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Abstract

Multiple strategies for Al-generated response
detection have been proposed, with many high-
performing ones built on language models.
However, the decision-making processes of
these detectors remain largely opaque. We
addressed this knowledge gap by fine-tuning
a language model for the detection task and
applying probing techniques using adversarial
examples. Our adversarial probing analysis
revealed that the fine-tuned model relied heav-
ily on a narrow set of lexical cues in making
the classification decision. These findings un-
derscore the importance of interpretability in
Al-generated response detectors and highlight
the value of adversarial probing as a tool for
exploring model interpretability.

1 Introduction

Modern foundation language models have demon-
strated the ability to generate coherent, well-
structured text across a wide range of domains (Li
et al., 2024; Zhao et al., 2023). This capability has
affected various aspects of writing, including as-
signments and assessments that require learners to
write original responses. As a result, educators and
assessment professionals have become increasingly
interested in distinguishing between human-written
and Al-generated responses (Jiang et al., 2024).
This task, which we refer to as Al-generated re-
sponse detection in this paper, is the focus of our
study.

The growing interest in, and demand for, Al-
generated response detection has led to the devel-
opment of algorithmic detectors, many of which
are themselves based on language models. Some
utilize the in-context learning capability of these
models combined with prompt engineering, while
others employ supervised fine-tuning on custom
datasets designed for the detection task (see, e.g.,
Fraser et al., 2025 and Wu et al., 2025). These
detectors are often marketed as highly accurate,
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with reported classification accuracy routinely ex-
ceeding 90 percent. However, similar to other in-
ferences made by language models, the decisions
from these detectors are opaque and difficult to in-
terpret. This lack of transparency is particularly
concerning in Al-generated response detection, in
which learners may face serious consequences (e.g.,
academic penalties, score cancellations) based on
the detection outcome.

To address this knowledge gap, we investi-
gated the decision-making process of a custom
Al-generated response detector using probing tech-
niques. Probing has proven effective in examin-
ing the internal mechanisms of language models
across a variety of downstream tasks (Li et al.,
2023a; Niven and Kao, 2019; Ohmer et al., 2024,
Suau et al., 2020). In this study, we fine-tuned an
open-source language model on a dataset including
both human-written and Al-generated responses.
We then identified and manipulated lexical cues to
gauge their influence on the model’s classification
decisions.

Our findings show that the fine-tuned model
achieved high accuracy in the detection task by re-
lying heavily on a small set of lexical cues. While
this reliance demonstrates the expressive capacity
of language models, it also exposes their vulner-
ability to exploitation and manipulation. Overall,
our results substantiate the need for understanding
what Al-generated response detectors learn and for
evaluating the trustworthiness of their decisions in
real-world applications.

2 Background

Although the language generation capabilities of
modern foundation models have provided oppor-
tunities and benefits, they also pose risks that can
lead to undesirable outcomes. Crothers et al. (2023)
proposed a taxonomy that classifies these into four
high-level categories: (1) spam and harassment, (2)
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online influence campaigns, (3) malware and so-
cial engineering, and (4) Al authorship exploitation.
For our study, a particularly relevant form of Al au-
thorship exploitation is academic fraud committed
by learners and examinees. They may undermine
the learning and assessment purposes of writing
tasks by submitting responses that are generated by
Al models.

To mitigate the authorship exploitation risk, re-
searchers have explored various detection strategies
and their effectiveness. A consistent finding across
studies is that humans find it difficult to reliably
detect Al-generated text. Multiple investigations
have shown that human judges, including domain
experts, often perform at near-chance levels when
attempting to distinguish Al-generated text from
human-written one (e.g., Li et al., 2023b; Soni and
Wade, 2023; Uchendu et al., 2021), although train-
ing (Liu et al., 2023) and auxiliary information
(Gehrmann et al., 2019) may improve their detec-
tion performance. The difficulty of manual detec-
tion, combined with the scalability of Al-generated
text, has led researchers to algorithmic approaches.
This pursuit has quickly accumulated into a sizable
body of literature, for which multiple comprehen-
sive surveys are available (e.g., Beresneva, 2016;
Crothers et al., 2023; Dhaini et al., 2023; Jawahar
et al., 2020; Fraser et al., 2025; Wu et al., 2025).

Wau et al. (2025) and Fraser et al. (2025) clas-
sified algorithmic detectors into three main cate-
gories based on the type of information leveraged:
watermarks, manually engineered features, and lan-
guage model-based text representations. The third
category uses numerical embeddings derived from
foundation language models as implicit features for
classification; this allows researchers to circumvent
the need for watermarks or manual feature devel-
opment. Detectors based on this approach, particu-
larly those that relied on fine-tuned language mod-
els, have demonstrated strong performance, with
detection accuracies often exceeding 90% across di-
verse text types (e.g., Chen et al., 2023; Fagni et al.,
2021; Guo et al., 2023; Wang et al., 2023). How-
ever, the complexity of their architecture makes
it difficult to examine their decision making pro-
cesses. Although there are various linguistic dif-
ferences between Al-generated and human-written
texts (e.g., Seals and Shalin, 2023), it is unclear
whether and how these differences are utilized by
classifiers.

An effective approach for investigating the in-
ternal mechanisms of language model classifiers

involves the use of probing through adversarial ex-
amples: data points that are intentionally perturbed
to challenge a model’s decision boundaries while
preserving the original semantic content. These
examples function as diagnostic tools that can help
identify the specific cues that language models rely
on when making classification decisions. For ex-
ample, Niven and Kao (2019) demonstrated that
high classification performance can be achieved
through reliance on superficial word-level statisti-
cal patterns alone rather than meaningful linguis-
tic understanding. Their work demonstrated how
adversarial probing can reveal vulnerabilities in a
model’s generalization capabilities and shed light
on its interpretability. Subsequent studies have
applied adversarial probing to better understand
the decision-making processes of language models
fine-tuned for a range of classification tasks (e.g.,
Li et al., 2023a; Ohmer et al., 2024; Suau et al.,
2020).

In the domain of Al-generated text detection, ad-
versarial examples have also been used to evaluate
the robustness of detection systems. These adver-
sarial “attacks” may operate at varying levels of
granularity, including character-level perturbations
(e.g., Wang et al., 2024), word-level substitutions
(e.g., Puetal., 2023; Wang et al., 2024), and para-
phrasing techniques that maintain semantic mean-
ing while altering surface form (e.g., Shi et al.,
2024; Krishna et al., 2023). While these studies
have effectively demonstrated the vulnerability of
detectors to such attacks, they often focus primar-
ily on evasion rather than on interpretability. As
a result, the internal decision-making processes of
these detectors remain largely opaque.

3 Methods

3.1 Data

Our dataset included both authentic responses writ-
ten by human examinees and Al-generated re-
sponses. The authentic responses were collected
from an essay writing task administered as part of
a standardized English language proficiency assess-
ment. In this task, examinees were asked to express
their opinion or preference on a given topic, pro-
viding supporting details. We used 5,745 authentic
responses on across 20 different topics submitted
by examinees representing a diverse range of na-
tionalities and first languages. The dataset also
included 6,000 responses on the same 20 topics
generated by GPT-3.5 (Ouyang et al., 2022) and
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GPT-4 (Achiam et al., 2023). These synthetic re-
sponses were produced as part of a separate study
(Zu et al., 2025), which provides a detailed descrip-
tion of the generation process.

Al-generated text typically lacks typographical
errors, whereas such errors are common in human-
written ones, including the authentic responses in
our dataset. This discrepancy could easily be ex-
ploited by detection models, potentially reducing
the task to a trivial problem. To address this issue,
Zu et al. (2025) randomly imputed typographical
errors into each Al-generated response, and we
used the generated responses that included these
imputed errors.

We allocated approximately 80% of the total
dataset (9,396 out of 11,745 responses) for train-
ing and the remaining 20% (2,349 responses) for
testing. The train-test split involved stratified ran-
dom sampling, with generation status (authentic vs.
Al-generated) as the stratification variable. This
ensured that both the training and test sets main-
tained a similar proportion of generated responses
(approximately 51%).

3.2 Fine-Tuning Detector

We fine-tuned the RoBERTa-base model (Liu et al.,
2019) as our primary detector of Al-generated re-
sponses. The key hyperparameters for fine-tuning
included learning rate and training epochs, which
were tuned through a two-dimensional grid search
using five-fold cross-validation on the training set.
We then used the hyperparameter values that led to
the best cross-validation performance to fine-tune
the RoOBERTa base model using the entire training
set. More details about the fine-tuning process can
be found in Zu et al. (2025).

The choice of RoOBERTa-base was primarily mo-
tivated by convenience. To examine the robust-
ness of our findings with respect to this model
choice, we also fine-tuned three additional mod-
els: RoBERTa-large, and two DeBERTa models
(He et al., 2021) of different sizes (base and large).
These alternative models were fine-tuned using
the same procedure as the main detector based on
RoBERTa-base.

3.3 Examining n-gram Distributions

To identify linguistic cues that our detector would
learn during fine-tuning, we analyzed the n-gram
distributions in authentic and Al-generated re-
sponses within the training set. For an n-gram
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to be considered informative, it must satisfy two
conditions:

1. It should exhibit a distinct distribution be-
tween authentic and generated responses.

2. It should occur with sufficient frequency in
the training data.

To quantify these conditions, we adapted the
7 and & statistics introduced by Niven and Kao
(2019). Let A and G denote the sets of authentic
and generated responses in the training set, respec-
tively. Let n,; represent the count of an n-gram
u in response ¢. Using this notation, we formally
introduce the two adapted metrics below.

The asymmetry metric, adapted from the 7 statis-
tic in Niven and Kao (2019), captures the relative
difference in frequency of u between generated and
authentic responses:

D ieg Mi — ZjeA Ty
2oieg Tui + 2 jea Muj

Asymmetry, =

This metric ranges from -1 to 1. The value of -1
indicates that the n-gram appears exclusively in
authentic responses. Similarly, the value of 1 indi-
cates exclusive presence in generated responses.

The impact metric, adapted from Niven and
Kao’s (2019) ¢ statistic, measures the average dif-
ference in frequency per response:

> ieg Mui — ZjeA 217
(1G] + [A])/2

Impact,, =

)

where |G| and |.A| denote the number of generated
and authentic responses (in the training set), re-
spectively. The sign of the impact metric aligns
with that of the asymmetry metric, indicating the
direction of distributional difference.

We analyzed the distributions of unigrams, bi-
grams, and trigrams in the training set using the
asymmetry and impact metrics, with the goal of
identifying n-grams exhibiting both high asymme-
try and high impact. For the unigram analysis,
129 stop words! were excluded. The bigram and
trigram analyses were conducted twice: once in-
cluding the stop words and once excluding them.
The identified n-grams were used to construct ad-
versarial examples for probing the behavior of the
fine-tuned detector.

'We constructed this list by adding may and would to the
127 stop words from https://gist.github.com/sebleier/554280.



4 Results

4.1 Detector Performance

The fine-tuned RoBERTa-base detector achieved
an overall test set accuracy of 0.991, with a pre-
cision of 0.983 and a perfect recall of 1.0. This
strong performance was robust across different
model choices: each of the three alternative fine-
tuned detectors achieved similarly high accuracy,
precision, and recall. Table 1 presents the confu-
sion matrices for all four fine-tuned detectors. In
addition, the detector’s performance remained sta-
ble under basic text manipulations. For example,
converting all characters to lowercase and remov-
ing punctuation had minimal impact on accuracy,
precision, or recall.

True Label
Aut. | Gen.
RoBERTa-base é;tl : 54 1 1094
RoBERTa-large é;: : 135 1 1094
DeBERTa-base é:; ! 145 : 1 1094
DeBERTa-large é;tl : 1154 ) 1094

Table 1: Test set confusion matrices for the main and
three alternative fine-tuned detectors. Aut: Authentic;
Gen.: Generated

4.2 n-gram Distributions

The results from the unigram, bigram, and trigram
analyses showed notable differences in their poten-
tial utility as classification cues. The bigram and
trigram distributions included only a few sequences
that stood out in terms of asymmetry and impact.
Moreover, most such bigrams and trigrams were
composed primarily of stop words. When stop
words were excluded, the same analysis yielded
few prominent sequences. The unigram distribu-
tions, on the other hand, showed greater potential
for distinguishing between authentic and generated
responses. While most unigrams in the training
set had near-zero asymmetry and impact values, a
small subset had large absolute values on one or
both metrics, suggesting their potential as strong in-
dicators. This overall pattern is illustrated in Figure
1 as a bivariate scatter plot of unigram asymmetry
and impact values. In addition, Table 2 lists the

top 10 unigrams in terms of their absolute impact
metrics.

0.24

0.0

Impact

-0.24

0.4

-1.0 05 0.0 0.5 1.0
Asymmetry

Figure 1: The asymmetry and impact metrics from the
training set responses.

Table 2: Asymmetry (Asy.), impact (Imp.), and signal
direction (Dir.) of the top 10 unigrams in the training set,
in descending order of their absolute impact metrics.

Asy. Imp. Dir.
people -0.338 -0.599  Authentic
think -0.869 -0.523  Authentic
individuals 0906 0.414 Generated
provide 0.697 0.386 Generated
overall 0.809 0.373 Generated
additionally 0901 0.349 Generated
skills 0.314 0.325 Generated
learning 0.375 0.321 Generated
example -0.697 -0.254 Authentic
good -0.563 -0.237 Authentic

A key distinction between unigrams associated
with authentic versus generated responses was their
lexical complexity or sophistication. Words that are
long and typically used in formal settings tended to
signal generated responses, whereas shorter, more
informal ones were more indicative of authentic
responses. This pattern manifested in the aver-
age length of unigrams signaling the two classes:
among the 248 unigrams whose absolute asymme-
try and impact values exceeded 0.05, the 72 uni-
grams signaling authentic responses were on aver-
age 5.0 characters long, whereas the corresponding
average for the 176 unigrams signaling generated
responses was 7.9. This also aligns with our prior
expectations that human examinees in timed test-
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ing contexts are more likely to produce draft-like
responses, which may involve less frequent use of
sophisticated and formal vocabulary, and that the
training data for GPT 3.5 and GPT-4 are likely to
consist primarily of final versions of texts rather
than drafts.

4.3 Transforming Test Set Responses into
Adversarial Examples

To probe the fine-tuned detector, we transformed
test set responses into adversarial examples by re-
placing unigrams that signaled either authentic or
generated responses with synonyms indicative of
the opposite class. We focused on unigrams that
met two criteria: (1) high absolute values on both
asymmetry and impact metrics, and (2) availabil-
ity of a synonym frequently used in the opposite
class. For example, the unigram people, which
strongly signaled an authentic response, was re-
placed with individuals, a word that appeared
much more frequently in generated responses. To
ensure meaningful substitutions, we allowed syn-
onyms that were not unigrams, provided they oc-
curred frequently in the opposite category. For
instance, additionally, which appeared almost
exclusively in generated responses, was replaced
with in addition, a phrase more frequently used
in authentic responses.

Applying these criteria to the training set yielded
149 unigrams to be replaced with their respective
synonyms. The selected unigrams were a small
subset of all unigrams in the training set, which in-
cluded more than 30,000 unique unigrams. Among
the 149 unigram-synonym pairs, 100 involved un-
igrams signaling generated responses paired with
synonyms more frequent in authentic responses,
while the remaining 49 involved the reverse pair-
ing. Replacing the 149 unigrams with their syn-
onyms resulted in, on average, 12 substitutions per
response, affecting less than 10% of the average
unigram count per response. This controlled trans-
formation allowed us to evaluate the classifier’s
sensitivity to lexical shifts while preserving overall
semantic content.

4.4 Detector Performance on Adversarial
Examples

The transformation of test set responses into ad-
versarial examples noticeably degraded the perfor-
mance of the fine-tuned detector. Its overall accu-
racy dropped from 0.991 to 0.580. This accuracy
is only slightly higher than that of a degenerate

detector classifying every input into the most fre-
quent category (whose accuracy would have been
0.508). In addition to the decline in overall accu-
racy, the number of responses classified as gener-
ated also dropped from 1,215 (from the original
test set) to 210 on the post-transformation adver-
sarial examples. Among those that were classi-
fied as generated, all but one response were in-
deed generated, resulting in a still high precision of
0.995. However, the reduced number of detected
responses inevitably led to a sharp reduction in
recall, which fell from being perfect (1.0) to ex-
tremely low (209/1,194 = 0.175), as can be seen
the confusion matrix in Table 3.

True Label
Aut. | Gen.
RoBERTa-base é;tl ! 1154 3(8)3
RoBERTa-large é;g : 1154 223
DeBERTa-base é;tl : 1154 igg
DeBERTa-large é‘;l; : 105 : 1(9)37

Table 3: Confusion matrices for the main and three alter-
native fine-tuned detectors on the adversarial examples.
Aut: Authentic; Gen.: Generated

The substantial decline in the frequency of re-
sponses classified as generated indicates that the
detector classified much more of the adversarial ex-
amples as authentic ones than it did for the original
responses. This in turn suggests that the perfor-
mance change could primarily be attributed to the
replacement of the 100 unigrams that were signal-
ing generated responses. To further substantiate
this conjecture, we did another transformation of
the original test set responses, this time only re-
placing the 100 such synonym pairs while leaving
the other 49 pairs unchanged. The results were
quite similar as those from the full transformation
involving all 149 unigrams (reported in Table 3),
with the overall accuracy of 0.581 and recall of
0.175 as well as the same tendency of classifying
only a small number of responses as generated. In
contrast, when we did the opposite transformation
of only replacing the 49 authentic-signaling syn-
onyms, the results changed little compared to the
original results (reported in Table 1): overall ac-
curacy, precision, and recall of 0.966, 0.999, and
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0.934, respectively. In sum, the performance de-
clined primarily because the replacement of the 100
unigrams signaling generated responses tricked the
detector into classifying generated responses as
authentic ones.

These overall results were persistent against
model choice. Table 3 also presents the confusion
matrices from the three alternative detectors. All
show the same pattern of substantial drop in overall
accuracy, primarily attributable to the drop in the
frequency of responses classified as generated and
the accompanying drop in recall. This suggests that
all four pre-trained language models mostly picked
up unigrams signaling generated responses in the
training set during fine-tuning and relied heavily
on those unigrams to make their classification deci-
sions.

5 Discussion & Conclusions

In this study, we probed an Al-generated response
detector to understand how the model makes its
decisions. The detector was built by fine-tuning the
RoBERTa-base model (as well as three alternative
language models) on a custom dataset, achieving
99.1% accuracy on a held-out test set. To identify
influential lexical cues, we analyzed n-gram distri-
butions in the training data and found 149 unigrams
strongly associated with either class. By replacing
these unigrams with synonyms indicative of the op-
posite class, we created adversarial test examples
that reduced the detector’s accuracy from 99.1% to
58.0%. This drop was primarily due to misclassifi-
cation of Al-generated responses: altering only a
small number of unigrams per response was suffi-
cient to cause most Al-generated responses to be
misclassified as authentic. The effect was consis-
tent across all tested base models. These findings
reveal the detector’s strong reliance on a narrow set
of lexical cues, which carries both promising and
concerning implications.

On the positive side, pre-trained language mod-
els effectively identified and leveraged meaning-
ful patterns in unigram distributions during fine-
tuning, resulting in high performance on held-out
data. Manually identifying these patterns would
have been much more difficult and time-consuming.
Moreover, such patterns can be used to build more
interpretable and explainable classifiers with min-
imal loss in performance, assuming the patterns
remain stable in future data.

However, the ease with which the detector’s ac-

curacy was reduced to near-chance levels raises
concerns about its generalizability and robustness.
If the small set of unigrams signaling Al-generated
responses becomes widely known, malicious ac-
tors could evade detection by substituting a few
words, as demonstrated in our adversarial exam-
ples. Therefore, a promising direction for future
research is to devise ways to encourage detectors
to learn more robust patterns. The identification of
this major concern and promising future research
step underscore the value of probing fine-tuned de-
tectors in understanding what they learn, evaluating
the trustworthiness of their decisions in real-world
applications, and guiding improvements where nec-
essary.

We acknowledge that this study was limited in
its scope. All detectors were trained on responses
from a single task type covering a relatively narrow
set of 20 topics. Large-scale writing tests, on the
other hand, may include multiple task types and a
broader range of topics to ensure topical diversity
and coverage. A training dataset drawn from such
varied sources may exhibit different characteristics
than those observed in our study, and the robustness
of detectors trained on more diverse data cannot be
reliably inferred from our findings. Furthermore,
even within similar training contexts, the rapid evo-
lution of generative Al raises uncertainty about
whether the same lexical cues will remain effec-
tive indicators of Al-generated content. Therefore,
our findings should be interpreted primarily as evi-
dence of what fine-tuned detectors can learn, and
how easily they can be compromised, rather than
as prescriptive guidance for detection or evasion
strategies.
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