
Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con) – Volume 1: Full Papers, pages 58–81
October 27-29, 2025 ©2025 National Council on Measurement in Education (NCME)

 
 

Abstract 

This study examines whether NLP transfer 
learning techniques, specifically BERT, can 
be used to develop prompt-generic AES 
models for practice writing tests. Findings 
reveal that fine-tuned DistilBERT, without 
further pre-training, achieves high 
agreement (QWK ≈ 0.89), enabling 
scalable, robust AES models in statewide 
K-12 assessments without costly 
supplementary pre-training. 

1 Introduction 

Currently, Automated Essay Scoring (AES) is 
widely utilized in large-scale standardized tests 
with writing assessments in the US. However, there 
are some notable limitations in the current major 
AES engines that are used for many high-stakes 
writing assessments, such as the annual statewide 
assessments in K-12 education. These limitations 
prevent the provision of instantaneous online essay 
scoring services in writing practice tests of those 
statewide assessments for students’ daily exercise. 

One major limitation of AES algorithms trained 
with traditional machine learning (ML) approaches 
is the substantial sample size required for training 
sets with essays scored by human raters. The 
random assignment of prompts in practice tests 
results in some prompts having too few essay 
samples to effectively train a scoring model using 
traditional ML methods. For instance, Intelligent 
Essay Assessor (IEA), a major AES engine 
developed by Pearson which is used in many 
operational tests, including several statewide 
assessments, requires a sample of approximately 
500 student responses evaluated by human raters to 
score essays on a specific prompt in high-stakes 
assessments (Foltz et al., 2013). While it also 
scores essays in MyLab Writing online services 

instantly with immediate overall evaluations, it still 
needs hundreds of submissions scored by human 
raters to build scoring models for each prompt 
(Pearson Inc., 2010). 

A precursor area with this frequent lack of 
“labelled” data quandary in ML is the image 
classification problem through computer vision. 
The traditional ML model needs to be trained for a 
specific task of image classification with the target 
data from scratch, making no use of the knowledge 
previously learned from similar tasks. To deal with 
this predicament, transfer learning is applied 
because it is able to build accurate models even 
without enough labeled data from the target 
domain (Rawat & Wang, 2017). With transfer 
learning, the model-building process starts from 
the “knowledge” that has been learned previously 
instead of zero, when solving relevant problems in 
the past. 

Thus, the purpose of the study is to develop a 
generic essay scorer generalizable to essays on any 
prompts in the target domain with Google’s BERT 
(Bidirectional Encoder Representations from 
Transformers), one of state-of-the-art NLP transfer 
learning techniques, for low-stakes online writing 
practice tests of those statewide student 
assessments, even if there is not enough essay 
sample to train scoring algorithms with traditional 
ML approaches. With such a generic essay scorer, 
students’ routine practice essays can be scored 
similarly to those assessment essays even outside 
the annual test windows, providing students with 
timely and meaningful feedback during their 
preparation. 

Transfer learning using Google’s BERT 
revolutionizes traditional ML approaches by 
leveraging pre-trained models on extensive 
datasets to improve performance on specific 
downstream tasks. BERT is pre-trained on a large 
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corpus of human language text materials, including 
the entirety of Wikipedia (comprising roughly 2.5 
billion words) and the BookCorpus dataset 
(comprising approximately 800 million words). 
This pre-training method is particularly 
advantageous as it allows BERT to generate deep 
contextualized word embeddings that capture 
nuanced relationships within the text and be fine-
tuned with minimal labeled target data to develop 
high-performing models in target domains. Thus, 
this study seeks to investigate how BERT can be 
utilized to help develop generic AES models and 
examine how different treatments of BERT’s pre-
training affect the models’ scoring performances in 
an AES research experiment designed to answer 
these research questions. Moreover, an analytic 
essay scoring method focusing on specific writing 
traits has been selected in this research. The four 
traits to be scored are development, organization, 
language use, and prompt task, based on the ELA 
Common Score Standards of writing, and the 
scoring rubrics of the SWAS essays used as the 
target data in the study. 

In this research, the following research questions 
are expected to be answered: 

1) How many hyperparameter settings of the 
original BERT model, when fine-tuned on target 
data, achieve a Quadratic Weighted Kappa (QWK) 
value greater than 0.7 for each writing trait 
(development, organization, prompt task, language 
use) without additional pre-training? 

2) How many hyperparameter settings result in 
QWK values greater than 0.7 when a pre-trained 
BERT model undergoes further pre-training on 
either “within-task” or “in-domain” materials, 
followed by fine-tuning? Additionally, do these 
settings outperform the original BERT model in 
terms of performance? 

3) What is the performance rank orders of fine-
tuned scoring models for various writing traits 
when using the same hyperparameter settings, and 
what are the implications?  

The target domain consists of essays written by 
high school students, while the scoring results 
produced by the AES engine, IEA, for the available 
SWAS essays in the study serve as the reference 
against which the study’s scoring results are 
compared. The flowchart in Figure 1 illustrates the 
research design and the experimental procedures of 
the study.  

2 Related Work 

Automated Essay Scoring (AES) systems have 
historically depended on handcrafted linguistic 
features coupled with traditional machine-learning 
methods. Early influential systems like Project 
Essay Grade (PEG) used simple textual proxies—
such as sentence length or vocabulary—to 
approximate human grades (Page, 1966). Later, 
more sophisticated AES engines, notably 
IntelliMetric and E-rater, employed extensive 
feature engineering, including grammar accuracy, 
lexical diversity, and structural coherence (Attali & 
Burstein, 2006; Shermis & Burstein, 2013). These 
approaches established AES as a viable alternative 
for essay scoring, yet their accuracy and 
adaptability heavily depended on the quality and 
quantity of manually crafted features and extensive 
prompt-specific training data. 

The release of the Automated Student Assessment 
Prize (ASAP) dataset (Shermis & Burstein, 2013) 
significantly advanced AES research by offering a 
standardized evaluation benchmark. With this 
dataset, neural network methods emerged, notably 
recurrent neural networks (RNNs) and 
convolutional neural networks (CNNs), which 
automatically learned textual representations rather 
than relying solely on manual features. Taghipour 
and Ng (2016) demonstrated that simple CNN-
RNN hybrids could surpass traditional AES 
baselines by directly learning meaningful text 
patterns from essays. Still, these early neural 
models struggled to effectively represent complex, 
long-range discourse structures characteristic of 
persuasive and argumentative essays. 

The advent of pretrained transformer-based 
language models, particularly BERT (Devlin et al., 
2019) and RoBERTa (Liu et al., 2019), 
dramatically shifted the AES paradigm. These 
models, pretrained on massive textual corpora, 
offered deep contextualized embeddings capable of 
capturing semantic and syntactic nuances beyond 
the reach of simpler neural architectures (Devlin et 
al., 2019). Mayfield and Black (2020) provided an 
influential early evaluation of fine-tuning BERT 
for AES, showing that transformer models could 
achieve accuracy comparable to highly-engineered 
feature-based systems, although computational 
demands were notably higher. Their work 
demonstrated transformers' potential for AES, 
while also highlighting practical trade-offs in 
model deployment. 
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To better exploit transformers’ strengths, 
researchers developed specialized fine-tuning 
methods. Yang et al. (2019) proposed combining a 
traditional regression loss with a ranking loss, 
guiding transformer models toward learning not 
only accurate score predictions but also correct 
relative ordering of essay quality. This dual-
objective approach improved Quadratic Weighted 
Kappa (QWK)—a standard AES performance 
metric—by approximately 2–3 percentage points 
over standard fine-tuning, demonstrating that 
carefully crafted training objectives can 
significantly enhance transformer-based AES. 

AES research has also addressed the perennial 
challenge of data scarcity through domain 
adaptation and multi-task learning. Typically, each 
essay prompt has limited training data, posing 
significant risks of overfitting. Cao et al. (2020) 
presented a domain-adaptive framework 
combining adversarial training and auxiliary self-
supervised tasks (e.g., sentence-order prediction) to 
learn prompt-invariant essay representations. Their 
approach not only improved performance on 
previously unseen prompts but also established a 
practical methodology for mitigating prompt-
specific data shortages through domain transfer. 
Similarly, Muangkammuen and Fukumoto (2020) 
employed multi-task learning by integrating an 
auxiliary sentence-level sentiment analysis task 
alongside AES. This hierarchical joint training 
improved QWK scores, illustrating that 
complementary learning tasks could enrich the 
representation learned by AES models, enhancing 
their generalizability. 

Holistic essay scoring, while common, limits the 
detailed feedback educators desire. Thus, recent 
AES research emphasizes analytic scoring, 
separately evaluating distinct writing traits (e.g., 
organization, content, grammar). Historically, 
separate models were developed independently for 
each trait, ignoring the natural correlations among 
writing dimensions. For example, early analytic 
scoring models, like those by Persing and Ng 
(2015, 2016), modeled traits like argument strength 
or organization independently with trait-specific 
features and classifiers. More recently, Do et al. 
(2024) proposed Autoregressive Score Generation 
for Multi-trait Scoring (ArTS), using a 
transformer-based T5 model to sequentially 
generate scores for multiple traits. This innovative 
framework explicitly modeled trait dependencies, 

significantly improving trait-level AES 
performance and marking a notable advancement 
in providing nuanced formative feedback to 
students. 

Evaluation methods have also become 
standardized with AES advancements. Quadratic 
Weighted Kappa (QWK) remains a widely adopted 
metric, penalizing larger scoring errors more 
heavily and thus closely aligning automated 
evaluations with human judgments. Current 
transformer-based AES models routinely achieve 
QWK scores around 0.75 to 0.80 on standard 
benchmarks like ASAP, nearing human inter-rater 
agreement levels (~0.80–0.85; Mayfield & Black, 
2020; Yang et al., 2019). This demonstrates 
substantial progress in AES technology toward 
human-level reliability. 

Overall, AES research has evolved significantly—
from feature-engineered regressors to sophisticated 
transformer-based methods—driven by 
transformer architectures, specialized training 
strategies, multi-task learning, and domain 
adaptation. These advances collectively address 
critical challenges such as data scarcity and trait-
specific feedback, facilitating robust, reliable, and 
informative automated scoring systems. This 
literature provides a robust foundation for the 
current study’s exploration of developing prompt-
generic AES models for statewide educational 
assessments, emphasizing transformer-based 
methods’ potential to improve scoring quality, 
reduce data requirements, and enhance educational 
feedback. 

3 Method  

A distilled version of BERT (DistilBERT) was 
employed to develop prompt-generic essay scoring 
models. Three variants were compared: 

Group 1 (Baseline): DistilBERT fine-tuned 
directly on SWAS essays. 

Group 2 (ASAP-pretrained): DistilBERT further 
pre-trained on the ASAP corpus, then fine-tuned on 
SWAS. 

Group 3 (SWAS-pretrained): DistilBERT further 
pre-trained on a 500-essay “within-task” SWAS 
subset, then fine-tuned on SWAS. 
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3.1 Data Preparation 

Two corpora were used. The SWAS corpus 
originally contained 4,500 essays (1,500 per grade 
for grades 9–11). Handwritten submissions (n = 
1,203) were excluded, leaving 3,297 typed essays 
(Figure 2). A random sample of 500 typed essays 
was reserved for within-task pre-training. The 
ASAP corpus, comprising 12,970 essays across 
eight prompts and two genres (Table 1), was used 
for in-domain pre-training. 

To mitigate score-level imbalance from 
handwritten-essay removal, RandomOverSampler 
was applied separately to each analytic trait. The 
balance improvements were confirmed via 
stacked-bar plots and annotated tables (Figures 3 
and 4), though downstream benefits were minimal. 
Oversampled sets were used only for diagnostics. 

3.2 Model Pre-training and Fine-tuning 

DistilBERT weights (66 M parameters) were 
loaded from the Hugging Face “distilbert-base-
uncased” checkpoint. In Groups 2 and 3, 
intermediate pre-training was performed using a 
learning rate of 5 × 10⁻⁴ and batch sizes of 16 and 
32. All pre-training ran for a uniform number of 
epochs, ensuring each variant saw equal exposure 
to its respective corpora. 

Subsequently, each variant was fine-tuned on 
SWAS essays using an Ordinal Logistic Regression 
(OLR) classifier built on DistilBERT embeddings. 
Hyper-parameters for fine-tuning were selected via 
grid search over three regularization strengths (α ∈ 
{0.01, 0.10, 1.00}) and three maximum-iteration 
ceilings ({100, 500, 1000}), yielding nine distinct 
configurations. 

3.3 Evaluation Protocol 

Model evaluation employed a leave-one-grade-out 
design: in three rounds, essays from two grades 
were used for training and the remaining grade 
served as the test set (Tables 2–4). Within each 
round, five-fold cross-validation was executed, and 
the entire process was repeated with three random 
seeds to assess stability. Aggregate statistics across 
folds and seeds were computed for: Quadratic 
Weighted Kappa (QWK), Mean Absolute Error 
(MAE), Exact Accuracy, Adjacent Accuracy 
(predictions within ±1 score point), Precision, 
recall, and F1 were calculated per score point (1–
5) (see Figures 8–10 for accuracy, Figures 11–12 
for precision, recall, and F1). 

By systematically comparing baseline and pre-
trained variants under consistent optimization 
settings and a robust leave-one-grade-out protocol, 
this method section demonstrates how prompt-
generic essay scoring can be realized with minimal 
reliance on prompt-specific labeled data. The 
design ensures fairness across groups, repeatability 
via multiple seeds, and comprehensive trait-level 
analysis through detailed metric computation and 
visualization. 

4 Results 

4.1 Agreement and Accuracy Across Splits 

Table 2–4 report mean Quadratic Weighted Kappa 
(QWK) results for each leave-one-grade-out split. 
When trained on grades 9 & 10 and tested on grade 
11 (Table 2), mean QWK ranged from 0.889 to 
0.893 across the best hyper-parameter settings. 
Similar stability was observed for the other splits: 
training on grades 9 & 11 (Table 3) yielded QWK 
near 0.892, and training on grades 10 & 11 (Table 
4) yielded QWK near 0.893. Exact accuracy, 
summarized in Tables 5–7, consistently hovered 
around 0.68–0.69 for all splits. Aggregating across 
splits (Table 8) confirms mean QWK ≈ 0.89 and 
mean accuracy ≈ 0.68, demonstrating that two-
grade training provides robust linguistic coverage 
for scoring the held-out grade. 

4.2 Impact of Pre-training 

Supplementary pre-training did not yield a uniform 
advantage; effects depended on split, α, and trait. 
At α = 1.0, with the strongest regularization, the no-
pretraining baseline (Group I) achieved the highest 
QWK across all traits in the train 9&11 → test 10 
design (Table 3). In other splits, leadership shifted: 
for train 9&10 → test 11 (Table 2), Group II 
(ASAP-pretrained) led Organization, Prompt Task, 
and Development, while Group III (SWAS-
pretrained) led Language Use; for train 10&11 → 
test 9 (Table 4), Group II dominated most traits, 
with all groups performing similarly on Prompt 
Task. At lower α, leadership occasionally changed 
by trait but without clear consistency. Overall, even 
at α = 1.0, where performance was most stable, 
relative rankings fluctuated across splits, showing 
that train–test design substantially shaped 
outcomes and prevented conclusive judgments of 
model performance. 
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4.3 Trait-Level Performance 

Figures 5–7 plot QWK trajectories across max_iter 
for each trait in the three splits. Organization 
consistently scored highest (peak QWK ≈ 0.93), 
followed by Language Use and Development (≈ 
0.90), with Prompt Task trailing (≈ 0.86). Even the 
most challenging trait, Prompt Task, exceeded the 
operational QWK threshold of 0.70 in every 
configuration (Figures 5–7). These rankings held 
irrespective of pre-training group, confirming a 
stable hierarchy of trait difficulty. Macro-average 
F1 scores per trait across splits are summarized in 
Table 9. 

4.4 Precision, Recall, and F1 by Score Point 

Figures 11–12 show per-score precision, recall, and 
F1 for the 9+10→11 split (and supplementary 
figures for the other splits). All groups peak at the 
extreme scores (1 & 5) and dip in the mid-range (2–
4) for precision and recall, reflecting both data 
imbalance and inherent scoring difficulty. No 
group gains a systematic edge from extra pre-
training. 

4.5 Hyper-parameter Fine-tuning 

Hyper-parameter sweeps confirm that 
regularization strength α = 1.0 combined with at 
least 500 training iterations produces the most 
stable and highest-performing models. Early 
stopping at 100 iterations dropped QWK by 
roughly 0.005–0.006 (see Tables 2–4), and 
increasing beyond 1,000 iterations yielded 
diminishing returns. Lower α values (0.01, 0.10) 
led to mild over-fitting, indicated by higher training 
QWK but lower test QWK and increased variance 
across seeds. 

4.6 Oversampling Correction  

Although RandomOverSampler successfully 
equalized class frequencies (supplemental bar 
plots), oversampling did not materially improve 
modeling outcomes. Precision and recall at rare 
score points improved slightly in some 
configurations, but aggregate QWK and accuracy 
remained unchanged or marginally worse when 
oversampled sets were used for training. 

4.7 Macro-Average F₁ Summary 

To condense all per-score results, Table 9 reports 
the macro-averaged F₁ (mean over score points 1–
5) for each trait, group, and leave-one-grade-out 
split. Together, Tables 2–9 and Figures 5–12 show 

that a baseline DistilBERT (G1) fine-tuned on two-
grade SWAS essays yields high agreement (QWK 
≈ 0.89), accuracy (≈ 0.68), and F₁ across traits, 
without the need for extra pre-training or 
oversampling. 

Overall, these results demonstrate that a baseline 
DistilBERT model—fine-tuned exclusively on 
two-grade SWAS data—achieves high agreement 
(QWK ≈ 0.89) and accuracy (≈ 0.68) across grade 
splits and analytic traits without requiring 
additional pre-training or extensive oversampling 
(Tables 2–9, Figures 5–12). 

5 Discussion 

The stability of model performance across all three 
leave-one-grade-out splits suggests that 
DistilBERT’s pre-trained language representations 
are highly adaptable to essay scoring—even 
without extensive prompt-specific data. Training 
on any two adjacent grades yielded nearly identical 
agreement (QWK ≈ 0.89), exact accuracy (~ 0.68), 
and Adjacent Accuracy (> 98 %), confirming that 
essays from two grades supply sufficient linguistic 
and rhetorical variety to generalize to a held-out 
grade. 

Perhaps most surprisingly, neither large-scale in-
domain pre-training on ASAP nor “within-task” 
pre-training on a SWAS subset produced consistent 
gains. As Table 9’s macro-average F₁ summary 
shows, the baseline model (Group 1) ties or 
outperforms both ASAP-pretrained (Group 2) and 
SWAS-pretrained (Group 3) variants in every trait 
and split. For instance, Prompt Task F₁ on 
9+10→11 is 0.714 for Group 1 versus 0.706 
(Group 2) and 0.698 (Group 3). This counter-
intuitive result implies that when the BERT’s 
original pretraining corpus is already massive and 
representative enough, further pre-training can 
introduce stylistic noise or domain drift instead of 
strengthening task alignment. 

Hyper-parameter analysis reinforces the need for 
careful regularization and adequate training steps. 
Models with α = 1.0 and at least 500 (ideally 1,000) 
iterations consistently achieve the highest and most 
reproducible QWK. Lower α values permit mild 
over-fitting—evident in higher training QWK but 
lower test QWK—while very short runs (100 
iterations) leave a nontrivial 0.005–0.006 QWK 
gap compared to longer runs. 
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Trait-level performance reveals a stable hierarchy 
of difficulty. Organization is most easily predicted 
(peak QWK ≈ 0.93), followed by Development and 
Language Use (≈ 0.90), with Prompt Task trailing 
(≈ 0.86). Crucially, even the most challenging trait 
exceeds the operational QWK threshold of 0.70, 
indicating that all four analytic dimensions can be 
scored with confidence. 

Finally, oversampling to correct class imbalance 
offered minimal benefit. Although frequency 
distributions were equalized, aggregate QWK, 
accuracy, and micro-F₁ remained flat or dipped 
slightly, suggesting that model capacity and the 
breadth of cross-grade coverage outweigh precise 
score-level balance when fine-tuning transformer 
embeddings. 

Taken together, these findings validate a 
lightweight, prompt-agnostic AES pipeline: fine-
tune a standard DistilBERT checkpoint on a 
representative two-grade corpus with α = 1.0 and 
500–1,000 iterations, and skip costly intermediate 
pre-training or complex oversampling. This 
approach simplifies system development, reduces 
computational overhead, and still delivers robust, 
reproducible scoring across multiple writing traits 
and grade levels. 

6 Conclusion 

This study has demonstrated that prompt-generic 
automated essay scoring (AES) can be achieved 
efficiently by fine-tuning DistilBERT on 
representative two-grade essay sets, without the 
need for extensive prompt-specific pre-training or 
elaborate data balancing. Across three leave-one-
grade-out splits and nine hyper-parameter 
configurations, baseline DistilBERT models 
consistently achieved strong agreement (QWK ≈ 
0.89), exact accuracy (~0.68), and adjacent 
accuracy (> 98%). These results challenge 
conventional assumptions, showing that 
DistilBERT’s general-domain representations 
suffice for robust scoring when paired with 
straightforward fine-tuning. 

A particularly striking finding was the observation 
of “knowledge collapse”: applying supplementary 
pre-training settings to overwrite existing 
parameters paradoxically diminished downstream 
scoring performance. This counter-intuitive 
effect—where newly acquired “knowledge” 
impaired rather than enhanced task ability—

underscores the critical need to avoid equating 
machine learning processes with human learning, 
and suggests that care must be taken to preserve 
previously learned representations during transfer 
learning. 

From a practical standpoint, clear hyper-parameter 
guidelines have emerged: a regularization strength 
of α = 1.0 and a training horizon of 500–1 000 
iterations reliably maximize performance and 
model stability. This simple recipe offers a low-
overhead path to deploying AES in educational 
contexts, minimizing both computational cost and 
engineering complexity. 

Nonetheless, certain limitations temper the 
generalizability of these conclusions. The within-
task pre-training set was limited to 500 essays 
covering a single prompt per grade, which may 
have constrained the potential benefits of task-
specific pre-training. Exclusion of 1203 
handwritten essays—due to transcription 
challenges—introduced moderate score-level 
imbalance and restricted the training corpus’s 
representativeness. Finally, employing a single 
scoring rubric across all prompts may have 
simplified the generalization challenge. 

To address these gaps, future work should explore 
larger, more diverse essay collections spanning 
multiple prompts, genres, and rubrics to assess how 
prompt variety and score distribution affect 
adaptability. Alternative machine-learning 
frameworks beyond ordinal logistic regression—
such as ensemble methods or neural classifiers—
should be evaluated for further performance gains. 
It will also be important to develop transfer-
learning strategies that explicitly guard against 
“knowledge collapse,” preserving core 
representations while incorporating new domain 
information. Integrating advanced handwriting 
recognition technologies remains essential for 
inclusive AES that covers all response formats. 

In closing, this research provides compelling 
evidence that a lightly fine-tuned DistilBERT 
model can serve as a scalable, reliable AES engine 
for formative writing practice, dramatically 
reducing the data and computational burdens. By 
recommending concrete hyper-parameter settings 
and highlighting the nuanced effects of further pre-
training, this work lays a pragmatic foundation for 
the next generation of accessible, robust AES tools 
in K-12 education.  

63



 
 

A Appendices 

ASAP Dataset Topics 

Prompt 1 The effects computers have on people 

Prompt 2 Censorship in the libraries 

Prompt 3 Respond to an extract about how the features of a setting 
affected a cyclist 

Prompt 4 Explain why an extract from Winter Hibiscus by Minfong 
Ho was concluded in the way the author did 

Prompt 5 Describe the mood created by the author in an extract from 
Narciso Rodriguez by Narciso Rodriguez 

Prompt 6 
The difficulties faced by the builders of the Empire State 
Building in allowing 
dirigibles to dock there 

Prompt 7 Write a story about patience 

Prompt 8 The benefits of laughter 

Table 1: Topics of Eight Prompts in ASAP Dataset 

 
 Fine-tuning Parameter:  

Alpha is set to be the same across three groups 
No. of essays for training=2251 
No. of essays for test=1046 

 
maxiter=1000 

Group I 
(No Further  
Pre-training) 

Group II 
(Further Pre-training  
With ASAP Essays) 

Group III 
(Further Pre-training  
With SWAS Essays) 

Alpha Trait QWK in 
training 

QWK in 
testing 

QWK in 
training 

QWK in 
testing 

QWK in 
training 

QWK in 
testing 

1.0 

Language Use 0.940 0.887 0.940 0.876 0.943 0.922 

Organization 0.938 0.851 0.944 0.920 0.946 0.908 
Prompt Task 0.939 0.914 0.940 0.922 0.942 0.917 
Development 0.935 0.897 0.938 0.925 0.940 0.903 

0.1 

Language Use 0.944 0.873 0.941 0.897 0.938 0.902 
Organization 0.945 0.930 0.942 0.928 0.944 0.893 
Prompt Task 0.937 0.895 0.930 0.896 0.940 0.847 
Development 0.938 0.884 0.939 0.923 0.938 0.876 

0.01 

Language Use 0.938 0.851 0.934 0.895 0.931 0.886 
Organization 0.940 0.915 0.935 0.912 0.936 0.884 
Prompt Task 0.931 0.863 0.930 0.896 0.925 0.881 
Development 0.933 0.867 0.933 0.904 0.931 0.839 

Table 2: Mean QWK Results vs. Alpha for Train on Grade 9&10 and Test on Grade 11 
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Fine-tuning Hyperparameter: 
Alpha is set to be the same across three groups 
No. of essays for training=2170 
No. of essays for test=1127 

  maxiter=500 
Group I 

(No Further 
Pre-training) 

Group II 
(Further Pre-training 
with ASAP Essays) 

Group III 
(Further Pre-training 
with SWAS Essays) 

Alpha Trait QWK in 
training 

QWK in 
testing 

QWK in 
training 

QWK in 
testing 

QWK in 
training 

QWK in 
testing 

1 

Language Use 0.935 0.922 0.938 0.918 0.941 0.871 
Organization 0.939 0.935 0.944 0.879 0.941 0.853 
Prompt Task 0.941 0.921 0.946 0.911 0.948 0.871 
Development 0.934 0.926 0.940 0.903 0.937 0.871 

0.1 

Language Use 0.939 0.914 0.936 0.909 0.937 0.882 
Organization 0.941 0.932 0.944 0.827 0.941 0.865 
Prompt Task 0.944 0.919 0.945 0.899 0.945 0.879 
Development 0.936 0.923 0.941 0.895 0.936 0.893 

0.01 

Language Use 0.933 0.890 0.931 0.886 0.928 0.867 
Organization 0.938 0.924 0.938 0.789 0.935 0.855 
Prompt Task 0.940 0.907 0.939 0.887 0.938 0.858 
Development 0.935 0.902 0.936 0.869 0.929 0.877 

Table 3: Mean QWK Results vs. Alpha for Train on Grade 9&11 and Test on Grade 10 

 Fine-tuning Hyperparameter: 
Alpha is set to be the same across three groups 
No. of essays for training=2173 
No. of essays for test=1124 

 maxiter=1000 
Group I 

(No Further 
Pre-training) 

Group II 
(Further Pre-training 
With ASAP Essays) 

Group III 
(Further Pre-training 
With SWAS Essays) 

Alpha Trait QWK in 
training 

QWK in 
testing 

QWK in 
training 

QWK in 
testing 

QWK in 
training 

QWK in 
testing 

1.0 

Language Use 0.946 0.911 0.948 0.913 0.949 0.908 
Organization 0.949 0.922 0.948 0.927 0.949 0.925 
Prompt Task 0.936 0.890 0.940 0.891 0.939 0.892 
Development 0.938 0.903 0.941 0.917 0.940 0.888 

0.1 

Language Use 0.949 0.909 0.947 0.901 0.946 0.912 
Organization 0.949 0.920 0.945 0.914 0.946 0.900 
Prompt Task 0.936 0.824 0.938 0.858 0.933 0.854 
Development 0.941 0.900 0.940 0.902 0.938 0.870 

0.01 

Language Use 0.945 0.894 0.941 0.888 0.939 0.874 
Organization 0.944 0.910 0.938 0.881 0.936 0.872 
Prompt Task 0.926 0.815 0.928 0.852 0.924 0.840 
Development 0.936 0.872 0.937 0.881 0.927 0.834 

Table 4: Mean QWK Results vs. Alpha for Train on Grade 10 & 11 and Test on Grade 9 

65



 
 

  

Fine-tuning Hyperparameter: 
Alpha is set to be the same across three groups 
No. of essays for training=2251 
No. of essays for test=1046 

  maxiter=1000 
Group I Group II Group III 

(No Further (Further Pre-training (Further Pre-training 
Pre-training) With ASAP Essays) With SWAS Essays) 

Alpha Trait Accuracy 
in training 

Accuracy  
in testing 

Accuracy  
in training 

Accuracy  
in testing 

Accuracy  
in training 

Accuracy  
in testing 

1 

Language Use 0.793 0.722 0.792 0.575 0.799 0.760 
Organization 0.791 0.760 0.795 0.697 0.795 0.722 
Prompt Task 0.766 0.718 0.769 0.699 0.776 0.718 
Development 0.762 0.722 0.773 0.738 0.775 0.722 

0.1 

Language Use 0.805 0.680 0.798 0.667 0.783 0.702 
Organization 0.793 0.702 0.789 0.741 0.789 0.680 
Prompt Task 0.761 0.682 0.761 0.701 0.764 0.682 
Development 0.774 0.675 0.776 0.746 0.771 0.675 

0.01 

Language Use 0.786 0.658 0.773 0.681 0.755 0.663 
Organization 0.779 0.663 0.763 0.707 0.765 0.658 
Prompt Task 0.744 0.627 0.731 0.659 0.725 0.627 

Development 0.762 0.633 0.765 0.705 0.758 0.633 

Table 5: Mean Accuracy Results vs. Alpha Configurations for Train on Grade 9&10 and Test on Grade 11 

 Fine-tuning Hyperparameter: 
Alpha is set to be the same across three groups 
No. of essays for training=2170 
No. of essays for test=1127 

 maxiter=1000 
Group I 

(No Further  
Pre-training) 

Group II 
(Further Pre-training 
With ASAP Essays) 

Group III 
(Further Pre-training 
With SWAS Essays) 

Alpha Trait Accuracy 
in training 

Accuracy  
in testing 

Accuracy  
in training 

Accuracy  
in testing 

Accuracy  
in training 

Accuracy  
in testing 

1.0 

Language Use 0.781 0.762 0.789 0.752 0.799 0.633 

Organization 0.793 0.760 0.805 0.627 0.795 0.595 
Prompt Task 0.781 0.704 0.796 0.684 0.803 0.603 
Development 0.769 0.736 0.788 0.697 0.778 0.643 

0.1 

Language Use 0.792 0.738 0.782 0.725 0.784 0.672 
Organization 0.794 0.755 0.802 0.547 0.791 0.621 
Prompt Task 0.790 0.702 0.794 0.659 0.791 0.630 
Development 0.774 0.732 0.794 0.683 0.781 0.684 

0.01 

Language Use 0.773 0.662 0.767 0.670 0.754 0.650 
Organization 0.785 0.732 0.786 0.517 0.775 0.606 
Prompt Task 0.776 0.674 0.771 0.637 0.791 0.630 
Development 0.783 0.675 0.788 0.640 0.778 0.659 

Table 6: Mean Accuracy Results vs. Alpha Configurations for Train on Grade 9&11 and Test on Grade 10 
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Fine-tuning Hyperparameter: 
Alpha is set to be the same across three groups 
No. of essays for training=2173 
No. of essays for test=1124 

 maxiter=1000 
Group I 

(No Further 
Pre-training) 

Group II 
(Further Pre-training 
With ASAP Essays) 

Group III 
(Further Pre-training 
With SWAS Essays) 

Alpha Trait Accuracy 
in training 

Accuracy  
in testing 

Accuracy  
in training 

Accuracy  
in testing 

Accuracy  
in training 

Accuracy  
in testing 

1.0 

Language Use 0.806 0.734 0.808 0.740 0.813 0.728 

Organization 0.800 0.739 0.794 0.759 0.801 0.750 
Prompt Task 0.760 0.698 0.768 0.673 0.768 0.691 
Development 0.767 0.678 0.776 0.740 0.773 0.631 

0.1 

Language Use 0.814 0.726 0.804 0.722 0.801 0.681 
Organization 0.797 0.736 0.783 0.735 0.791 0.699 
Prompt Task 0.758 0.576 0.760 0.612 0.751 0.627 
Development 0.776 0.687 0.770 0.725 0.765 0.609 

0.01 

Language Use 0.797 0.677 0.785 0.686 0.775 0.611 
Organization 0.797 0.736 0.756 0.669 0.760 0.588 
Prompt Task 0.729 0.570 0.730 0.618 0.718 0.594 
Development 0.767 0.625 0.761 0.701 0.739 0.563 

Table 7: Mean Accuracy Results vs. Alpha Configurations for Train on Grade 10&11 and Test on Grade 9 

Train → Test Mean QWK Mean Accuracy 
G9 & G10 → G11 0.893 0.687 
G10 & G11 → G9 0.889 0.679 
G9 & G11 → G10 0.892 0.673 

Table 8: Average Performance by Leave-One-
Grade-Out Split 

Trait Model Group 9+10 → 11 9+11 → 10 10+11 → 9 

Prompt Task 
Baseline (G1) 0.714 0.714 0.645 
ASAP-pretrained (G2) 0.706 0.702 0.630 
SWAS-pretrained (G3) 0.698 0.710 0.626 

Organization 
Baseline (G1) 0.753 0.741 0.648 
ASAP-pretrained (G2) 0.742 0.725 0.622 
SWAS-pretrained (G3) 0.741 0.730 0.642 

Development 
Baseline (G1) 0.714 0.722 0.705 
ASAP-pretrained (G2) 0.704 0.710 0.695 
SWAS-pretrained (G3) 0.698 0.716 0.686 

Language Use 
Baseline (G1) 0.767 0.773 0.762 
ASAP-pretrained (G2) 0.758 0.764 0.752 
SWAS-pretrained (G3) 0.753 0.760 0.740 

Table 9: Macro-Average F₁ by Trait, Model Group, and Leave-One-Grade-Out Split 
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Figure 2: Grade Level Distribution of Available SWAS Essays  

 

Figure 1: Research Design of the Study 
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Figure 3: Accuracy in Further Pre-training with ASAP Essays 

 

Figure 4: Accuracy vs. Epoch in Further Pre-training with 500 SWAS Essays 
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Figure 5: Comparisons of Mean QWK vs. Maxiter in 4 Trait Scores for Train on Grade 9&10 and Test on Grade 11 

70



 
 

 

Figure 6: Comparisons of Mean QWK vs. Maxiter in 4 Trait Scores for Train on Grade 9&11 and Test on Grade 10 
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Figure 7: Comparisons of Mean QWK vs. Maxiter in 4 Trait Scores for Train on Grade 10&11 and Test on Grade 9 
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Figure 8: Comparisons of Mean Accuracy Performance vs. Maxiter in 3 Groups for Train on Grade 9&10 and Test on 
Grade 11 
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Figure 9: Comparisons of Mean Accuracy Performance vs. Maxiter in 3 Groups for Train on Grade 9&11 and Test 
on Grade 10 
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Figure 10: Comparisons of Mean Accuracy Performance vs. Maxiter in 3 Groups for Train on Grade 10&11 and Test on 
Grade 9 

 

Figure 11: Mean F1-scores in All Score Levels of the 3 Groups across Trait Scores 
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Figure 12: Mean Precision and Recall in All Score Levels of the 3 Groups across Trait Scores 
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