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Abstract

A detection objective based on bounded group-
wise false alarm rates is proposed to promote
fairness in the context of test fraud detection.
The paper begins by outlining key aspects and
characteristics that distinguish fairness in test
security from fairness in other domains and ma-
chine learning in general. The proposed de-
tection objective is then introduced, the corre-
sponding optimal detection policy is derived,
and the implications of the results are examined
in light of the earlier discussion. A numerical
example using synthetic data illustrates the pro-
posed detector and compares its properties to
those of a standard likelihood ratio test.

1 Introduction

Test security refers to the policies, procedures, and
technologies used to protect the integrity and fair-
ness of tests. A key component of test security is
test fraud detection, that is, detection of unautho-
rized access to content, tools, or third-party assis-
tance. Statistical methods for test fraud detection
have been researched since at least the 1920s (Bird,
1927, 1929), with significant advances happening
in the late 20th and early 21st century (Sotaridona
and Meijer, 2002; Wollack, 2003; van der Linden
and Sotaridona, 2004)—see (Kingston and Clark,
2014; Cizek and Wollack, 2016) for comprehensive
overviews. In recent years, however, several devel-
opments have significantly expanded both the scope
and urgency of test fraud detection efforts:

* The COVID-19 pandemic prompted a sudden
shift from testing in tightly controlled test cen-
ters to remote testing in environments chosen
by the test takers. While this transition offered
significant convenience (Zheng et al., 2021;
St-Onge et al., 2022), it also introduced nu-
merous new opportunities for cheating (Bilen
and Matros, 2021; Janke et al., 2021; Newton
and Essex, 2023).

* Generative artificial intelligence (GenAl) mod-
els are now powerful enough to solve or assist
with a wide range of item types, from simple
multiple-choice questions to free-form essays
and coding exercises, making them highly ef-
fective tools for cheating. (Yan et al., 2023;
Susnjak and Mclntosh, 2024)

* There is a movement towards more sociocul-
turally responsive (Bennett, 2023) and person-
alized (Bennett, 2024; Sinharay et al., 2025)
assessments to promote fairness and better
capture the growing diversity of knowledge
and abilities in increasingly heterogeneous test
taker populations. This shift has led to greater
item variety, resulting in fewer test takers re-
sponding to the same items.

These developments have made test fraud detection
increasingly challenging: impostors and proxy test
takers are more difficult to identify in remote set-
tings than in test centers; Al-generated responses
are harder to detect than content copied from tradi-
tional sources; and typical response times are diffi-
cult to establish for items that have been answered
by only a handful of test takers. Consequently, test
security reviews tend to require more time, exper-
tise and data than they did in the past.

One approach to addressing these challenges is
to delegate tasks to various Al systems, both gen-
erative and predictive. Building on the examples
above: facial recognition could help detect impos-
tors; typing pattern anomalies could signal proxy
test takers; Al-content detectors could identify non-
authentic writing or speech; and trained models,
rather than empirical distributions, could be used
to flag abnormal response times.

However, this approach typically and rightly
raises questions regarding the reliability, accuracy
and fairness of decision made by Al systems, espe-
cially in the context of high-stakes tests. (Weber-
WaulfT et al., 2023; Perkins et al., 2024) While con-
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siderable research is being devoted to making Al
fairer, more transparent and more reliable, biases
and differential treatment continue to be observed
in practice. (Stureborg et al., 2024; Bai et al., 2025;
Maslej et al., 2025)

In contrast, many methods traditionally used in
psychometrics and, more broadly, decision-making
under uncertainty, have transparent objectives and
strong accuracy and/or fairness properties. (Dorans
and Cook, 2016; Johnson et al., 2022) In this paper,
we propose addressing the uncertainty and poten-
tial biases of Al outputs not by using them directly,
but by feeding them into a system that fuses and
processes them. In essence, the idea is to delegate
complex subtasks to advanced Als while anchor-
ing the final decision-making procedure in tradi-
tional statistical methods, thereby enabling the use
of well-established techniques to define, measure,
and promote fairness.

To clarify, this paper does not address the design
or architecture of the complete system described
above, which remains an ongoing research effort.
(Fauss et al., 2025) Instead, it focuses on a specific
subtask: designing a detector that flags test takers
for potential fraud in a way that balances test in-
tegrity and group fairness. This task is formulated
and analyzed as a standalone problem, meaning the
proposed detector is largely agnostic to the specific
detection context. As such, it may be of theoretical
or practical interest beyond the use case discussed
here. However, as will become clear throughout the
paper, its design is explicitly guided by assumptions
tailored to the intended application of Al-assisted
test fraud detection.

2 Fairness in Test Security

In this section, we discuss some aspects and char-
acteristics that set fairness in test security apart
from fairness as a general concept in statistics and
machine learning. Specifically, we will make and
justify five claims. These claims are not intended
to be “truths”; rather, we see them as important,
sometimes overlooked aspects that can contribute
to a more informed discussion of what constitutes
fairness in test security applications.

Claim 1: Fairness and performance are not in
conflict.

A concept commonly encountered in the litera-
ture on statistical fairness is the so-called perfor-
mance—fairness tradeoff (Prost et al., 2019), which
implies that a procedure’s performance and fairness

are often in tension with one another. The underly-
ing idea is that in order to make a procedure fairer,
additional constraints have to be introduced that
shrink the space of feasible solutions, and, in turn,
reduce the performance. While this is true from a
purely mathematical perspective, we would argue
that the idea of a performance-fairness tradeoff can
be misleading in a test security context. This is the
case because detecting test fraud is in itself an ob-
jective that, in principle, promotes fairness. Among
other consequences, widespread, undetected cheat-
ing devalues the scores of honest test takers, poten-
tially harming their future opportunities. In general,
we consider the idea that a procedure can be “bad”
at its dedicated task, yet still perfectly fair problem-
atic. One can even argue that fairness issues are
a consequence of performance issues. A fraud de-
tector achieving perfect accuracy is not only highly
performant, it is also fair by all common criteria.
Fairness issues arise once a procedure starts making
mistakes, and certain groups are more frequently
or more severely affected by these mistakes. There-
fore, we argue that in the context of test security
fairness and performance should be considered two
sides of the same coin—often, a better detector will
also be a fairer detector.

Claim 2: Equality # fairness.

This claim is closely related to Claim 1. We sin-
gle it out to highlight the critical role that equality
plays in virtually all fairness criteria in the litera-
ture. For example, separation fairness (Barocas
et al., 2023) is defined in terms of equal true and
false positive rates among all groups. Analogously,
sufficiency fairness (Barocas et al., 2023) implies
that the probability of predicted labels being correct
is equal for all groups. Again, we would argue that
this idea can be misleading in a test security con-
text. For example, a fraud detector that randomly
declare test takers cheaters is perfectly fair by many
criteria, yet clearly dysfunctional and unfair in prac-
tice. Similarity, by most fairness criteria, a detector
with groupwise false alarm rates of, say, 30 % and
35 % is fairer than a detector with groupwise false
alarm rates of, say, 5 % and 15 %. In reality, it is
far from clear that test takers would view the higher
false alarm rate of the first detector as fairer than
the larger disparity in groupwise false alarm rates
produced by the second.

Claim 3: Fairness needs a concrete target.

We argue that any nontrivial measure or inter-
vention aimed at promoting fairness in test security
must clearly specify the type of discrimination it
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seeks to address and provide strong evidence that
it effectively mitigates or eliminates it. While this
may seem obvious, our experience suggests it is not
consistently implemented in practice. Frequently,
existing detectors or classifiers are made fair by
picking an arbitrary or convenient fairness crite-
rion, adding a corresponding penalty term to the
training objective, and adjusting its weight until
a “good performance-fairness tradeoft” is reached.
We believe that promoting fairness in this manner
can be superficial and ineffective. It will typically
lead to a slightly more uniform distribution of the
groupwise metric the fairness criterion considers
important. However, showing that the combined
effects on all groups and on the overall performance
really address unfair treatment is usually difficult.
In fact, the case for this kind of fairness measure
is often made in a circular manner: it promotes
fairness because it improves the fairness criterion
underpinning its design.

Claim 4: Fairness should not be a black box.

While Claim 3 argues that it should be clear what
a fairness-promoting procedure tries to accomplish,
here we argue that it should also be clear how the
procedure promotes fairness. This claim is based
on the observation that, in particular in test secu-
rity, fairness is closely connected to trust and trans-
parency. To clarify, we do not claim that one should
be able to explain every technical detail of a fairness-
promoting procedure to a non-technical audience.
However, we do believe that a sincere attempt at
making a procedure fairer should be implemented
in way that, at least conceptually, can be commu-
nicated to those affected by it. This also opens the
door for broader discussions of what constitutes
fairness and how it can be improved.

Claim S: Fairness should be measurable.

Naturally, the vast majority of statistical fairness
criteria are defined in terms of probabilities. How-
ever, these probabilities are typically unknown and
must be estimated from data. This can lead to prob-
lems when certain events occur so infrequently that
reliably assigning them an empirical probability
becomes infeasible. This problem is more promi-
nent the smaller the population and the more groups
are considered. For example, in the context of test
fraud detection, a fairness criterion that incorpo-
rates groupwise cheating rates might run into the
problem that for some groups no cheaters have been
observed yet. Does this mean that the respective
cheating rates are low? Or that the detection rates
are low? Can, often self-declared, group variables

of cheaters be trusted in the first place? In a nutshell,
we argue that fairness should be based on quantities
that can accurately and reliably be inferred from
the data.

In the next section, we present a fairness pro-
moting detection objective that is informed by and
largely aligned with the above claims.

3 A Fairness-Promoting Detection
Objective

In this section, we propose a fairness-promoting de-
tection objective, derive the corresponding optimal
detector, and discuss its properties in light of the
claims in Section 2. While the intended use case of
the proposed detector is test fraud detection, it is not
limited to this context and likely has applications
in other areas.

A quick note on notation: In what follows, upper-
case letters, X, denote random variables, lowercase
letters, x, denote their realizations, and boldface,
x, indicates vectors. Probability distributions are
denoted by P, and probability density functions
(PDFs) by p.

3.1 Problem Formulation

Let N € N>1 be the number of test takers. For
every test taker we observe a random vector X, €
RM_ M € N>y, which is a collection of relevant
observations and features. In this paper, we do not
make further assumptions about the nature or mean-
ing of X or its elements. However, as discussed
above, in the intended application of (Al-assisted)
test fraud detection, X is assumed to consist of
high-level features that themselves are outputs of Al
systems (likelihood of Al-generated content, likeli-
hood of copy-typing, likelihood of impostor, etc.).

In addition to the feature vector, we assume that
a discrete random variable, G,, € {1,..., N},
N¢ € N> is observed for every test taker indicat-
ing membership in one of Ng groups. Every test
taker is assumed to belong to exactly one group.
These groups are typically defined by demographic
attributes such as gender, race, age, or first language.
However, depending on the application, one might
also consider externally defined groups, such as test
takers receiving a certain form or taking the test
remotely versus in a test center.

Finally, we assume that every test taker is either
fraudulent (“‘cheater””) or honest (“non-cheater”).
This is indicated by a binary random variable
C, € {0,1}, with C,, = 1 indicating a cheater
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and C,, = 0 indicating a non-cheater. Naturally,
C,, is assumed to be a latent variable.

Finally, we assume that the feature vectors of all
test takers are independent, conditioned on their
group membership and honesty. That is, there are
random variables X, G and C such that

X, [(Gn=9,Crn=0)2Z X |(G=g,C=c)

foralln < N, where 2 denotes equality in distri-
bution. Therefore, the index n is omitted in what
follows. The assumption may not always hold in
practice, but it offers a useful approximation that
suffices for the discussion at hand.

The detector we seek to design is assumed to
generate a random variable C' € {0,1} that indi-
cates whether the respective test taker is classified
as cheater (C’ = 1) or non-cheater (C’ = 0). Itis
defined by a function f: RM — [0, 1] that maps
a feature vector to a probability of classifying the
corresponding test taker as a cheater, that is:

P(C=1|X=2,G=9,C=c)=f(z). (1)

for all , g and c. Note that f is a function only
of the feature vector, x, but not of the group vari-
able, g, even though g is known. This is intentional,
as incorporating group information into a detector
is generally considered problematic. Most impor-
tantly, it can lead to cases in which two test takers
with identical feature vectors are classified differ-
ently depending on which group they belong to.
We next present the proposed detection objective:

m}lX P(C=1|C=1) st ()
P(C=1|G=g,C=0)<a VYg<Ng, 3)

where a € (0,1) is a free parameter. The con-
straints in (3) enforce an upper bound on the false
alarm rate (FAR) of each group. We refer to a de-
tector that satisfies these constraints as fair in the
sense of bounded FARs, or BFAR-fair for short. For
a given «, the objective in (2) picks the BFAR-fair
detector with the highest detection rate. This prob-
lem formulation will be discussed and justified in
more detail shortly.

3.2 Optimal Detector

The main result of this paper, a detector that is
optimal in the sense of BFAR fairness, is stated in
the following theorem:

Theorem 1. The detector that solves the problem
in (2) and (3) is given by

Cw _ O) gk*(m) < O’ (4)
17 g}\*(w) >0
where
ga(z) =p(z|C =1)
Ng
=Y Ap(@|G=9g,C=0) (5
g=1

and X* is such that

PIC*=1|G=¢,C=0] =« (6)
if Ay > 0and

PIC*=1|G=¢,C=0] <« (7)
if Ag = 0.
Proof. The statement in the theorem can be proven
using standard arguments in constrained optimiza-

tion. The Lagrange dual (Boyd and Vandenberghe,
2004, Ch. 5.2) of the problem in (2) is given by

i La(f, ), 8
min max (f,N) ®)

where

Lo(f,A\)=P[C=1|C=1]

Ng Ng
=Y MNPIC=1|G=g,C=01+> M.
g=1 g=1

By conditioning and marginalizing over X we can
write L, as

Lo(f.X) = [ f@gl@)tz +a3 Ay ©)

where g, is defined in (5) and we used (1) to write
the relevant probabilities in terms of f. Since L,
in (9) is linear in f, the maximizer of the inner
problem in (8) is given by

F) — 0, ga(x)<0
f() {1, g>\(ac)>0'

It remains to show that the optimal Lagrange mul-
tiplier satisfy (6) and (7). However, this property
follows immediately from the complementary slack-
ness condition of the KKT conditions (Boyd and
Vandenberghe, 2004, Ch. 5.5). Finally, note that for
f = f*and A = X\* the constraints in (3) are satis-
fied by construction, which in turn implies that the
solution of the dual problem also solves the primal
problem. (Boyd and Vandenberghe, 2004, Ch. 5.5)
This completes the proof. O

(10)
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3.3 Discussion

In this section, we discuss the problem formulation
in (2) and (3) in more detail and explain why we
consider BFAR fairness an appropriate and practi-
cal approach to promoting fairness in the context
of (Al-assisted) test fraud detection.

1.

BFAR fairness requires the detector to operate
at a false alarm rate (type II error probability)
below « for all groups. This means that, in the
spirit of Claim 1, there is a minimum perfor-
mance level that the detector needs to meet in
order to be considered fair.

In the spirit of Claim 2, BFAR fairness pro-
motes equality, but does not enforce it. Aslong
as the error probabilities are acceptable for all
groups, it does not detract from the detector’s
fairness if it performs better for some groups.

BFAR fairness deliberately constraints false
alarm rates instead of alternative metrics, such
as false discover rates or detection rates. This
is in the spirit of Claims 3 and 4. BFAR fair-
ness targets unfairness from the perspective
of honest test takers and, consequently, can
be communicated in a straightforward manner:
For an honest taker, the probability of being
falsely flagged by a BFAR-fair detector is at
most «, irrespective of their race/age/first lan-
guage etc. Appropriate values of e might be
subject to debate, but we believe that both the
target group and the concept of BFAR fairness
are clear and transparent.

BFAR fairness does not require groupwise de-
tection rates. This is in the spirit of Claim 5.
For any reputable test, cheaters are a small
minority of the test taker population. There-
fore, as explained in the discussion of Claim 35,
estimating groupwise detection rates is notori-
ously difficult for smaller groups. Moreover,
groups can sometimes lose their meaning if
the corresponding test taker committed fraud.
For example, a native French speaker might
copy an essay written by a native Mandarin
speaker. Therefore, BFAR fairness avoids
grouping cheaters in the first place.

By inspection of (4) and (5), the BFAR-fair
detector is implemented via a modified like-
lihood ratio test. More specifically, it com-
pares the likelihood of the observed feature
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vector under the cheater versus the honest hy-
pothesis. However, while a standard likeli-
hood ratio test marginalizes over the group
variables using their true probabilities, the
marginalization in the BFAR-fair test statis-
tic in (5) is performed with custom weights,
A*, that do not necessarily reflect the actual
group sizes. That is, the BFAR-fair detector is
implemented by re-weighting or oversampling
groups that would otherwise violate the false
alarm rate constraints. While details on how
to obtain these weights and how they enter
the test statistic may be more intricate, the un-
derlying idea of re-weighting or oversampling
is well-established, conceptually simple, and
easy to communicate—which aligns well with
the spirit of Claim 4.

However, BFAR fairness also has its shortcomings.
For example, two arguments against its use in oper-
ation are the following:

1. The detection rate and groupwise false alarm
rates can not be observed directly, but have to
be inferred based on some statistical model of
the test taker population. This aspect can be
argued to be in conflict with Claim 5. However,
as discussed above, the quantities of interest
were deliberately chosen to avoid problematic
corner cases or small-sample scenarios, and
we expect that they can typically be estimated
with reasonable accuracy.

2. The focus on honest test takers can conflict
with the goal of test integrity. Traditionally,
fraud detectors are tuned to meet specific de-
tection rate requirements, accepting poten-
tially high false alarm rates as a necessary cost.
From the BFAR perspective, one first deter-
mines a justifiable burden on honest test takers
and then accepts the corresponding detection
rates. On the one hand, this approach can be
difficult to defend in practice. On the other
hand, in the spirit of Claim 1, any detector
that can only satisfy integrity standards by im-
posing an unacceptable burden on honest test
takers may not be ready for operational use.

In summary, while BFAR fairness may not be suit-
able or implementable in every setting and appli-
cation, we believe that it is a useful, transparent,
practical and well-justified approach to promoting
fairness in test fraud detection.



Table 1: Groupwise false alarm rates of likelihood ratio
and BFAR-fair detector with detection rate of ~~ 87 %.

False Alarm Rate

Detector G=1 G=2 G=3
Likelihood Ratio 0.0416 0.1298 0.0825
BFAR-fair 0.0835 0.1011 0.0997

4 Numerical Example

In this section, we demonstrate the BFAR fair de-
tector proposed in the previous section with a nu-
merical example. Since it is merely supposed to
provide a proof of concept, we deliberately keep
this example simple. Specifically, we assume that
the test taker population consists of three equally
likely groups of interest (Ng = 3) and that two
features (M = 2) are observed for each test taker.
In line with the assumption that these features are
themselves probabilities of a test taker having com-
mitted fraud, likely generated by large, high-level
Al models, we assume that the feature vectors are
distributed on the unit square. We model these fea-
tures via a multivariate beta distribution in (Fauss,
2024). The exact parameters for each group are
given in Appendix A.

In order to establish a baseline performance, and
in light of Comment 5 in Section 3.3, we compare
the proposed BFAR-fair detector to a standard like-
lihood ratio test, that is, a detector with decision
rule

1D

where v € (0, 1) is a threshold that balances the
detection and false alarm rates.

We set the parameter of the BFAR-fair test to
« = 0.1, that is, the false alarm rate must not exceed
10 % for any group. The corresponding weights,
A*, were determined by numerically solving the
optimality conditions in Theorem 1 and are given
by A* =~ (0,0.7682,0.4266). The probabilities on
the left-hand sides of (6) and (7) were approximated
by sampling from the specified distributions. The
threshold v was selected so that the detection rate
of the likelihood ratio detector matches that of the
BFAR-fair detector, which was evaluated to 87 % in
this case. Again, we used sampling to approximate
this rate. The resulting groupwise false alarm rates
for both detectors are reported in Table 1.

By inspection, the false alarm rates of the likeli-
hood ratio detector vary substantially across groups,
ranging from just above 4 % for group 1 to nearly
13 % for group 2. In contrast, by design, the BFAR-
fair detector keeps all false alarm rates below the
10 % threshold. Note that while the false alarm
rates for groups 2 and 3 are close to this thresh-
old, the rate for group 1 is lower by a margin that
cannot be attributed to approximation errors alone.
This gap is consistent with the first element of A*
being zero, which indicates that the false alarm
rate constraint for group 1 is non-binding. In fact,
the BFAR detector uses effective group probabili-
ties/sizes of P(G = 1) =0, P(G = 2) ~ 0.64and
P(G = 3) ~ 0.26. In words, the assumed proba-
bility of group 3 remains close to its true value of %,
the probability of group 2 approximately doubles,
increasing its influence on the test statistic, while
the effective size of group 1 set to zero, effectively
ignoring it in the calculation of the non-cheater
likelihood. This implies that the false alarm rate
constraint for group 1 is redundant given the con-
straints for groups 2 and 3.

The decision boundaries of the two detectors are
shown in Figure 1. For illustration purposes, Fig-
ure 1 also shows samples of feature vectors drawn
from the respective distributions. Both decision
boundaries approximately follow the negative diag-
onal of the unit square, with a noticeable “bulge” in
the region where the feature distribution of honest
test takers in group 2 strongly overlaps with that
of the cheaters. However, the bulge is much more
pronounced in case of the BFAR-fair detector. This
increased lenience towards test takers in group 2 is
(partially) compensated by tightening the decision
boundary in the upper left region, which is unlikely
to contain members of group 2. This adjustment
explains the observed increase in false alarm rates
for test takers in groups 1 and 3.

In summary, at the same detection rate, the
BFAR-fair detector admits a significantly more uni-
form false alarm rate profile compared to a stan-
dard likelihood ratio test and keeps the “worst case”
false alarm rate across all groups below the targeted
10 %. On the downside, the overall false alarm
rate, which, in this case, is given by the average of
the groupwise rates, increases from 8.5 % to 9.5 %.
Whether or not this drawback outweighs the bene-
fits of the BFAR-fair detector has to be evaluated on
a case-by-case basis. We hope that the discussions
in Section 2 and 3.3 provide valuable guidelines for
this evaluation.
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Figure 1: Feature sample and decision boundaries of BFAR-fair and likelihood ratio detector.
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A Simulation Parameters

Let the parameters of the multivariate beta distri-
bution in (Fauss, 2024) be denoted by a, b and
3..In our simulation, the feature distribution of the
cheaters was assumed to be independent of the

group and given by:
C=1
a; = [4 4]
by =[2 2],
10
==l

The feature distribution of honest test takers was
modeled groupwise with parameters:

C=0,G=1:
ap] = [2 4
bOl = [6 4 )
1 -0.5
oy = [—0.5 1 ]
C=0,G=2
apn2 [4 2]
bz = [4 6],
1 05
202 = o5 1]
C=0,G=3
ap3 = [2 2]
bos = [4 4],
10
o3 = 1 J
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