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Abstract

This study proposes an innovative method

for evaluating cross-country scoring
reliability (CCSR) in  multilingual
assessments, using hyperparameter
optimization and a similarity-based

weighted majority scoring within a single
human scoring framework. Results show
that this approach provides a cost-effective
and comprehensive assessment of CCSR
without the need for additional raters.

1 Introduction

Constructed response (CR) items are valued for
their ability to assess students’ higher order
thinking skills, offering deeper insights into student
performance compared to multiple choice items
(Livingston, 2009; Scully, 2017). However, their
widespread use in large-scale assessments has been
constrained by concerns about human scoring
reliability. While extensive rater training and
structured scoring protocols can enhance inter-rater
reliability, rater effects such as leniency, severity,
and the halo effect often persist (Myford & Wolfe,
2003; Yamamoto et al., 2017).

These scoring challenges are particularly
pronounced in  international  large-scale
assessments (ILSAs). In multilingual contexts,
achieving high consistency among human raters
from diverse cultural and linguistic backgrounds is
difficult, even with centralized scoring guides
(Wang & Li, 2020). The substantial time, effort,
and resources required for global human rater
training, scoring vast numbers of responses, and
monitoring scoring procedures across multiple
countries further complicate the process.

Cross-country scoring reliability (CCSR),
designed to measure international scoring
consistency (von Davier et al., 2023) in the
Progress in International Reading Literacy Study
(PIRLS), exemplifies these challenges. This
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valuable measure operates as a separate, additional
burden alongside the main scoring process and
encounters significant logistical hurdles. It
evaluates scoring consistency using a common set
of 200 English language responses for specific
PIRLS reading items, but its scope is critically
limited to human raters who are either native
English speakers or proficient in English.
Consequently, the conventional CCSR approach
assesses a narrow subset of responses and relies on
an underrepresented rater pool. This restricts its
ability to provide a comprehensive assessment of
scoring consistency across the full range of CR
items and participating countries.

To address these logistical and methodological
limitations, we recently proposed a novel reliability
scoring framework that combines similarity-based
majority voting (Jung et al., under review).

The current study focuses on the systematic
optimization of that framework through
hyperparameter tuning while also providing a
transparent step-by step implementation of the full
pipeline. This method aims to offer a more efficient
and reliable measure of cross-country scoring
consistency, reducing dependency on extensive
human rater resources.

2 Background

Human scoring in multilingual assessments
presents significant challenges, primarily due to
difficulties in maintaining consistency across
different human raters, languages, and countries
(Jung et al., 2025; Okubo et al., 2023). The inherent
linguistic and sociocultural diversity among raters
may influence the interpretation of student
responses and the application of scoring guides,
introducing systematic variance in scoring
outcomes (Ercikan & Por, 2020; Wang & Li, 2020).

Double or multiple scoring by independent
raters is a foundational practice in educational
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measurement for ensuring scoring consistency.
However, this approach is costly and time-
intensive, requiring the recruitment and training of
multiple raters for every item and response (Fliss et
al., 1981; Gwet, 2014; Wiggins, 1990).

Alternative cost-saving strategies have emerged
to alleviate these resource constraints. One
common approach is to double score only a
randomly selected subset of responses, though this
strategy may be suboptimal when the precise
classification of students into performance levels is
critical (Finkelman et al., 2009). Alternatively,
targeted double scoring (TDS) focuses on
responses falling near the critical score range (e.g.,
pass/fail cutoff), aiming to improve scoring
accuracy and reliability (Finkelman et al., 2009;
Miao et al., 2023; Sinharay et al., 2022). However,
the effectiveness of TDS depends on the accurate
identification of the critical score range. Xu and
Wind (2025) also found no notable psychometric
advantage for TDS over random double-scoring
approaches.

Importantly, double or multiple scoring, whether
applied to all responses or a subset, substantially
increases costs and time compared to single human
scoring, creating a persistent tension between
scoring quality and practical feasibility. This study
explores a novel strategy to optimize reliability
scoring within a single human scoring framework,
achieving cost-effective and comprehensive
measurement without the need for additional
human scoring.

3 Method

3.1

The PIRLS assesses fourth-grade students’ reading
comprehension in more than 50 countries globally
on a five-year cycle since 2001. In PIRLS 2021,
approximately half of the participating countries
(n=27) transitioned to computer-based testing
(digital PIRLS). From the 18 items with reported
CCSR values in PIRLS 2021, we selected 2 two-
point CR items, using data from all countries
participating in digital PIRLS (see Table 1). These
two-point items were selected as they are the only
two-point “trend” items that will be reused for
PIRLS 2026, and this study supports PIRLS 2026
scoring preparation. Notably, one item exhibited
the most problematic CCSR of 0.768, making it a
challenging yet ideal candidate for validating our
new reliability scoring approach.

Dataset
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Item Process N CCSR

1 Focus on and retrieve 14,875 0.868

2 Straightforward 14,151 0.768
inferences

Table 1: PIRLS trend items used in the study

3.2 Multilingual Response Translation

We utilized a standardized prompt template with
GPT-40 to translate non-English responses into
English and to rectify spelling and grammatical
errors in English responses using GPT-4o (i.e., gpt-
40-2024-08-06). The prompt template incorporated
four key components, as detailed in Table 2 (Jung
et al., under review). This Zero-Shot-Chain-of-
Thought (Zero-Shot-CoT) is task-agnostic (Kojima
et al., 2022), enabling its application across diverse

items to generate contextually appropriate
translations.

Component  Content

Instruction Comprehensive guidance on AS

Reading A written text serving as the

passage stimulus

Question A question consisting of one or two

sentences
Scoring Rubric for scoring an item,
guide including descriptions and examples

Table 2: PIRLS scoring template components

3.3 Response Flagging and Auto-Scoring

Following translation, we implemented a two-stage
data flagging process. First, untranslated responses
were flagged as ‘missing’ and excluded from
subsequent analysis. Second, semantically
meaningless responses were flagged as
‘meaningless’, assigned a score of 0, and retained
as valid responses for analysis (included in the
weighted majority scoring). Detailed criteria for
each flagging stage are provided below.

Missing Flagging: Responses were classified as
‘missing’ if they met either of two criteria: (1) GPT-
40 explicitly marked them as ‘untranslatable’
during translation, or (2) their English vocabulary
was less than 75% of tokenized words. This
missing flag was only applied to responses
exceeding 8 characters. Linguistic preprocessing
included lower-casing, lemmatization, and
tokenization by spaCy’s en_core_web_Ig model in
Python. The English vocabulary percentage was
calculated using the PyEnchant dictionary. Proper
nouns (e.g., “California” or “Marie”), identified via



spaCy’s Named Entity Recognition, counted as
valid English vocabulary.

Meaningless Flagging: After excluding
missing responses, we flagged ‘meaningless’
responses if they were: (1) extremely short or (2)
semantic outliers. These responses were assigned a
score of 0 but retained in the dataset. Very short
responses were defined as those with a normalized
translation length L;<0.03, representing the bottom
3% of the length distribution. Translation length
was normalized using min-median normalization
to mitigate the impact of extreme outliers:

1;—min(l)

i= median(l)-min(l) (1)

where [; is the length of the translated response i.
Semantic outliers were identified through a
multi-faceted assessment. First, responses with a
coherence score (C;) below 0.20 are flagged. C;
was computed as the average cosine similarity
between the embedding of response i and the
embeddings of all other responses, excluding self-
similarity:
C; = )

where sim(Ej, Ej) is the cosine similarity between

1 .
~— Ziwj Sim(E;, Ey)

embeddings of response i and j. Response
embeddings were generated using the Sentence

Transformer model (all-MiniLM-L6-v2) in Python.

Second, responses with a meaningfulness score
(M;) below m were also identified as semantic
outliers. The meaningfulness threshold m was
determined  following the hyperparameter
optimization. M; integrates both coherence and
normalized length with weights:

M, = 080 X C, + 0.20 X L, 3)

M; was examined when responses were deemed
semantic outliers if the average cosine similarity of
their top k£ most similar responses (as determined
during the hyperparameter optimization phase) fell
below 0.80.

3.4 Reliability Scoring with

Hyperparameters

Optimal

Our reliability scoring approach scored responses
using a weighted majority scoring algorithm based
on cosine similarity between response embeddings.

Similarity Measurement: Response
embeddings were generated using the all-MiniLM-
L6-v2 model, and cosine similarities were
calculated between all response pairs. For each
response i, we identified the top & most similar
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responses based on the highest cosine similarities,
where k is a hyperparameter optimized through
grid search.

Weighted Majority Scoring: For each response
i, the majority score s*€{0, 1, 2} was determined
as:

s* = argmax;, (Wis = Yjes;, Sim (El,]i])) 4)

where S;; is the set of the top & similar responses
(neighbors) to response ¢ with human score s. The
score s* was assigned only if its proportion of the
total weighted score exceeds the weight threshold
WT, which was optimized via grid search.
Otherwise, the response was flagged as
‘inconsistent’ if the proportion fell below WT,
indicating that human scores among similar
responses varied too widely to assign a reliable

majority score.
Wi

> WT
YsWis

)

Hyperparameter Tuning via Grid Search: We
conducted a systematic grid search over £ € {1, 2,
3,4,5,10, 15} (number of similar responses) and
WT € {0.60, 0.65,0.70, 0.75} (weight threshold) to
optimize the reliability scoring. All 28 unique
hyperparameter combinations were examined
using Python’s itertools.product.

3.5 Evaluation

The grid search evaluated each hyperparameter
combination based on two criteria: (1) minimizing
the proportion of responses labeled as
‘inconsistent’, and (2) maximizing weighted exact
agreement (Weighted EA).

Weighted EA quantifies the agreement between
human and majority scores, assigning more weight
to matches (where human score equals majority
score) that exhibit higher cosine similarity. It was
calculated as the ratio of the sum of average cosine
similarities for responses with matching to the sum
of average cosine similarities for all responses.
After determining optimal values for & and WT,
several meaningfulness thresholds (m) were tested
to identify the optimal threshold for detecting
semantic outliers. The appropriateness of each
threshold was evaluated by analyzing human score
distributions, with accurate flagging confirmed by
human scores of 0.

Following the hyperparameter optimization, the
optimized reliability scoring was analyzed in detail,



focusing on the majority score (s*) distribution and
cosine similarity statistics.

4 Results

Hyperparameter Optimization: The grid search
results identified the optimal hyperparameter
setting as WT=0.60 and k=3, which minimized the
inconsistency proportion and maximized the
weighted EA, as detailed in the Appendix. Under
this configuration, the inconsistency proportions
were very low (0.80% for Item 1 and 2.02% for
Item 2), and the weighted EAs (0.881 for Item 1
and 0.755 for Item 2) closely aligned with their
corresponding CCSR values (0.868 for Item 1 and
0.768 for Item 2).

Using the optimal hyperparameters (W7=0.60
and £=3) along with m = 0.30, we achieved highly
accurate detection of semantic outlier responses, as
shown in Tables 3 and 4. For Item 1, 99.40% of
responses flagged as ‘meaningless’ received a
human score of 0, compared to 87.08% for Item 2.
The reduced detection accuracy for Item 2 was
anticipated, as it showed the most significant
CCSR issues in PIRLS 2021 (CCSR = 0.768),
suggesting inconsistent cross-country scoring, or a
higher prevalence of borderline responses
susceptible to scoring variations across countries
and languages. Given the more reliable
performance of Item 1, we adopted m = 0.30 for our
optimized reliability scoring.

Meaningf Human Score (%)

ulness

(m) 0 1 2
0.25 99.02 0.98 0.00
0.26 99.14 0.86 0.00
0.27 99.23 0.77 0.00
0.28 99.30 0.70 0.00
0.29 99.36 0.64 0.00
0.30 99.40 0.60 0.00

Table 3. Human score distribution for
‘meaningless’ responses to Item 1
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Meaningf Human Score (%)
ulness 0 ’ 5

(m)
0.25 93.94 4.94 1.12
0.26 91.86 6.86 1.29
0.27 91.10 7.57 1.33
0.28 90.69 8.10 1.21
0.29 88.13 10.16 1.71
0.30 87.08 10.83 2.09

Table 4. Human score distribution for

‘meaningless’ responses to Item 2

Reliability Scoring Assessment: First, we

examined the majority score distribution (s*), as
presented in Table 5. The average proportions of
inconsistent and missing responses were 1.41%
(n=203) and 1.51% (n=218), respectively. This
indicates that our reliability scoring approach
effectively assigned scores to most responses
(97.69% for Item 1 and 96.48% for Item 2) by
leveraging their top three most similar neighbors.
As expected, Item 2 exhibited a slightly higher
inconsistency proportion of 2.02%, consistent with
its problematic CCSR. The proportion of missing
responses was also low across both items,
suggesting that GPT-40 demonstrated a strong
capability in translating non-English language
responses, including those from low-resource
languages such as Arabic, Lithuanian, and Slovak,
into English.

Majority Item 1 Item 2
score n % n %
0 4314 29.00 5049 35.68
1 3356 22.56 6364 4497
2 6862 46.13 2240 15.83
Inconsistent 119 0.80 286 2.02
Missing 224 1.51 212 1.50

Table 5. Majority score distribution

Next, we analyzed cosine similarity statistics to
assess the effectiveness of our reliability scoring in
capturing semantically similar responses, both
across all responses and within each response’s top
three similar neighbors (see Table 6). The mean of
average cosine similarities was high, at 0.932 for
Item 1 and 0.891 for Item 2, with standard
deviations below 0.1, indicating very low
variability across responses (see Figures 1 and 2).
Additionally, the top three cosine similarities per
response tend to be tightly clustered, with very low
standard deviation reflecting minimal internal



semantic variability among each response’s nearest
neighbors. These demonstrate the robust
performance of our reliability scoring in detecting
semantically coherent neighbors.

Mean avg  SD of avg Avg SD of
Item . . top 3 cos
oS sim cos sim ;
sim
1 0.932 0.098 0.007
2 0.891 0.095 0.012

Table 6. Statistics on average cosine similarity
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Figure 1. Average cosine similarity for Item 1

== Mean: 0.891
Mean + SD: 0.796, 0.986

2500

2000

Frequency
-
]
3
3

1000 ’—

500

0.4 0.6 0.7 0.8 1.0

Average Cosine Similarity

Figure 2. Average cosine similarity for Item 2

5 Discussion

Our findings demonstrate that optimized reliability
scoring can effectively evaluate CCSR in
multilingual contexts without requiring additional
human raters. Although double or multiple scoring
has traditionally been the gold standard for
achieving consistency (Williamson et al., 2012),
prior research (Sinharay et al., 2023; Song & Lee,
2022; Wiggins, 1990) highlights its resource-
intensive nature and associated practical and
methodological challenges. Our method provides a
resource-efficient alternative, utilizing initial
human scoring with all responses (over 14,000
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responses per item) to achieve results comparable
to established CCSR practices. Moreover, this
approach enables a comprehensive assessment of
individual countries’ scoring practices on a global
scale using weighted EA or kappa statistics
disaggregated by country and language. This
facilitates the detection of possible scoring
inconsistencies in specific countries or languages
and the identification of problematic items (Jung et
al., under review).

Despite these promising results, this study has
limitations. First, we examined only two two-point
“trend” items with available CCSR values, selected
for the PIRLS 2026 scoring preparation. Future
studies should examine the scalability of this
approach across a wider range of item types,
including both one- and two-point items. Second,
while our approach successfully identified the three
most similar neighbors for all responses, responses
with low average cosine similarity require further
scrutiny. Specifically, responses assigned an initial
human score of 2 but exhibiting very low average
cosine similarity scores may indicate initial human
scoring errors, limitations in our reliability scoring,
or both. These cases warrant review by content
experts to better understand the sources of scoring
discrepancies.

6 Conclusion

This study highlights the effectiveness of
optimizing reliability scoring through key
hyperparameter optimization and a similarity-
aided weighted majority scoring method. This
approach  robustly —measures cross-country
consistency by leveraging initial human scoring
alongside all responses, offering a more inclusive
and cost-effective alternative to existing CCSR.
Our novel approach provides a valuable measure
for evaluating scoring consistency on a global scale,
enabling more accurate and reliable reporting to
participating countries.
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Appendices

A. Grid Search Results

Weight k Inconsistency ~ Weighted
threshold (%) EA

1 13.18 0.867

2 13.14 0.800
0.60 3 0.80 0.881
0.65 3 6.70 0.880
0.70 3 5.27 0.753
0.75 3 5.55 0.753
0.60 4 6.06 0.851
0.65 4 0.97 0.851
0.70 4 6.70 0.851
0.75 4 10.66 0.805
0.60 5 8.70 0.861
0.65 5 8.75 0.825
0.70 5 19.70 0.825
0.75 5 6.70 0.825
0.60 10 10.66 0.861
0.65 10 11.33 0.837
0.70 10 12.76 0.820
0.75 10 19.70 0.788
0.60 15 13.23 0.853
0.65 15 10.66 0.833
0.70 15 15.43 0.806
0.75 15 17.64 0.772

Table 1. Grid search results on Item 1


https://pirls2021.org/methods

Weight k Inconsistency ~ Weighted
threshold (%) EA

1 25.43 0.738

2 26.92 0.604
0.60 3 2.02 0.755
0.65 3 2.54 0.753
0.70 3 40.85 0.509
0.75 3 40.88 0.509
0.60 4 18.18 0.670
0.65 4 18.18 0.670
0.70 4 18.19 0.670
0.75 4 30.73 0.584
0.60 5 15.10 0.690
0.65 5 28.49 0.605
0.70 5 28.50 0.605
0.75 5 28.50 0.605
0.60 10 20.01 0.661
0.65 10 28.29 0.604
0.70 10 33.91 0.569
0.75 10 42.51 0.502
0.60 15 22.61 0.643
0.65 15 29.35 0.595
0.70 15 39.31 0.524
0.75 15 48.88 0.451

Table 2. Grid search results on Item 2
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