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Abstract

Developing automated essay scoring (AES)
systems typically demands extensive human
annotation, incurring significant costs and
requiring considerable time. Active learn-
ing (AL) methods aim to alleviate this chal-
lenge by strategically selecting the most in-
formative essays for scoring, thereby poten-
tially reducing annotation requirements with-
out compromising model accuracy. This study
systematically evaluates four prominent AL
strategies—uncertainty sampling, BatchBALD,
BADGE, and a novel GenAI-based uncertainty
approach—against a random sampling base-
line, using DeBERTa-based regression models
across multiple assessment prompts exhibiting
varying degrees of human scorer agreement.
Contrary to initial expectations, we found that
AL methods provided modest but meaningful
improvements only for prompts characterized
by poor scorer reliability (<60% agreement per
score point). Notably, extensive hyperparam-
eter optimization alone substantially reduced
the annotation budget required to achieve near-
optimal scoring performance, even with ran-
dom sampling. Our findings underscore that
while targeted AL methods can be beneficial
in contexts of low scorer reliability, rigorous
hyperparameter tuning remains a foundational
and highly effective strategy for minimizing
annotation costs in AES system development.

1 Introduction

Automated Essay Scoring (AES) systems have
become integral to educational assessments by
providing efficient, reliable, and scalable evalua-
tion of student writing. State-of-the-art AES ap-
proaches typically utilize medium- to large-size pre-
trained transformer-based language models such
as BERT (Devlin et al., 2019), ELECTRA (Clark
et al., 2020), and DeBERTa (He et al., 2021), fine-
tuned on datasets of human-scored essays to pro-
duce scoring models aligned closely with human

judgment. The development of robust AES mod-
els, however, usually requires extensive annotation
efforts—often involving thousands of essays per
prompt—posing significant practical limitations in
terms of cost, time, and resources.

Active Learning (AL) mitigates these annotation
burdens by scoring only the most informative es-
says. Although AL is well studied in NLP (Zhang
et al., 2023; Li et al., 2024), few works test multiple
strategies in AES or examine how scorer agreement
moderates AL gains (Firoozi et al., 2023; Hellman
et al., 2019). We compare four AL methods with a
random sampling baseline across prompts of differ-
ing reliability.

Addressing this critical gap, our study evalu-
ates four prominent AL strategies—uncertainty
sampling, BatchBALD (Bayesian Active Learn-
ing by Disagreement), BADGE (Batch Active
Learning by Diverse Gradient Embeddings), and
a novel GenAI-based uncertainty sampling ap-
proach—across multiple writing and reading as-
sessment prompts. These AL methods are bench-
marked against random sampling as a baseline, ex-
amining their efficacy at annotation budgets rang-
ing from 32 to 1,024 essays.

1.1 Research Questions

This study specifically investigates three research
questions:

1. Which AL strategies yield the highest scoring
agreement (measured via Quadratic Weighted
Kappa [QWK]) with the minimal number of
human-scored training examples, particularly
across varying degrees of human inter-rater
agreement?

2. Can a novel GenAI-guided AL approach effec-
tively identify especially challenging-to-score
essays, thereby enhancing the efficiency and
quality of AES model training?
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3. To what extent does comprehensive hyperpa-
rameter optimization alone (even with random
sampling) significantly reduce the number of
training essays required to achieve acceptable
scoring accuracy across various prompts?

1.2 Contributions
Our contributions are:

• A four-way comparison of AL strategies ver-
sus a random baseline on prompts spanning
different human scorer agreement;

• A novel GenAI sampler for small budgets;

• Evidence that hyperparameter tuning alone
rivals AL when scorer reliability is moder-
ate–high;

• Practical guidance for where AL is (and is not)
worth the cost.

These findings hold significant implications for
educational assessment organizations aiming to de-
velop AES systems more efficiently. By under-
standing the nuanced contexts in which AL meth-
ods excel and the powerful impact of systematic
hyperparameter tuning, stakeholders can better al-
locate annotation resources, enabling broader and
more cost-effective application of automated scor-
ing systems across diverse educational contexts.

2 Related Work

2.1 Active Learning in NLP
Active Learning (AL) reduces annotation costs
by selecting the most informative unlabeled sam-
ples for labeling, enhancing model performance
with fewer annotations (Settles, 2009; Zhang et al.,
2023; Li et al., 2024). In NLP, prominent AL strate-
gies include uncertainty-based, Bayesian, diversity-
based, and hybrid approaches, which we adapt for
Automated Essay Scoring (AES).

2.1.1 Uncertainty Sampling
Uncertainty-based sampling selects samples where
models exhibit the highest uncertainty. Lewis and
Gale (1994) introduced entropy-based selection,
while Gal et al. (2017) popularized Monte Carlo
dropout to estimate uncertainty in deep learning
models. Margin-based methods, recently high-
lighted by Doucet et al. (2024), select samples
with minimal differences between top class proba-
bilities and have frequently outperformed random
sampling in NLP tasks.

2.1.2 Bayesian Active Learning
Bayesian Active Learning (BAL) focuses explicitly
on maximizing information gain regarding model
parameters (Siddhant and Lipton, 2018). Bayesian
Active Learning by Disagreement (BALD) se-
lects samples based on uncertainty across posterior
predictions (Houlsby et al., 2011). BatchBALD
(Kirsch et al., 2019) extends this to batch selection,
reducing redundancy by jointly evaluating batch
informativeness at increased computational cost.

2.1.3 Diversity-Based and Hybrid Sampling
Diversity-based methods select samples that rep-
resent diverse regions of input space, ensuring ro-
bust generalization. Hybrid strategies like BADGE
(Ash et al., 2020) combine uncertainty and diver-
sity by clustering gradient embeddings to identify
diverse yet informative samples, demonstrating
strong performance in various classification tasks.

2.1.4 LLM-Guided Active Learning
Emerging approaches integrate Large Language
Models (LLMs) into AL for nuanced semantic eval-
uation of samples. Methods such as ActiveLLM
(Bayer and Reuter, 2024), ActivePrune (Azeemi
et al., 2024), SelectLLM (Parkar et al., 2024), and
ranking-based approaches (Jeong et al., 2025) have
shown promise in identifying linguistically com-
plex or ambiguous samples relevant for AES.

2.2 Active Learning for Automated Scoring

Research explicitly addressing AL in automated
scoring contexts remains sparse. Horbach and
Palmer (2016) compared AL strategies on short-
answer scoring, noting significant variability across
prompts. Hellman et al. (2019) demonstrated batch-
mode AL effectiveness in instructor-driven con-
texts. Firoozi et al. (2023) highlighted uncertainty
sampling’s efficiency in AES, although their work
focused exclusively on shallow models without ex-
ploring transformer-based methods or comprehen-
sive comparisons.

2.2.1 Our Study in Context
Existing AES-focused AL studies have not system-
atically evaluated how scorer reliability impacts
AL strategy efficacy nor have they fully explored
the independent impact of extensive hyperparam-
eter optimization. Our study addresses these gaps
by rigorously comparing multiple AL strategies,
explicitly considering varying scorer reliability lev-
els, and demonstrating the substantial efficiency
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gains achievable through hyperparameter optimiza-
tion alone. These insights inform best practices for
practical AES deployment.

3 Methods

3.1 Problem Formulation
Given an unlabeled pool U and budget B, we run
four AL rounds. Each round (i) trains on current
labels, (ii) selects ⌊B/4⌋ essays via an acquisi-
tion function, (iii) obtains scores, and (iv) updates
the model. A final training pass with tuned hyper-
parameters follows. Performance is reported on a
held-out validation set.

3.2 Model Architecture
We fine-tune DeBERTaV3-base (He et al., 2021) as
a regression model by adding a single linear head
on the [CLS] embedding and optimizing Mean-
Squared-Error loss weighted by inverse score fre-
quency. Essays are tokenized with the DeBER-
TaV2 tokenizer (512-token limit) and trained using
AdamW with linear warm-up and gradient clip-
ping.

3.3 Active Learning Strategies
We evaluate four AL strategies:

Uncertainty Sampling: Selects essays with
highest predictive entropy based on Gaussian-
derived probability distributions from regression
outputs.

BatchBALD (Kirsch et al., 2019): Maximizes
batch mutual information using Monte Carlo
dropout, first filtering the unlabeled pool by predic-
tive entropy to enhance computational efficiency.

BADGE (Ash et al., 2020): Combines uncer-
tainty and diversity by clustering gradient embed-
dings derived from a temporary classification head
on the model encoder.

GenAI-Uncertainty Sampling (novel ap-
proach): Uses large language models (LLMs) to
identify challenging essays (rated 1–5 on scoring
difficulty). Essays rated highly challenging (5) are
prioritized, selecting diverse examples within diffi-
culty strata using k-means clustering.

3.4 Multi-Round Active Learning Framework
Our AL approach includes:

• Initial seed of 16 essays.

• Four AL rounds (one for GenAI), evenly di-
viding annotation budgets.

• Each round selects essays for scoring, expands
the labeled set, and retrains the model.

3.5 Hyperparameter Optimization

Given its significant impact, we rigorously opti-
mize hyperparameters using Optuna (Akiba et al.,
2019):

Search Space:

• Learning rate: [1e-5 to 2e-5]

• Weight decay: [1e-3 to 1e-1]

• Batch size: [4, 8]

Optimization Approach:

1. Discovery Phase: Perform 40-trial hyperpa-
rameter optimization using random sampling
at each annotation budget.

2. Evaluation Phase: Evaluate the top 16 dis-
covered hyperparameter configurations across
all AL strategies, limiting computationally in-
tensive strategies (BatchBALD, BADGE) to
budgets <= 384.

Final models train for up to 30 epochs with early
stopping (patience=5) based on validation loss.

4 Experiments

4.1 Data Sources

Operational corpus. Our experiments utilize op-
erational student response data from a large-scale
summative K–12 assessment administered across
multiple U.S. states. The dataset comprises both
short constructed-response reading items and full-
length essay prompts, capturing diverse aspects of
student writing performance.

Prompt Selection Criteria. To establish a bal-
anced and robust evaluation framework, prompts
were selected based on sufficient availability of
double-scored responses. This resulted in a set of
eight suitable prompts: five reading items and three
writing prompts.

Reading Tasks. The reading task subset consists
of three Grade-8 items (R-8A, R-8B, R-8C) and
two Grade-10 items (R-10A, R-10B). Reading re-
sponses were holistically scored on a three-point
ordinal scale (0–2) or a five-point ordinal scale
(0-4), each assessing a single construct.
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Task Grade Genre / Trait Scale N

R-8A 8 Reading 0–2 5,305
R-8B 8 Reading 0–4 4,575
R-8C 8 Reading 0–2 3,911
R-10A 10 Reading 0–2 5,931
R-10B 10 Reading 0–4 4,987
W-5 5 Argumentative, Content 0–3 11,088
W-8 8 Informative, Content 0–3 10,754
W-11 11 Narrative, Content 0–3 10,416

Table 1: Descriptive statistics for the experimental corpus.

Writing Tasks. The writing tasks cover Grades 5
through 11, balanced across genres: W-5 (argumen-
tative), W-8 (informative/explanatory), and W-11
(narrative). Although each essay includes multiple
trait scores, we focus specifically on the Content
trait, given its strong alignment with textual evi-
dence and minimal confounding by surface-level
mechanical features. Content scores range from 0
to 3.

Sample Sizes. Usable responses per task range
from 3,911 to 11,088. Table 1 summarizes detailed
counts.

Train–Validation Protocol. For each
prompt–trait pair, we hold out a stratified
sample of 500 responses as a validation set,
preserving the marginal score distribution. This
validation set is used exclusively for model check-
point selection and hyperparameter optimization.
Consequently, although it remains distinct from
the training data used directly for gradient updates,
it is not strictly unseen. This methodological
choice may slightly overestimate absolute model
performance but does not affect our comparative
analysis of active learning strategies.

4.2 Evaluation Metrics

Quadratic Weighted Kappa (QWK): Our pri-
mary evaluation criterion measures the degree of
agreement between model predictions and human
raters and accounts explicitly for varying degrees
of scoring discrepancy. We calculate QWK using
Cohen’s quadratic weighted kappa implementation
from scikit-learn.

Metrics are calculated after round-
ing and clipping predictions: ŷ =
clip(round(fθ(x)), ymin, ymax), where ymin

and ymax represent score boundaries.

Model selection during training employs early
stopping (patience=5) based on validation loss,
with the best-performing model checkpoint saved
according to QWK scores. Hyperparameter opti-
mization also prioritizes QWK.

4.3 Implementation Details
Models are trained in PyTorch with Hugging Face
Transformers on NVIDIA A10 GPUs. We use
AdamW with 10% warm-up, gradient clipping
(1.0), mixed precision, and smoothed inverse-
frequency class weights (70% empirical frequency
+ 30% uniform distribution). Hyperparameter
searches run in parallel round-robin across GPUs.
For efficiency we drop BatchBALD and BADGE
when budgets exceed 384 essays and subsample
500–2,560 essays for GenAI.

Strategy-specific details:

• BatchBALD: 10 Monte Carlo dropout passes
with initial entropy-based filtering (top 10%,
minimum 2,000 essays).

• BADGE: Temporary classification head de-
rived from the regression model to compute
gradient embeddings.

All experiments utilize fixed random seeds for re-
producibility across NumPy, PyTorch, and strategy-
specific operations.
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Sample Size Random Uncertainty BatchBALD GenAI BADGE

32 0.79 0.79 0.79 0.75 0.78
64 0.81 0.80 0.78 0.77 0.77
96 0.81 0.81 0.78 0.81 0.80
128 0.80 0.81 0.79 0.80 0.81
192 0.82 0.80 0.80 0.78 0.82
256 0.83 0.82 0.80 0.82 0.81
384 0.83 0.82 0.81 0.80 0.82
1024 0.84 – – – –

Table 2: QWK results for prompts with good scorer agreement. Bold indicates the highest score(s) per row.

Sample Size Random Uncertainty BatchBALD GenAI BADGE

32 0.77 0.70 0.74 0.75 0.73
64 0.79 0.73 0.77 0.71 0.77
96 0.79 0.76 0.75 0.76 0.75
128 0.80 0.76 0.78 0.70 0.78
192 0.81 0.75 0.77 0.78 0.76
256 0.82 0.78 0.79 0.79 0.78
384 0.81 0.76 0.80 0.79 0.80
1024 0.82 – – – –

Table 3: QWK results for prompts with acceptable scorer agreement. Bold indicates the highest score(s) per row.

Sample Size Random Uncertainty BatchBALD GenAI BADGE

32 0.69 0.67 0.66 0.70 0.65
64 0.67 0.71 0.69 0.73 0.69
96 0.71 0.66 0.70 0.72 0.71
128 0.71 0.70 0.71 0.72 0.73
192 0.76 0.71 0.75 0.73 0.73
256 0.73 0.71 0.74 0.73 0.74
384 0.75 0.74 0.75 0.74 0.75
1024 0.77 – – – –

Table 4: QWK results for prompts with poor scorer agreement. Bold indicates the highest score(s) per row. Dashes
indicate unavailable or omitted results.

5 Results

5.1 Performance of Active Learning
Strategies by Scoring Quality

Tables 2, 3, and 4 present the Quadratic Weighted
Kappa (QWK) performance of Active Learning
(AL) strategies across three contexts of scorer re-
liability: good, acceptable, and poor. These tables
explicitly compare random sampling against four
AL methods (Uncertainty, BatchBALD, GenAI,
and BADGE).

Table 2 highlights the scenario of good scorer
agreement (approximately 80% agreement). Here,
AL methods exhibit little advantage over random
sampling. Even at small annotation budgets (e.g.,
n = 32 or 64), random sampling matches or sur-
passes AL approaches. For example, at n = 256,
random sampling (QWK=0.83), uncertainty sam-
pling (0.82), and GenAI (0.82) demonstrate similar
effectiveness, but no AL method exceeds random

sampling substantially.
Table 3 shows analogous results for accept-

able scorer agreement contexts (about 60% agree-
ment). Again, random sampling typically achieves
a slightly higher or equal QWK compared to AL
strategies across most sample sizes, though the
GenAI method achieves competitive performance
at several points. Notably, at n = 256 annotations,
random sampling still yields the top performance
(QWK=0.82), followed closely by BatchBALD,
GenAI, and BADGE strategies, each achieving
scores of at least 0.78.

In contrast, for prompts with poor scorer agree-
ment (<60%), AL methods show clearer advan-
tages over random sampling (Table 4). Partic-
ularly at lower annotation budgets, uncertainty-
based strategies, including the GenAI and BADGE
methods, consistently outperform random selection.
For instance, at n = 64, the GenAI method (0.73)
significantly surpasses random sampling (0.67).
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Training Sample Size QWK (Random Sampling)

32 0.77
64 0.78
96 0.78
128 0.80
192 0.81
256 0.82
384 0.82
1024 0.82

Table 5: Impact of 40-trial hyperparameter optimization
on QWK using random sampling across sample sizes
for all prompts.

Similarly, uncertainty-based AL strategies continue
to show small but consistent advantages at larger
annotation sizes (e.g., n = 128 through n = 384),
reflecting their capacity to effectively select in-
formative and potentially challenging essays for
model training.

Finally, in table 5 we explicitly examine how
extensive hyperparameter optimization alone influ-
ences AES performance (Table 5). With careful
tuning, random sampling swiftly achieves strong
performance and approaches saturation quickly
(QWK=0.81 at n = 192 annotations), demonstrat-
ing the significant impact of optimization with-
out specialized AL. Indeed, this tuning reduces
required annotation counts substantially, effectively
narrowing the advantage that sophisticated AL
methods could achieve in many practical scoring
scenarios.

6 Discussion

6.1 Effectiveness of Active Learning for AES
Our findings indicate that active learning (AL)
methods provide modest yet meaningful benefits
specifically for prompts characterized by low scorer
agreement (<60% agreement per score point). In
these challenging scoring contexts, uncertainty-
based methods, including BatchBALD and our
novel GenAI-based approach, consistently yielded
slight improvements over random sampling at
smaller annotation budgets. This aligns with the
intuition that uncertain, borderline scoring cases
are particularly informative for model calibration,
and extends prior findings by Firoozi et al. (2023),
emphasizing AL’s specific utility in challenging
scoring scenarios.

However, contrary to initial expectations, AL
methods provided no substantial advantage over
random sampling in contexts with moderate to high
scorer reliability (approximately 60–80% agree-

ment). This lack of improvement can largely be
attributed to our extensive hyperparameter opti-
mization process, which significantly boosted the
performance of random sampling, leaving limited
room for AL methods to offer additional benefits.

Additionally, our GenAI-based approach demon-
strated encouraging results in identifying challeng-
ing essays early in the annotation process, high-
lighting the potential of leveraging large language
models to enhance targeted sampling. Although the
overall improvement was modest, the interpretabil-
ity and targeted nature of the GenAI sampling sug-
gest potential future avenues for improving essay
scoring models, especially in highly ambiguous
scoring contexts.

6.2 Impact of Hyperparameter Optimization
A critical secondary finding of our study is the
pronounced effectiveness of extensive hyperparam-
eter optimization—even when employing random
sampling. Our rigorous hyperparameter tuning ap-
proach (40 trials using Optuna) substantially re-
duced the annotation budget required to achieve
robust model performance. This suggests that, in
many practical AES contexts, careful model opti-
mization can significantly improve annotation effi-
ciency, often exceeding the marginal gains offered
by more complex sampling strategies.

6.3 Practical Implications
The findings reported here offer important insights
for the practical development and operational man-
agement of AES systems:

• When to use active learning (AL): Our find-
ings suggest that AL methods demonstrate
the strongest benefits in low-reliability scor-
ing contexts. When scoring reliability is low
and essays are challenging to rate, AL tech-
niques—such as uncertainty-based sampling
and GenAI methods—systematically identify
the most informative instances, thus effec-
tively improving model quality and calibra-
tion.

• Tune first, apply AL second: Extensive
hyperparameter optimization alone produces
highly competitive AES models, especially
for scoring contexts with scorer reliability at
or above 60%. Model builders should, there-
fore, devote significant attention initially to
optimizing hyperparameters before turning to
AL methods.
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We thus propose the following operational frame-
work for AES implementations based on these in-
sights:

1. Begin with a modest-sized randomly sampled
initial set (e.g., 16–32 essays), ensuring suffi-
cient prompt coverage.

2. Immediately prioritize extensive hyperpa-
rameter optimization early in the model-
development process.

3. After initial tuning, selectively apply
uncertainty-based AL (particularly GenAI-
driven sampling) as annotation proceeds,
especially in cases of lower scoring reliability.

4. As more responses are collected, continuously
revisit and adjust hyperparameters, since opti-
mal settings may evolve with increasing data.

6.4 Limitations and Future Work
Our study offers valuable insights but has several
limitations indicating promising directions for fu-
ture research:

• Prompt and Context Diversity: Our analysis
was limited to eight prompts from a single as-
sessment context. Future work should explore
broader prompt variability, scoring traits, and
educational contexts.

• Human-in-the-loop Validation: Real-world
AL implementations involve iterative human
scoring. Future research should directly as-
sess AL’s practical implications within live
annotation workflows.

• Hyperparameter Exploration: This work
has highlighted the importance of hyperparam-
eter optimization in model performance. Fu-
ture experiments will consider an even wider
hyperparameter space and optimization tech-
niques that would be robust in operational con-
texts.

• Fairness Considerations: Further research
could investigate how AL and targeted sam-
pling methods, including GenAI, influence
scoring fairness and demographic represen-
tation, potentially integrating fairness-aware
constraints or regularizations.

• Semi-Supervised Approaches: Leveraging
unlabeled data via semi-supervised or self-
supervised learning methods (e.g., consistency

regularization, pseudo-labeling, contrastive
learning) may further enhance AES efficiency
and warrants exploration.

Overall, our results highlight both the nuanced
effectiveness of active learning methods under spe-
cific conditions and the crucial foundational role
of rigorous hyperparameter optimization. These
insights provide clear guidance for enhancing an-
notation efficiency and scoring reliability within
AES deployments.

7 Conclusion

This study highlights two key findings for auto-
mated essay scoring (AES): First, active learning
(AL) offers modest improvements over random
sampling primarily in low-reliability scoring con-
texts. In prompts with higher scorer agreement,
random sampling—when paired with wide hyper-
parameter sweeps—achieves near-optimal perfor-
mance, often matching or exceeding AL strategies.
Second, our novel GenAI-based sampling approach
shows promise in identifying challenging essays
early, but its benefits diminish as budgets increase.

These results suggest that rigorous hyperparam-
eter optimization may be more impactful than AL
in many AES scenarios. For practical deployment,
AL may still provide value in identifying difficult
examples and supporting scorer calibration in am-
biguous contexts. Future research should explore
how AL interacts with fairness, human-in-the-loop
scoring, and hybrid semi-supervised learning strate-
gies to further improve scoring efficiency and trans-
parency.
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