@inproceedings{gui-2025-develop,
title = "Develop a Generic Essay Scorer for Practice Writing Tests of Statewide Assessments",
author = "Gui, Yi",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-main.8/",
pages = "58--81",
ISBN = "979-8-218-84228-4",
abstract = "This study examines whether NLP transfer learning techniques, specifically BERT, can be used to develop prompt-generic AES models for practice writing tests. Findings reveal that fine-tuned DistilBERT, without further pre-training, achieves high agreement (QWK {\ensuremath{\approx}} 0.89), enabling scalable, robust AES models in statewide K-12 assessments without costly supplementary pre-training."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gui-2025-develop">
<titleInfo>
<title>Develop a Generic Essay Scorer for Practice Writing Tests of Statewide Assessments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Gui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84228-4</identifier>
</relatedItem>
<abstract>This study examines whether NLP transfer learning techniques, specifically BERT, can be used to develop prompt-generic AES models for practice writing tests. Findings reveal that fine-tuned DistilBERT, without further pre-training, achieves high agreement (QWK \ensuremath\approx 0.89), enabling scalable, robust AES models in statewide K-12 assessments without costly supplementary pre-training.</abstract>
<identifier type="citekey">gui-2025-develop</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-main.8/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>58</start>
<end>81</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Develop a Generic Essay Scorer for Practice Writing Tests of Statewide Assessments
%A Gui, Yi
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Full Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84228-4
%F gui-2025-develop
%X This study examines whether NLP transfer learning techniques, specifically BERT, can be used to develop prompt-generic AES models for practice writing tests. Findings reveal that fine-tuned DistilBERT, without further pre-training, achieves high agreement (QWK \ensuremath\approx 0.89), enabling scalable, robust AES models in statewide K-12 assessments without costly supplementary pre-training.
%U https://aclanthology.org/2025.aimecon-main.8/
%P 58-81
Markdown (Informal)
[Develop a Generic Essay Scorer for Practice Writing Tests of Statewide Assessments](https://aclanthology.org/2025.aimecon-main.8/) (Gui, AIME-Con 2025)
ACL