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Abstract

This study examines whether NLP transfer
learning techniques, specifically BERT, can
be used to develop prompt-generic AES
models for practice writing tests. Findings
reveal that fine-tuned DistilBERT, without

further  pre-training, achieves high
agreement (QWK ~ 0.89), enabling
scalable, robust AES models in statewide
K-12  assessments  without  costly

supplementary pre-training.

1 Introduction

Currently, Automated Essay Scoring (AES) is
widely utilized in large-scale standardized tests
with writing assessments in the US. However, there
are some notable limitations in the current major
AES engines that are used for many high-stakes
writing assessments, such as the annual statewide
assessments in K-12 education. These limitations
prevent the provision of instantaneous online essay
scoring services in writing practice tests of those
statewide assessments for students’ daily exercise.

One major limitation of AES algorithms trained
with traditional machine learning (ML) approaches
is the substantial sample size required for training
sets with essays scored by human raters. The
random assignment of prompts in practice tests
results in some prompts having too few essay
samples to effectively train a scoring model using
traditional ML methods. For instance, Intelligent
Essay Assessor (IEA), a major AES engine
developed by Pearson which is used in many
operational tests, including several statewide
assessments, requires a sample of approximately
500 student responses evaluated by human raters to
score essays on a specific prompt in high-stakes
assessments (Foltz et al., 2013). While it also
scores essays in MyLab Writing online services
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instantly with immediate overall evaluations, it still
needs hundreds of submissions scored by human
raters to build scoring models for each prompt
(Pearson Inc., 2010).

A precursor area with this frequent lack of
“labelled” data quandary in ML is the image
classification problem through computer vision.
The traditional ML model needs to be trained for a
specific task of image classification with the target
data from scratch, making no use of the knowledge
previously learned from similar tasks. To deal with
this predicament, transfer learning is applied
because it is able to build accurate models even
without enough labeled data from the target
domain (Rawat & Wang, 2017). With transfer
learning, the model-building process starts from
the “knowledge” that has been learned previously
instead of zero, when solving relevant problems in
the past.

Thus, the purpose of the study is to develop a
generic essay scorer generalizable to essays on any
prompts in the target domain with Google’s BERT
(Bidirectional Encoder Representations from
Transformers), one of state-of-the-art NLP transfer
learning techniques, for low-stakes online writing
practice tests of those statewide student
assessments, even if there is not enough essay
sample to train scoring algorithms with traditional
ML approaches. With such a generic essay scorer,
students’ routine practice essays can be scored
similarly to those assessment essays even outside
the annual test windows, providing students with
timely and meaningful feedback during their
preparation.

Transfer learning using Google’s BERT
revolutionizes traditional ML approaches by
leveraging pre-trained models on extensive
datasets to improve performance on specific
downstream tasks. BERT is pre-trained on a large
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corpus of human language text materials, including
the entirety of Wikipedia (comprising roughly 2.5
billion words) and the BookCorpus dataset
(comprising approximately 800 million words).
This pre-training method is particularly
advantageous as it allows BERT to generate deep
contextualized word embeddings that capture
nuanced relationships within the text and be fine-
tuned with minimal labeled target data to develop
high-performing models in target domains. Thus,
this study seeks to investigate how BERT can be
utilized to help develop generic AES models and
examine how different treatments of BERT’s pre-
training affect the models’ scoring performances in
an AES research experiment designed to answer
these research questions. Moreover, an analytic
essay scoring method focusing on specific writing
traits has been selected in this research. The four
traits to be scored are development, organization,
language use, and prompt task, based on the ELA
Common Score Standards of writing, and the
scoring rubrics of the SWAS essays used as the
target data in the study.

In this research, the following research questions
are expected to be answered:

1) How many hyperparameter settings of the
original BERT model, when fine-tuned on target
data, achieve a Quadratic Weighted Kappa (QWK)
value greater than 0.7 for each writing trait
(development, organization, prompt task, language
use) without additional pre-training?

2) How many hyperparameter settings result in
QWK values greater than 0.7 when a pre-trained
BERT model undergoes further pre-training on
either “within-task” or “in-domain” materials,
followed by fine-tuning? Additionally, do these
settings outperform the original BERT model in
terms of performance?

3) What is the performance rank orders of fine-
tuned scoring models for various writing traits
when using the same hyperparameter settings, and
what are the implications?

The target domain consists of essays written by
high school students, while the scoring results
produced by the AES engine, IEA, for the available
SWAS essays in the study serve as the reference
against which the study’s scoring results are
compared. The flowchart in Figure 1 illustrates the
research design and the experimental procedures of
the study.
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2 Related Work

Automated Essay Scoring (AES) systems have
historically depended on handcrafted linguistic
features coupled with traditional machine-learning
methods. Early influential systems like Project
Essay Grade (PEG) used simple textual proxies—
such as sentence length or vocabulary—to
approximate human grades (Page, 1966). Later,
more sophisticated AES engines, notably
IntelliMetric and E-rater, employed extensive
feature engineering, including grammar accuracy,
lexical diversity, and structural coherence (Attali &
Burstein, 2006; Shermis & Burstein, 2013). These
approaches established AES as a viable alternative
for essay scoring, yet their accuracy and
adaptability heavily depended on the quality and
quantity of manually crafted features and extensive
prompt-specific training data.

The release of the Automated Student Assessment
Prize (ASAP) dataset (Shermis & Burstein, 2013)
significantly advanced AES research by offering a
standardized evaluation benchmark. With this
dataset, neural network methods emerged, notably
recurrent neural networks (RNNs) and
convolutional neural networks (CNNs), which
automatically learned textual representations rather
than relying solely on manual features. Taghipour
and Ng (2016) demonstrated that simple CNN-
RNN hybrids could surpass traditional AES
baselines by directly learning meaningful text
patterns from essays. Still, these early neural
models struggled to effectively represent complex,
long-range discourse structures characteristic of
persuasive and argumentative essays.

The advent of pretrained transformer-based
language models, particularly BERT (Devlin et al.,
2019) and RoBERTa (Liu et al, 2019),
dramatically shifted the AES paradigm. These
models, pretrained on massive textual corpora,
offered deep contextualized embeddings capable of
capturing semantic and syntactic nuances beyond
the reach of simpler neural architectures (Devlin et
al., 2019). Mayfield and Black (2020) provided an
influential early evaluation of fine-tuning BERT
for AES, showing that transformer models could
achieve accuracy comparable to highly-engineered
feature-based systems, although computational
demands were notably higher. Their work
demonstrated transformers' potential for AES,
while also highlighting practical trade-offs in
model deployment.



To  Dbetter exploit transformers’ strengths,
researchers developed specialized fine-tuning
methods. Yang et al. (2019) proposed combining a
traditional regression loss with a ranking loss,
guiding transformer models toward learning not
only accurate score predictions but also correct
relative ordering of essay quality. This dual-
objective approach improved Quadratic Weighted
Kappa (QWK)—a standard AES performance
metric—by approximately 2—3 percentage points
over standard fine-tuning, demonstrating that
carefully crafted training objectives can
significantly enhance transformer-based AES.

AES research has also addressed the perennial
challenge of data scarcity through domain
adaptation and multi-task learning. Typically, each
essay prompt has limited training data, posing
significant risks of overfitting. Cao et al. (2020)
presented a  domain-adaptive  framework
combining adversarial training and auxiliary self-
supervised tasks (e.g., sentence-order prediction) to
learn prompt-invariant essay representations. Their
approach not only improved performance on
previously unseen prompts but also established a
practical methodology for mitigating prompt-
specific data shortages through domain transfer.
Similarly, Muangkammuen and Fukumoto (2020)
employed multi-task learning by integrating an
auxiliary sentence-level sentiment analysis task
alongside AES. This hierarchical joint training
improved QWK scores, illustrating that
complementary learning tasks could enrich the
representation learned by AES models, enhancing
their generalizability.

Holistic essay scoring, while common, limits the
detailed feedback educators desire. Thus, recent
AES research emphasizes analytic scoring,
separately evaluating distinct writing traits (e.g.,
organization, content, grammar). Historically,
separate models were developed independently for
each trait, ignoring the natural correlations among
writing dimensions. For example, early analytic
scoring models, like those by Persing and Ng
(2015, 2016), modeled traits like argument strength
or organization independently with trait-specific
features and classifiers. More recently, Do et al.
(2024) proposed Autoregressive Score Generation
for Multi-trait Scoring (ArTS), wusing a
transformer-based TS5 model to sequentially
generate scores for multiple traits. This innovative
framework explicitly modeled trait dependencies,
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significantly ~ improving  trait-level =~ AES
performance and marking a notable advancement
in providing nuanced formative feedback to
students.

Evaluation methods have also become
standardized with AES advancements. Quadratic
Weighted Kappa (QWK) remains a widely adopted
metric, penalizing larger scoring errors more
heavily and thus closely aligning automated
evaluations with human judgments. Current
transformer-based AES models routinely achieve
QWK scores around 0.75 to 0.80 on standard
benchmarks like ASAP, nearing human inter-rater
agreement levels (~0.80-0.85; Mayfield & Black,
2020; Yang et al, 2019). This demonstrates
substantial progress in AES technology toward
human-level reliability.

Overall, AES research has evolved significantly—
from feature-engineered regressors to sophisticated
transformer-based methods—driven by
transformer architectures, specialized training
strategies, multi-task learning, and domain
adaptation. These advances collectively address
critical challenges such as data scarcity and trait-
specific feedback, facilitating robust, reliable, and
informative automated scoring systems. This
literature provides a robust foundation for the
current study’s exploration of developing prompt-
generic AES models for statewide educational
assessments, emphasizing transformer-based
methods’ potential to improve scoring quality,
reduce data requirements, and enhance educational
feedback.

3 Method

A distilled version of BERT (DistilBERT) was
employed to develop prompt-generic essay scoring
models. Three variants were compared:

Group 1 (Baseline): DistilBERT fine-tuned
directly on SWAS essays.

Group 2 (ASAP-pretrained): DistilBERT further
pre-trained on the ASAP corpus, then fine-tuned on
SWAS.

Group 3 (SWAS-pretrained): DistilBERT further
pre-trained on a 500-essay “within-task” SWAS
subset, then fine-tuned on SWAS.



3.1 Data Preparation

Two corpora were used. The SWAS corpus
originally contained 4,500 essays (1,500 per grade
for grades 9-11). Handwritten submissions (n =
1,203) were excluded, leaving 3,297 typed essays
(Figure 2). A random sample of 500 typed essays
was reserved for within-task pre-training. The
ASAP corpus, comprising 12,970 essays across
eight prompts and two genres (Table 1), was used
for in-domain pre-training.

To mitigate score-level imbalance from
handwritten-essay removal, RandomOverSampler
was applied separately to each analytic trait. The
balance improvements were confirmed via
stacked-bar plots and annotated tables (Figures 3
and 4), though downstream benefits were minimal.
Oversampled sets were used only for diagnostics.

3.2 Model Pre-training and Fine-tuning

DistiIBERT weights (66 M parameters) were
loaded from the Hugging Face “distilbert-base-
uncased” checkpoint. In Groups 2 and 3,
intermediate pre-training was performed using a
learning rate of 5 x 10~ and batch sizes of 16 and
32. All pre-training ran for a uniform number of
epochs, ensuring each variant saw equal exposure
to its respective corpora.

Subsequently, each variant was fine-tuned on
SWAS essays using an Ordinal Logistic Regression
(OLR) classifier built on DistilBERT embeddings.
Hyper-parameters for fine-tuning were selected via
grid search over three regularization strengths (o €
{0.01, 0.10, 1.00}) and three maximum-iteration
ceilings ({100, 500, 1000}), yielding nine distinct
configurations.

3.3 Evaluation Protocol

Model evaluation employed a leave-one-grade-out
design: in three rounds, essays from two grades
were used for training and the remaining grade
served as the test set (Tables 2—4). Within each
round, five-fold cross-validation was executed, and
the entire process was repeated with three random
seeds to assess stability. Aggregate statistics across
folds and seeds were computed for: Quadratic
Weighted Kappa (QWK), Mean Absolute Error
(MAE), Exact Accuracy, Adjacent Accuracy
(predictions within £1 score point), Precision,
recall, and F1 were calculated per score point (1—
5) (see Figures 8—10 for accuracy, Figures 11-12
for precision, recall, and F1).
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By systematically comparing baseline and pre-
trained variants under consistent optimization
settings and a robust leave-one-grade-out protocol,
this method section demonstrates how prompt-
generic essay scoring can be realized with minimal
reliance on prompt-specific labeled data. The
design ensures fairness across groups, repeatability
via multiple seeds, and comprehensive trait-level
analysis through detailed metric computation and
visualization.

4 Results

4.1

Table 2—4 report mean Quadratic Weighted Kappa
(QWK) results for each leave-one-grade-out split.
When trained on grades 9 & 10 and tested on grade
11 (Table 2), mean QWK ranged from 0.889 to
0.893 across the best hyper-parameter settings.
Similar stability was observed for the other splits:
training on grades 9 & 11 (Table 3) yielded QWK
near 0.892, and training on grades 10 & 11 (Table
4) yielded QWK near 0.893. Exact accuracy,
summarized in Tables 5-7, consistently hovered
around 0.68-0.69 for all splits. Aggregating across
splits (Table 8) confirms mean QWK ~ 0.89 and
mean accuracy =~ 0.68, demonstrating that two-
grade training provides robust linguistic coverage
for scoring the held-out grade.

Agreement and Accuracy Across Splits

4.2 Impact of Pre-training

Supplementary pre-training did not yield a uniform
advantage; effects depended on split, o, and trait.
At o= 1.0, with the strongest regularization, the no-
pretraining baseline (Group I) achieved the highest
QWK across all traits in the train 9&11 — test 10
design (Table 3). In other splits, leadership shifted:
for train 9&10 — test 11 (Table 2), Group II
(ASAP-pretrained) led Organization, Prompt Task,
and Development, while Group III (SWAS-
pretrained) led Language Use; for train 10&11 —
test 9 (Table 4), Group II dominated most traits,
with all groups performing similarly on Prompt
Task. At lower a, leadership occasionally changed
by trait but without clear consistency. Overall, even
at o = 1.0, where performance was most stable,
relative rankings fluctuated across splits, showing
that train—test design substantially shaped
outcomes and prevented conclusive judgments of
model performance.



4.3 Trait-Level Performance

Figures 5-7 plot QWK trajectories across max_iter
for each trait in the three splits. Organization
consistently scored highest (peak QWK =~ 0.93),
followed by Language Use and Development (=
0.90), with Prompt Task trailing (= 0.86). Even the
most challenging trait, Prompt Task, exceeded the
operational QWK threshold of 0.70 in every
configuration (Figures 5-7). These rankings held
irrespective of pre-training group, confirming a
stable hierarchy of trait difficulty. Macro-average
F1 scores per trait across splits are summarized in
Table 9.

4.4 Precision, Recall, and F1 by Score Point

Figures 11-12 show per-score precision, recall, and
F1 for the 9+10—11 split (and supplementary
figures for the other splits). All groups peak at the
extreme scores (1 & 5) and dip in the mid-range (2—
4) for precision and recall, reflecting both data
imbalance and inherent scoring difficulty. No
group gains a systematic edge from extra pre-
training.

4.5 Hyper-parameter Fine-tuning

Hyper-parameter sweeps confirm that
regularization strength o = 1.0 combined with at
least 500 training iterations produces the most
stable and highest-performing models. Early
stopping at 100 iterations dropped QWK by
roughly 0.005-0.006 (see Tables 2-4), and
increasing beyond 1,000 iterations yielded
diminishing returns. Lower o values (0.01, 0.10)
led to mild over-fitting, indicated by higher training
QWK but lower test QWK and increased variance
across seeds.

4.6 Oversampling Correction

Although  RandomOverSampler  successfully
equalized class frequencies (supplemental bar
plots), oversampling did not materially improve
modeling outcomes. Precision and recall at rare
score points improved slightly in some
configurations, but aggregate QWK and accuracy
remained unchanged or marginally worse when
oversampled sets were used for training.

4.7 Macro-Average F1 Summary

To condense all per-score results, Table 9 reports
the macro-averaged F1 (mean over score points 1—
5) for each trait, group, and leave-one-grade-out
split. Together, Tables 2-9 and Figures 5-12 show
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that a baseline DistilBERT (G1) fine-tuned on two-
grade SWAS essays yields high agreement (QWK
~ 0.89), accuracy (= 0.68), and F: across traits,
without the need for extra pre-training or
oversampling.

Overall, these results demonstrate that a baseline
DistilBERT model—fine-tuned exclusively on
two-grade SWAS data—achieves high agreement
(QWK = 0.89) and accuracy (= 0.68) across grade
splits and analytic traits without requiring
additional pre-training or extensive oversampling
(Tables 2-9, Figures 5-12).

5 Discussion

The stability of model performance across all three
leave-one-grade-out  splits  suggests  that
DistilBERT’s pre-trained language representations
are highly adaptable to essay scoring—even
without extensive prompt-specific data. Training
on any two adjacent grades yielded nearly identical
agreement (QWK = 0.89), exact accuracy (~ 0.68),
and Adjacent Accuracy (> 98 %), confirming that
essays from two grades supply sufficient linguistic
and rhetorical variety to generalize to a held-out
grade.

Perhaps most surprisingly, neither large-scale in-
domain pre-training on ASAP nor “within-task”
pre-training on a SWAS subset produced consistent
gains. As Table 9’s macro-average F1 summary
shows, the baseline model (Group 1) ties or
outperforms both ASAP-pretrained (Group 2) and
SWAS-pretrained (Group 3) variants in every trait
and split. For instance, Prompt Task F: on
9+10—11 is 0.714 for Group 1 versus 0.706
(Group 2) and 0.698 (Group 3). This counter-
intuitive result implies that when the BERT’s
original pretraining corpus is already massive and
representative enough, further pre-training can
introduce stylistic noise or domain drift instead of
strengthening task alignment.

Hyper-parameter analysis reinforces the need for
careful regularization and adequate training steps.
Models with o= 1.0 and at least 500 (ideally 1,000)
iterations consistently achieve the highest and most
reproducible QWK. Lower o values permit mild
over-fitting—evident in higher training QWK but
lower test QWK—while very short runs (100
iterations) leave a nontrivial 0.005-0.006 QWK
gap compared to longer runs.



Trait-level performance reveals a stable hierarchy
of difficulty. Organization is most easily predicted
(peak QWK = 0.93), followed by Development and
Language Use (= 0.90), with Prompt Task trailing
(= 0.86). Crucially, even the most challenging trait
exceeds the operational QWK threshold of 0.70,
indicating that all four analytic dimensions can be
scored with confidence.

Finally, oversampling to correct class imbalance
offered minimal benefit. Although frequency
distributions were equalized, aggregate QWK,
accuracy, and micro-F: remained flat or dipped
slightly, suggesting that model capacity and the
breadth of cross-grade coverage outweigh precise
score-level balance when fine-tuning transformer
embeddings.

Taken together, these findings validate a
lightweight, prompt-agnostic AES pipeline: fine-
tune a standard DistilBERT checkpoint on a
representative two-grade corpus with o = 1.0 and
500-1,000 iterations, and skip costly intermediate
pre-training or complex oversampling. This
approach simplifies system development, reduces
computational overhead, and still delivers robust,
reproducible scoring across multiple writing traits
and grade levels.

6 Conclusion

This study has demonstrated that prompt-generic
automated essay scoring (AES) can be achieved
efficiently by fine-tuning DistilBERT on
representative two-grade essay sets, without the
need for extensive prompt-specific pre-training or
elaborate data balancing. Across three leave-one-
grade-out splits and nine hyper-parameter
configurations, baseline DistilBERT models
consistently achieved strong agreement (QWK =
0.89), exact accuracy (~0.68), and adjacent

accuracy (> 98%). These results challenge
conventional ~ assumptions,  showing that
DistiIBERT’s  general-domain  representations

suffice for robust scoring when paired with
straightforward fine-tuning.

A particularly striking finding was the observation
of “knowledge collapse”: applying supplementary
pre-training  settings to overwrite existing
parameters paradoxically diminished downstream
scoring performance. This counter-intuitive
effect—where newly acquired “knowledge”
impaired rather than enhanced task ability—
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underscores the critical need to avoid equating
machine learning processes with human learning,
and suggests that care must be taken to preserve
previously learned representations during transfer
learning.

From a practical standpoint, clear hyper-parameter
guidelines have emerged: a regularization strength
of a = 1.0 and a training horizon of 500-1 000
iterations reliably maximize performance and
model stability. This simple recipe offers a low-
overhead path to deploying AES in educational
contexts, minimizing both computational cost and
engineering complexity.

Nonetheless, certain limitations temper the
generalizability of these conclusions. The within-
task pre-training set was limited to 500 essays
covering a single prompt per grade, which may
have constrained the potential benefits of task-
specific  pre-training.  Exclusion of 1203
handwritten  essays—due to transcription
challenges—introduced moderate  score-level
imbalance and restricted the training corpus’s
representativeness. Finally, employing a single
scoring rubric across all prompts may have
simplified the generalization challenge.

To address these gaps, future work should explore
larger, more diverse essay collections spanning
multiple prompts, genres, and rubrics to assess how
prompt variety and score distribution affect
adaptability. Alternative machine-learning
frameworks beyond ordinal logistic regression—
such as ensemble methods or neural classifiers—
should be evaluated for further performance gains.
It will also be important to develop transfer-
learning strategies that explicitly guard against
“knowledge collapse,”  preserving core
representations while incorporating new domain
information. Integrating advanced handwriting
recognition technologies remains essential for
inclusive AES that covers all response formats.

In closing, this research provides compelling
evidence that a lightly fine-tuned DistilBERT
model can serve as a scalable, reliable AES engine
for formative writing practice, dramatically
reducing the data and computational burdens. By
recommending concrete hyper-parameter settings
and highlighting the nuanced effects of further pre-
training, this work lays a pragmatic foundation for
the next generation of accessible, robust AES tools
in K-12 education.



A Appendices

ASAP Dataset Topics
Prompt 1 The effects computers have on people
Prompt 2 Censorship in the libraries
Respond to an extract about how the features of a setting
Prompt 3 .
affected a cyclist
Prompt 4 Explain why an extract from Winter Hibiscus by Minfong
p Ho was concluded in the way the author did
Prompt 5 Describe the mood created by the author in an extract from
p Narciso Rodriguez by Narciso Rodriguez
The difficulties faced by the builders of the Empire State
Prompt 6 Building in allowing
dirigibles to dock there
Prompt 7 Write a story about patience
Prompt 8 The benefits of laughter

Table 1: Topics of Eight Prompts in ASAP Dataset

Fine-tuning Parameter:

Alpha is set to be the same across three groups
No. of essays for training=2251

No. of essays for test=1046

Group I Group II Group III
maxiter=1000  (No Further (Further Pre-training (Further Pre-training
Pre-training) With ASAP Essays) With SWAS Essays)
Apha Tt it Sewing  inng  tating  dmining esting.

Language Use 0.940 0.887 0.940 0.876 0.943 0.922
1.0 Organization 0.938 0.851 0.944 0.920 0.946 0.908
Prompt Task 0.939 0.914 0.940 0.922 0.942 0.917
Development 0.935 0.897 0.938 0.925 0.940 0.903
Language Use 0.944 0.873 0.941 0.897 0.938 0.902
0.1 Organization 0.945 0.930 0.942 0.928 0.944 0.893
Prompt Task 0.937 0.895 0.930 0.896 0.940 0.847
Development 0.938 0.884 0.939 0.923 0.938 0.876
Language Use 0.938 0.851 0.934 0.895 0.931 0.886
0.01 Organization 0.940 0.915 0.935 0.912 0.936 0.884
Prompt Task 0.931 0.863 0.930 0.896 0.925 0.881
Development 0.933 0.867 0.933 0.904 0.931 0.839

Table 2: Mean QWK Results vs. Alpha for Train on Grade 9&10 and Test on Grade 11
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Fine-tuning Hyperparameter:

Alpha is set to be the same across three groups
No. of essays for training=2170
No. of essays for test=1127

Group | Group 11 Group III
maxiter=500 (No Further (Further Pre-training (Further Pre-training
Pre-training) with ASAP Essays) with SWAS Essays)
Alpha Trait QWK n QWK n QWK n QWK n QWK n QWK n
training testing training testing training testing
Language Use 0.935 0.922 0.938 0.918 0.941 0.871
| Organization 0.939 0.935 0.944 0.879 0.941 0.853
Prompt Task 0.941 0.921 0.946 0.911 0.948 0.871
Development 0.934 0.926 0.940 0.903 0.937 0.871
Language Use 0.939 0.914 0.936 0.909 0.937 0.882
0.1 Organization 0.941 0.932 0.944 0.827 0.941 0.865
’ Prompt Task 0.944 0.919 0.945 0.899 0.945 0.879
Development 0.936 0.923 0.941 0.895 0.936 0.893
Language Use 0.933 0.890 0.931 0.886 0.928 0.867
0.01 Organization 0.938 0.924 0.938 0.789 0.935 0.855
' Prompt Task 0.940 0.907 0.939 0.887 0.938 0.858
Development 0.935 0.902 0.936 0.869 0.929 0.877
Table 3: Mean QWK Results vs. Alpha for Train on Grade 9&11 and Test on Grade 10
Fine-tuning Hyperparameter:
Alpha is set to be the same across three groups
No. of essays for training=2173
No. of essays for test=1124
Group 1 Group 11 Group III
maxiter=1000 (No Further (Further Pre-training (Further Pre-training
Pre-training) With ASAP Essays) With SWAS Essays)
Apw Tar QWK QWK QWK QWK QWKW QWKin
training testing training testing training testing
Language Use 0.946 0.911 0.948 0.913 0.949 0.908
10 Organization 0.949 0.922 0.948 0.927 0.949 0.925
' Prompt Task 0.936 0.890 0.940 0.891 0.939 0.892
Development 0.938 0.903 0.941 0.917 0.940 0.888
Language Use 0.949 0.909 0.947 0.901 0.946 0.912
0.1 Organization 0.949 0.920 0.945 0.914 0.946 0.900
' Prompt Task 0.936 0.824 0.938 0.858 0.933 0.854
Development 0.941 0.900 0.940 0.902 0.938 0.870
Language Use 0.945 0.894 0.941 0.888 0.939 0.874
0.01 Organization 0.944 0.910 0.938 0.881 0.936 0.872
' Prompt Task 0.926 0.815 0.928 0.852 0.924 0.840
Development 0.936 0.872 0.937 0.881 0.927 0.834

Table 4: Mean QWK Results vs. Alpha for Train on Grade 10 & 11 and Test on Grade 9
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Fine-tuning Hyperparameter:
Alpha is set to be the same across three groups

No. of essays for training=2251

No. of essays for test=1046

Group | Group 11 Group III
maxiter=1000 (No Further (Further Pre-training (Further Pre-training
Pre-training) With ASAP Essays) With SWAS Essays)
Alpha Trait .Accqrgcy Accurgcy 'Accu'rapy Accurgcy 'Accu'ra‘cy Accurgey
in training _ intesting  in training  intesting  in training  in testing
Language Use 0.793 0.722 0.792 0.575 0.799 0.760
| Organization 0.791 0.760 0.795 0.697 0.795 0.722
Prompt Task 0.766 0.718 0.769 0.699 0.776 0.718
Development 0.762 0.722 0.773 0.738 0.775 0.722
Language Use 0.805 0.680 0.798 0.667 0.783 0.702
o1 Organization 0.793 0.702 0.789 0.741 0.789 0.680
Prompt Task 0.761 0.682 0.761 0.701 0.764 0.682
Development 0.774 0.675 0.776 0.746 0.771 0.675
Language Use 0.786 0.658 0.773 0.681 0.755 0.663
Organization 0.779 0.663 0.763 0.707 0.765 0.658
001 Prompt Task 0.744 0.627 0.731 0.659 0.725 0.627
Development 0.762 0.633 0.765 0.705 0.758 0.633

Table 5: Mean Accuracy Results vs. Alpha Configurations for Train on Grade 9&10 and Test on Grade 11

Fine-tuning Hyperparameter:
Alpha is set to be the same across three groups
No. of essays for training=2170
No. of essays for test=1127

Group | Group 11 Group I1I
maxiter=1000 (No Further (Further Pre-training (Further Pre-training
Pre-training) With ASAP Essays) With SWAS Essays)
Alpha Trait .Accqrqcy Accurgcy .Accqral.cy Accur?:lcy .Accqrqcy Accurgcy
in training _ intesting  in training  intesting  in training in testing
Language Use 0.781 0.762 0.789 0.752 0.799 0.633
10 Organization 0.793 0.760 0.805 0.627 0.795 0.595
Prompt Task 0.781 0.704 0.796 0.684 0.803 0.603
Development 0.769 0.736 0.788 0.697 0.778 0.643
Language Use 0.792 0.738 0.782 0.725 0.784 0.672
0.1 Organization 0.794 0.755 0.802 0.547 0.791 0.621
Prompt Task 0.790 0.702 0.794 0.659 0.791 0.630
Development 0.774 0.732 0.794 0.683 0.781 0.684
Language Use 0.773 0.662 0.767 0.670 0.754 0.650
0.01 Organization 0.785 0.732 0.786 0.517 0.775 0.606
Prompt Task 0.776 0.674 0.771 0.637 0.791 0.630
Development 0.783 0.675 0.788 0.640 0.778 0.659

Table 6: Mean Accuracy Results vs. Alpha Configurations for Train on Grade 9&11 and Test on Grade 10
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Fine-tuning Hyperparameter:

Alpha is set to be the same across three groups
No. of essays for training=2173

No. of essays for test=1124

Group | Group 11 Group 11
maxiter=1000 (No Further (Further Pre-training (Further Pre-training
Pre-training) With ASAP Essays) With SWAS Essays)
. Accuracy  Accuracy  Accuracy  Accuracy  Accuracy Accuracy
Alpha Trait . . . . | . . . . . . .
in training  intesting  in training  intesting  in training in testing
Language Use 0.806 0.734 0.808 0.740 0.813 0.728
L0 Organization 0.800 0.739 0.794 0.759 0.801 0.750
- Prompt Task 0.760 0.698 0.768 0.673 0.768 0.691
Development 0.767 0.678 0.776 0.740 0.773 0.631
Language Use 0.814 0.726 0.804 0.722 0.801 0.681
0.1 Organization 0.797 0.736 0.783 0.735 0.791 0.699
' Prompt Task 0.758 0.576 0.760 0.612 0.751 0.627
Development 0.776 0.687 0.770 0.725 0.765 0.609
Language Use 0.797 0.677 0.785 0.686 0.775 0.611
0.01 Organization 0.797 0.736 0.756 0.669 0.760 0.588
) Prompt Task 0.729 0.570 0.730 0.618 0.718 0.594
Development 0.767 0.625 0.761 0.701 0.739 0.563

Table 7: Mean Accuracy Results vs. Alpha Configurations for Train on Grade 10&11 and Test on Grade 9

Train — Test Mean QWK Mean Accuracy

G9 & G10 — Gl11 0.893 0.687
GlI0& GI1 —-G9  0.889 0.679
G9 & Gl1l - G10  0.892 0.673

Table 8: Average Performance by Leave-One-
Grade-Out Split

Trait Model Group 9+10 — 11 9+11 —> 10 10+11 -9
Baseline (G1) 0.714 0.714 0.645
Prompt Task ASAP-pretrained (G2) 0.706 0.702 0.630
SWAS-pretrained (G3) 0.698 0.710 0.626
Baseline (G1) 0.753 0.741 0.648
Organization ASAP-pretrained (G2) 0.742 0.725 0.622
SWAS-pretrained (G3) 0.741 0.730 0.642
Baseline (G1) 0.714 0.722 0.705
Development ~ ASAP-pretrained (G2) 0.704 0.710 0.695
SWAS-pretrained (G3) 0.698 0.716 0.686
Baseline (G1) 0.767 0.773 0.762
Language Use ASAP-pretrained (G2) 0.758 0.764 0.752
SWAS-pretrained (G3) 0.753 0.760 0.740

Table 9: Macro-Average F1 by Trait, Model Group, and Leave-One-Grade-Out Split
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Figure 1: Research Design of the Study
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Figure 2: Grade Level Distribution of Available SWAS Essays
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Figure 3: Accuracy in Further Pre-training with ASAP Essays
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Figure 4: Accuracy vs. Epoch in Further Pre-training with 500 SWAS Essays
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Comparisions of QWK Performance vs. Maximum Iterations (Train on G9 & G10)

QWK vs. Iteration
(Group 1: No Pretraining)

QWK vs. Iteration
(Group 2: ASAP)

QWK vs. Iteration
(Group 3: SWAS)
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Figure 5: Comparisons of Mean QWK vs. Maxiter in 4 Trait Scores for Train on Grade 9&10 and Test on Grade 11
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Comparisions of QWK Performance vs.
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Figure 6: Comparisons of Mean QWK vs. Maxiter in 4 Trait Scores for Train on Grade 9&11 and Test on Grade 10

71




Comparisions of QWK Performance vs. Maximum Iterations (Train
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Figure 7: Comparisons of Mean QWK vs. Maxiter in 4 Trait Scores for Train on Grade 10&11 and Test on Grade 9
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Comparisions of Accuracy Performance vs. Maximum Iterations (Train on G9 & G10)

Accuracy vs. Iteration
(Group 1: No Pretraining)

Accuracy vs. Iteration
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Figure 8: Comparisons of Mean Accuracy Performance vs. Maxiter in 3 Groups for Train on Grade 9&10 and Test on

Grade 11
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Comparisions of Accuracy Performance vs. Maximum Iterations (Train on G9 & G11)

Accuracy vs. Iteration
(Group 1: No Pretraining)

Accuracy vs. Iteration
(Group 2: ASAP)

Accuracy vs. Iteration
(Group 3: SWAS)
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Figure 9: Comparisons of Mean Accuracy Performance vs. Maxiter in 3 Groups for Train on Grade 9&11 and Test

on Grade 10
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Comparisions of Accuracy Performance vs. Maximum lIterations (Train on G10 & G11)

Accuracy vs. Iteration Accuracy vs. Iteration Accuracy vs. Iteration
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Figure 10: Comparisons of Mean Accuracy Performance vs. Maxiter in 3 Groups for Train on Grade 10&11 and Test on
Grade 9
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Figure 11: Mean F1-scores in All Score Levels of the 3 Groups across Trait Scores
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Group 1: None: Precision vs. Score Point by Trait (Train9&10)

Group 3: SWAS: Precision vs. Score Point by Trait (Train9&10)
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