Base (Yang et al., 2019) 8k∗ 110M 0.784 0.654 0.640 0.798
Longformer (Beltagy et al., 2020) 4k 149M 0.798 0.698 0.658 0.811
ModernBERT (Warner et al., 2024) 8k 149M 0.790 0.639 0.658 0.804
Mamba-130m (Gu and Dao, 2024) 8k∗ 130M 0.797 0.674 0.640 0.812
Llama-3.2-8B (AI@Meta, 2024) 8k 8B 0.792 0.667 0.672 0.803

Table 2: The performance of each model in terms of QWK, given by (4). These context lengths for XLNet models
and Mamba models are not specified. The value of 8k was implemented as a mechanism to bound the memory
required for training.

Human-human rater agreement stood at 0.745,
serving as the baseline for comparison. All models
surpassed this baseline, with Longformer achiev-
ing the highest overall QWK of 0.798. Notably,
Mamba-130m performed competitively despite its
smaller parameter size, demonstrating that linear-
complexity models can rival attention-based trans-
formers in AES tasks. Key findings revealed
that long-context models, particularly those us-
ing advanced architectural innovations like RoPE-
based positional embeddings and selective state
spaces, are well-suited for handling lengthy stu-
dent essays. Traditional models like DeBERTa
and XLNet showed strong performance but lagged
slightly behind Longformer and Mamba. De-
spite their large parameter counts and sophisti-
cated training methods – such as instruction tuning
and reinforcement learning —- generative mod-
els did not significantly outperform encoder-based
models. However, they do offer the promising
capability of providing feedback (Ormerod and
Kwako, 2024).

5 Discussion

Overall, the results affirm the viability of long-
context models in automated scoring systems, es-
pecially when dealing with complex, lengthy texts
where global coherence and argument structure
are crucial. Using long context models should not
be about getting higher agreement, but rather ad-
dressing a glaring flaw from a modeling perspec-
tive; it is difficult to argue that traditional lan-
guage models are faithfully modeling aspects of
the rubric, such as organization, when essays are
being truncated at 512 tokens.

Our modeling results indicate that both the se-
lective attention mechanism and Mamba’s linear

complexity architecture deliver robust AES per-
formance on lengthy texts. The study’s most no-
table finding is Mamba’s exceptional performance
despite its simplified architecture. These differ-
ences between these models also suggest a po-
tential for ensemble approaches. Several fac-
tors position Mamba and related architectures like
Jamba (Lieber et al., 2024) as compelling alterna-
tives for large-scale assessment applications. The
linear scaling relationship between computational
complexity and sequence length offers significant
advantages over traditional transformer architec-
tures. Additionally, optimized implementations
may achieve 2-8x speed improvements compared
to transformer-based models. These efficiency
gains, combined with demonstrated effectiveness
on long-context tasks, make state space models
like Mamba practical solutions for automated as-
sessment and similar applications requiring effi-
cient processing of extended sequences.
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Hüllermeier. 2024. A Survey of Reinforcement
Learning from Human Feedback. arXiv preprint.
ArXiv:2312.14925.

Taku Kudo and John Richardson. 2018. Sentence-
Piece: A simple and language independent subword
tokenizer and detokenizer for Neural Text Process-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 66–71, Brussels, Bel-
gium. Association for Computational Linguistics.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Co-
hen, Jhonathan Osin, Itay Dalmedigos, Erez
Safahi, Shaked Meirom, Yonatan Belinkov, Shai
Shalev-Shwartz, Omri Abend, Raz Alon, Tomer
Asida, Amir Bergman, Roman Glozman, Michael
Gokhman, Avashalom Manevich, Nir Ratner, Noam
Rozen, and 3 others. 2024. Jamba: A Hy-
brid Transformer-Mamba Language Model. arXiv
preprint. ArXiv:2403.19887 [cs].

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled Weight Decay Regularization. arXiv preprint.
ArXiv:1711.05101 [cs, math].

Susan Lottridge, Chris Ormerod, and Amir Jafari.
2023. Psychometric Considerations When Using
Deep Learning for Automated Scoring. In Advanc-
ing Natural Language Processing in Educational
Assessment. Routledge. Num Pages: 16.

Mary L. McHugh. 2012. Interrater reliability: the
kappa statistic. Biochemia Medica, 22(3):276–282.

OpenAI. 2023. GPT-4 Technical Report. arXiv
preprint. ArXiv:2303.08774 [cs].

Christopher Ormerod, Amy Burkhardt, Mackenzie
Young, and Sue Lottridge. 2023. Argumentation
Element Annotation Modeling using XLNet. arXiv
preprint. ArXiv:2311.06239 [cs].

41

http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
https://doi.org/10.48550/arXiv.2003.10555
https://doi.org/10.48550/arXiv.2003.10555
https://doi.org/10.48550/arXiv.2003.10555
https://doi.org/10.1016/j.asw.2022.100667
https://doi.org/10.1016/j.asw.2022.100667
https://doi.org/10.1016/j.asw.2022.100667
https://doi.org/10.1016/j.asw.2022.100667
https://doi.org/10.2139/ssrn.5129353
https://doi.org/10.2139/ssrn.5129353
https://doi.org/10.48550/arXiv.1901.02860
https://doi.org/10.48550/arXiv.1901.02860
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.18653/v1/K17-1017
https://doi.org/10.18653/v1/K17-1017
https://doi.org/10.18653/v1/K17-1017
https://doi.org/10.48550/arXiv.2402.10171
https://doi.org/10.48550/arXiv.2402.10171
https://doi.org/10.1109/ASRU.2013.6707742
https://doi.org/10.1109/ASRU.2013.6707742
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.2312.00752
https://arxiv.org/abs/2111.00396v3
https://arxiv.org/abs/2111.00396v3
https://arxiv.org/abs/2111.00396v3
https://doi.org/10.48550/arXiv.2111.09543
https://doi.org/10.48550/arXiv.2111.09543
https://doi.org/10.48550/arXiv.2111.09543
https://doi.org/10.48550/arXiv.2404.06654
https://doi.org/10.48550/arXiv.2404.06654
https://doi.org/10.48550/arXiv.2404.06654
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.2312.14925
https://doi.org/10.48550/arXiv.2312.14925
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.48550/arXiv.2403.19887
https://doi.org/10.48550/arXiv.2403.19887
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.1711.05101
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2311.06239
https://doi.org/10.48550/arXiv.2311.06239


Christopher Michael Ormerod and Alexander Kwako.
2024. Automated Text Scoring in the Age of
Generative AI for the GPU-poor. arXiv preprint.
ArXiv:2407.01873 [cs].

Ellis Batten Page. 2003. Project Essay Grade: PEG.
In Automated essay scoring: A cross-disciplinary
perspective, pages 43–54. Lawrence Erlbaum Asso-
ciates Publishers, Mahwah, NJ, US.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving Language Under-
standing by Generative Pre-training.

Pedro Uria Rodriguez, Amir Jafari, and Christopher M.
Ormerod. 2019. Language models and Auto-
mated Essay Scoring. arXiv preprint. Number:
arXiv:1909.09482 arXiv:1909.09482 [cs, stat].

Mark D. Shermis and Ben Hamner. 2013. Contrast-
ing State-of-the-Art Automated Scoring of Essays.
pages 335–368. Publisher: Routledge Handbooks
Online.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. RoFormer: En-
hanced transformer with Rotary Position Embed-
ding. Neurocomputing, 568:127063.

Kaveh Taghipour and Hwee Tou Ng. 2016. A Neural
Approach to Automated Essay Scoring. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1882–1891,
Austin, Texas. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
2019. GLUE: A Multi-Task Benchmark and Anal-
ysis Platform for Natural Language Understand-
ing. Technical Report arXiv:1804.07461, arXiv.
ArXiv:1804.07461 [cs] type: article.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,
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