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Abstract

Automated Essay Scoring (AES) is one of the
most widely studied applications of Natural
Language Processing (NLP) in education and
educational measurement. Recent advances
with pre-trained Transformer-based large lan-
guage models (LLMs) have shifted AES from
feature-based modeling to leveraging contex-
tualized language representations. These mod-
els provide rich semantic representations that
substantially improve scoring accuracy and hu-
man—machine agreement compared to systems
relying on handcrafted features. However, their
robustness towards adversarially crafted inputs
remains poorly understood. In this study, we
define adversarial input as any modification of
the essay text designed to fool an automated
scoring system into assigning an inflated score.
We evaluate a fine-tuned DeBERTa-based AES
model on such inputs and show that it is highly
susceptible to a simple text duplication attack,
highlighting the need to consider adversarial
robustness alongside accuracy in the develop-
ment of AES systems.

1 Introduction

Automated Essay Scoring (AES) is one of the ear-
liest applications of Natural Language Processing
(NLP) to educational assessment, with roots dating
back to the 1960s (Page, 1967). Over the decades,
AES systems have evolved from statistical mod-
els with shallow surface-level features to highly
sophisticated neural architectures (Beigman Kle-
banov and Madnani, 2020). Traditional approaches
often relied on handcrafted features designed to
approximate lexical diversity, syntactic complexity,
discourse organization, and stylistic control. For
example, the use of connectives such as “there-
fore” or “in conclusion” could serve as proxies
for argumentative structure, while measures such
as type—token ratio or average sentence length are
aimed at capturing lexical richness (Chodorow and
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Burstein, 2004). These approaches, although ef-
fective to some extent, are inherently limited: they
depend heavily on feature engineering and are vul-
nerable to superficial manipulation by test takers
(Powers et al., 2001; Chodorow and Burstein, 2004;
Perelman, 2020).

The advent of deep learning (Goodfellow et al.,
2016), and more recently pre-trained Transformer
(Vaswani et al., 2017) based large language mod-
els (LLMs), has reshaped the AES landscape.
Transformer-based models such as BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019), and De-
BERTa (He et al., 2020) learn contextual repre-
sentations of text that capture lexical, syntactic,
and semantic information simultaneously. When
fine-tuned on essay scoring datasets, these models
substantially increase the agreement between ma-
chine predictions and human raters, often measured
using Quadratic Weighted Kappa (QWK) (Li and
Ng, 2024). This leap in performance could lead
to growing enthusiasm towards operational deploy-
ment of LLM-based AES in high-stakes testing
environments.

Yet, the question of robustness remains underex-
plored (Ding et al., 2020; Kabra et al., 2022). Accu-
racy gains in typical test settings do not guarantee
resilience under adversarial conditions. Adversar-
ial attacks in NLP — ranging from synonym substi-
tution in sentiment analysis (Zhou et al., 2021) to
input perturbations in machine translation (Michel
et al., 2019) — have shown that state-of-the-art
models can be surprisingly fragile. In educational
contexts, this fragility has serious implications. Un-
like sentiment classification or translation, AES
models directly influence student outcomes. If
models can be “fooled” by trivial manipulations,
such as artificially inflating essay length or insert-
ing irrelevant but sophisticated-sounding sentences
or words, the integrity of automated scoring is jeop-
ardized. This is particularly concerning given the
high stakes of standardized assessments, where
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even a one-point increase in an essay score can
affect admissions or scholarship decisions.

Prior work has begun to highlight these vulnera-
bilities. Ding et al. (2020) showed that content scor-
ing systems can be misled by adversarial strings
of meaningless characters. Kabra et al. (2022)
proposed toolkits for systematically probing AES
robustness, underscoring the need for adversarial
evaluation. Jeon and Strube (2021) demonstrated
that essay length continues to exert disproportion-
ate influence on neural AES models, echoing con-
cerns that date back to earlier systems (Chodorow
and Burstein, 2004). Collectively, this line of work
suggests that LLLM-based AES models, despite
their sophistication, may inherit structural weak-
nesses from both feature-based and neural prede-
Cessors.

In this preliminary study, we take a focused step
toward systematically evaluating adversarial robust-
ness of an LLM-based AES model. Specifically,
we examine the behavior of a DeBERTa-based scor-
ing system fine-tuned on the Persuade 2.0 corpus
(Crossley et al., 2024). We design and test three
adversarial scenarios that are both simple to imple-
ment and highly plausible in real testing conditions:

* Appending high-impact words, where the test
taker simply append few words that are likely
to be found in high scoring essays. If an au-
tomatic scoring model is overly relying on
uni-grams such essays could see a boost in
score.

Fancy-language injection, where a short para-
graph of complex, topic-agnostic sentences
are appended to the essay to mimic advanced
vocabulary and sentence structure.

o Text duplication, where a test taker repeats
their essay once or twice to artificially inflate
length. Scoring models often pick up essay
length as a proxy to essay quality, duplication
of text is the easiest way to increase essay
length.

To provide additional context for robustness, we
also examine noise-based perturbations such as
scrambling words or sentence spans. These ma-
nipulations allow us to probe the model’s reliance
on lexical coherence versus discourse-level organi-
zation.

Findings from our preliminary study are twofold:
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* We demonstrate that a DeBERTa-based AES
model, while achieving strong baseline accu-
racy (QWK = 0.87), is highly vulnerable to
text duplication, with systematic and substan-
tial score inflation.

* We show that the model is relatively robust to
high-impact lexicon and sentence insertions,
suggesting that sophisticated vocabulary and
structuring without semantic relevance does
not easily fool the system.

Taken together, these findings highlight a central
tension in AES research: while LLMs improve ac-
curacy, they do not automatically confer robustness.
Even trivial adversarial strategies can yield large
score changes, raising fairness and validity con-
cerns. We argue that adversarial robustness should
be treated as a primary design criterion for AES,
alongside scoring accuracy and reliability, and we
hope this work stimulates further research in this
direction.

2 Experiment Setup

For our experiments we use the Persuade Corpus
2.0 (Crossley et al., 2024), a large-scale dataset
of approximately 25,000 student essays written by
grades 6—12 in response to argumentative writing
prompts. Each essay in this corpus has been scored
holistically by human raters on a six-point ordinal
scale (1 = weakest, 6 = strongest), reflecting over-
all writing quality rather than individual analytic
traits. The dataset is particularly suitable for adver-
sarial evaluation because it is both large enough to
fine-tune LLMs effectively and realistic in content,
covering authentic student writing with diverse lev-
els of proficiency. In addition, Persuade 2.0 is a
recent corpus explicitly designed to advance AES
research, which makes it a valuable benchmark for
studying not only predictive performance but also
model robustness. For training and evaluation, we
adopt the official splits, which contain 15,528 items
in the training set and 10,356 items in the test set.
Our AES model is built on DeBERTa (He et al.,
2020), a Transformer-based large language model
that improves upon BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019) through disentan-
gled relative attention mechanisms. Specifically we
used DeBERTa V3 base (He et al., 2021) via the
Hugging Face Transformers Python Module. An
important parameter that is relevant for this partic-
ular study is the token limit, which limits the size



transform

mean change (sd) ‘

scramble-words

2.10 (1.0

scramble-sents

-0.06 (0.2)

add-low-words

-0.13 (0.2)

add-high-words

-0.09 (0.1)

add-smoke

-0.05 (0.2)

length-2x

0.93 (0.3)

length-3x

1.28 (0.6)

Table 1: Mean score change (SD) per transform (score range 1-6).

of the input text. Thanks to relative positioning
bias in DeBERTa, the maximum number of tokens
is given by (2k — 1), where [ is the number of
layers and k is the maximum relative distance al-
lowed between tokens. Since in DeBERTa base
[ = 12 and £ = 512, we can have a maximum
of 24,528 tokens in the input text. This is lower
than the thrice the number of tokens in the longest
essay (1902 tokens !) in the dataset. To adapt De-
BERTa for essay scoring, we attach a simple regres-
sion head on top of the [CLS] token embedding to
predict continuous essay scores in the range 1-6.
The head consists of a two-layer feed-forward net-
work trained jointly with the DeBERTa encoder,
so that the model learns both task-specific features
and general linguistic representations. Training is
performed with mean squared error (MSE) loss,
and model quality is evaluated using Quadratic
Weighted Kappa (QWK), a standard metric for
measuring agreement with human raters in AES
research. When evaluated on the test-set our model
gives a QWK of 0.87.

2.1 Attacks
2.1.1 Adding High Scoring Words

This attack tests whether the scoring model is re-
lying on uni-grams to score the essay. High scor-
ing essays are likely to have impactful vocabulary.
Thus test takers may add such words out of con-
text in the hope of triggering the scoring model
to award a higher score. To find such words, we
split the dataset (train) into two, a high scoring set
which has essays having scores 4, 5, 6 and a low
scoring set with essays having score 1, 2, 3. Now
for each word we find its log-odds ratio of prob-
ability of the word occurring in the high scoring
set over the probability of the word occurring in
the low scoring set. This allows us to rank words

Itokens here refer to lexical units after tokenisation
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based on how likely they are to be found exclu-
sively in high scoring essays. The attack then is to
append a sequence of 10 words sampled randomly
from the top 100 of these words to each of the test
essays. As this is a preliminary study the choice
of 10 is informed intuitively as the likely number
of words test takers may add. We defer testing a
range of numbers to future work. Here is such a
random sample: dependence, traditional, theatre,
platforms, extracurriculars, etc. This attack is re-
ferred to as add-high-words.

2.1.2 Adding Fancy Language

Our next attack is to test the impact of adding a
paragraph with impactful sentence structure and
vocabulary. This simulates the situation where test
takers may memorise a piece of fancy sounding text
that could be added to any essay in order to trigger
the machine to give a higher score. To study the
effect of fancy-language injection, we transform
the essay texts by adding the following to the end
of each essay: “Conceptual dynamics often emerge
through the oscillations of undefined frameworks.
This interaction, while nebulous, suggests a layered
intentionality. Consequently, abstraction persists
as both method and outcome.". This is an arbitrary
piece of text intended to add a dose of potentially
high-impact vocabulary and sentence structure. As
this is a preliminary study, we do not attempt to
quantify what is meant by high-impact, and also
limit the study to considering only a single instance.
We refer to this attack as add-smoke.

2.1.3 Inflating Essay Length

Essay scores are often correlated to its length. One
of the easiest ways a test taker can game this fea-
ture, without adding out of context text is to simply
duplicate their essays. To study the effect of text-
duplication we transform the essay text by dupli-
cating it once, and twice, referred to as length-2x



and length-3x, respectively.

2.1.4 Baselines

To understand the general robustness of our model
we add two more transformations, scramble-
words: in which words in the essay are scrambled,
and scramble-sents: in which the spans of text sep-
arated by newlines are scrambled (note that this is
not perfect sentence scrambling). To contrast with
the add-high-words attack we include a add-low-
words where we append words that are exclusively
found in low scoring essays. The intention is to test
if adding such words can lower the essay scores. A
random sample from add-low-words : luke, elec-
trol, presendent, thay, negitive, etc. We find that
most of these are typos, and therefore can be ex-
pected to bring down scores when added to essays.

3 Experiments and Results

3.1 Average Score Change

Table 1 gives the mean and standard deviation of
the score change induced by each transformation.
The first clear observation is that scrambling words
devastates performance (-2.10 average). This is ex-
pected: scrambling disrupts local coherence, mak-
ing essays nonsensical.

In contrast, scrambling sentences produces al-
most no change (—0.06). This suggests that the
DeBERTa-based AES model may be largely in-
sensitive to discourse-level ordering of sentences.
Although discourse coherence is a key aspect of hu-
man evaluation, our results imply that the model’s
reliance on the [CLS] embedding fails to ade-
quately capture paragraph-level or argumentative
flow. This insensitivity could become problematic
if test takers deliberately manipulate essay structure
while maintaining superficial lexical quality.

The more striking pattern emerges with duplica-
tion attacks. Doubling essay length (length-2x)
increases average scores by +0.93, and tripling
(length-3x) by +1.28. These are substantial gains
considering the total score range is only 1-6. The
effect size rivals the difference between adjacent
holistic score levels as judged by human raters. Put
differently, a mediocre essay rated 3 could be ar-
tificially boosted into the “proficient” range (4-5)
simply by repetition.

Interestingly, adding high-scoring words or high
impact vocabulary and sentence structure out
of context doesn’t increase the scores, instead
marginally decreases the scores. This contrasts
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with anecdotal expectations that “sophisticated”
vocabulary could fool models. Instead, the AES
model appears somewhat robust to this type of lex-
ical padding, possibly because embeddings capture
topical mismatch between the appended text and
the main essay body.

3.2 Score Change at each Human Score Level

Table 2 disaggregates score changes by human-
assigned scores. This analysis yields three notable
insights.

scramble-words degrades higher-quality essays
more severely. Essays originally scored 6 lose over
4 points, while those scored 1 lose less than 1.

Duplication benefits mid-range essays the most.
For length-2x and length-3x, the largest gains oc-
cur at human scores 3—4. For example, a 3-rated
essay rises on average by +1.42 under length-
3x. This reflects the model’s tendency to con-
flate length with quality in borderline cases. Such
vulnerabilities are particularly concerning because
many operational decisions hinge on distinguishing
“adequate” from “proficient” performance in this
mid-range.

add-smoke and add-high-words has negligible
effects across all bins. The consistency of near-zero
changes suggests that superficial stylistic padding
does not easily exploit this model.

3.3 Score Change Distribution

Average changes alone can obscure practical im-
pact. Figure 1 therefore examines the distribution
of rounded score differences under duplication.

For length-2x, nearly 80% of essays increase by
at least +1 point, and around 10% gain +2 points.
Such shifts could materially alter student outcomes:
an essay initially rated 3 (marginal) may be reclas-
sified as 4 (proficient).

For length-3x, the effects are even more dra-
matic: 50% of essays gain +1 point and 40%
gain +2. In practice, this means almost every dupli-
cated essay is rewarded, with a non-trivial fraction
jumping two score categories.

Very few essays decrease in score, confirming
that duplication is a high-reward, low-risk adver-
sarial strategy.

These findings underscore the operational sig-
nificance of duplication: if undetected, test takers
can consistently and predictably exploit the scoring
system.



transform \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 ‘
scramble-words | -0.39 (0.4) | -1.08 (0.4) | -1.86 (0.5) | -2.69 (0.5) | -3.59 (0.5) | -4.29 (0.3)
scramble-sents | -0.01 (0.1) | -0.04 (0.1) | -0.07 (0.2) | -0.07 (0.2) | -0.05 (0.2) | -0.02 (0.1)
add-low-words | -0.07 (0.1) | -0.10 (0.1) | -0.13 (0.2) | -0.17 (0.2) | 0.17 (0.2) | 0.09 (0.1)
add-high-words | -0.06 (0.1) | -0.08 (0.1) | -0.09 (0.1) | -0.12 (0.2) | 0.08 (0.2) | 0.00 (0.1)
add-smoke -0.05 (0.1) | -0.07 (0.1) | -0.08 (0.2) | -0.07 (0.2) | 0.03 (0.2) | 0.09 (0.1)
length-2x 0.82(0.4) | 091 (0.3) | 0.99(0.3) | 1.04(0.3) | 0.78 (0.4) | 0.27(0.3)
length-3x 1.12(0.6) | 1.42(04) | 1.49(0.5) | 1.33(0.5) | 0.71 (0.6) | 0.01 (0.6)

Table 2: Mean score change (SD) at each human score level.

Score Change Distribution

—8— length-3x
length-2x
—8— add-smoke

0.8 -

o
o
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o
i

0.2

0.0 4

0 1
score change

Figure 1: Score change distribution.

4 Conclusion

This study has examined the adversarial robust-
ness of an LLM-based AES system trained on
the Persuade 2.0 corpus. While the baseline De-
BERTa model achieved strong agreement with hu-
man raters (QWK = 0.87), our experiments reveal
that high scoring accuracy alone does not guaran-
tee robustness to adversarially crafted responses.
The most striking finding is the model’s vulnera-
bility to duplication: repeating an essay once or
twice almost always leads to inflated scores, with
gains of one or even two points on a six-point scale.
Because such changes occur consistently across a
large portion of the test set, they represent a gen-
uine threat to the validity of AES in operational
settings. Even if duplication is easy to detect with
simple preprocessing, the fact that a trivial manipu-
lation yields such predictable benefits underscores
the importance of evaluating AES systems against
adversarial input.

At the same time, the results also highlight ar-
eas where the model appears more robust. The
insertion of sophisticated but irrelevant sentences
(“smoke text”) produced negligible effects, and
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the more systematic attempt to append vocabulary
disproportionately associated with high- or low-
scoring essays also failed to move predictions in
a meaningful way. These negative results suggest
that the model does not simply reward isolated lex-
ical items, even when those items are correlated
with writing quality in the training data. Instead,
it appears to integrate vocabulary in context, dis-
counting out-of-place words. This robustness to
shallow lexical padding contrasts with the severe
susceptibility to length manipulation, pointing to a
specific structural weakness rather than a general
fragility.

It is to be noted that these results are from our
preliminary study along these lines. A major limi-
tation of this study is that we have evaluated only
one kind of model. A comprehensive evaluation is
being planned as future work with multiple AES
models, and to address other limitations.

More generally future studies should pursue two
directions in parallel: developing systematic tax-
onomies of adversarial risks in AES (including se-
mantic drift, coherence disruption, and targeted
vocabulary injection), and exploring defenses that
go beyond heuristic filters. Possibilities include ex-
plicit modeling of discourse, normalization against
essay length, and the integration of adversarial
training protocols.

Ultimately, if AES systems are to be trusted in
high-stakes testing, adversarial robustness must be
evaluated alongside accuracy and fairness. Our
results provide early evidence that while certain
manipulations are resisted, others remain alarm-
ingly effective. Robustness cannot be assumed
from model sophistication alone; it must be delib-
erately measured and built into the design of future
AES systems.
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