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Abstract

This study illustrates how incorporating
feedback-oriented annotations into the scoring
pipeline can enhance the accuracy of automated
essay scoring (AES). This approach is demon-
strated with the Persuasive Essays for Rating,
Selecting, and Understanding Argumentative
and Discourse Elements (PERSUADE) corpus.
We integrate two types of feedback-driven an-
notations: those that identify spelling and gram-
matical errors, and those that highlight argu-
mentative components. To illustrate how this
method could be applied in real-world scenar-
ios, we employ two LLMs to generate annota-
tions — a generative language model used for
spell correction and an encoder-based token-
classifier trained to identify and mark argu-
mentative elements. By incorporating annota-
tions into the scoring process, we demonstrate
improvements in performance using encoder-
based large language models fine-tuned as clas-
sifiers.

1 Introduction

Automated Essay Scoring (AES) uses statistical
models to assign grades to essays that approximate
hand-scoring (Shermis and Hamner, 2013). Au-
tomated Writing Evaluation (AWE) is the provi-
sion of automated feedback designed to help stu-
dents iteratively improve their essays (Huawei and
Aryadoust, 2023). Initial attempts at AES and
AWE were based on Bag-of-Words (BoW) mod-
els that combine frequency-based and hand-crafted
features (Attali and Burstein, 2006; Page, 2003).
Well-designed features can serve two purposes: to
improve scoring accuracy and provide feedback to
students to improve their essays. These features
tend to be global features, such as the number of
words, sentence length, or readability metrics, and
are not based on fine-grained semantics or the or-
ganizational structure of essays.

Many modern AES engines employ transformer-
based Large Language Models (LLM)s (Rodriguez
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et al., 2019), which offer improved accuracy over
bag-of-words models. However, this comes at the
expense of reduced interpretability due to implicit
feature definition. Some researchers have sought
to combine LL.M-derived features with traditional
hand-crafted features to enhance accuracy and pro-
vide some level of interpretability (Uto and Uchida,
2020). LLMs also offer the ability to provide se-
mantically rich feedback, such as key phrases from
explainable AI (Boulanger and Kumar, 2020), an-
notation schemas for automated writing evaluation
systems (Crossley et al., 2022; Lottridge et al.,
2024), and the generation of detailed feedback
through LLM prompting techniques (Lee et al.,
2024). This study considers how these semanti-
cally rich features, designed primarily for provid-
ing feedback, can also enhance scoring accuracy.
We demonstrate our approach using the Persua-
sive Essays for Rating, Selecting, and Understand-
ing Argumentative and Discourse Elements (PER-
SUADE) corpus, which is a dataset of essays in
which the argumentative components of the essays
were annotated (Crossley et al., 2022). This dataset
also contains scores assigned against an openly
available holistic rubric ! and demographic data,
which allows us to test any AES system with re-
spect to operational standards, including the addi-
tion of potential bias (Williamson et al., 2012).
The two classes of features we consider are de-
rived from Grammatical Error Correction (GEC)
and Computational Argumentation. The goal of
GEC is to provide a mapping from a sentence that
may or may not contain errors in language, to a ver-
sion with the same meaning with fewer language
errors (Martynov et al., 2023), while computational
argumentation seeks to isolate and analyze the set
of argumentative components of an essay (Stab
and Gurevych, 2014a). For these features to be
incorporated into an AES pipeline, we leverage
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the ability of language models to accurately an-
notate argumentative components (Ormerod et al.,
2023) and correct spelling and grammatical errors
(Rothe et al., 2021). These spelling and grammati-
cal corrections can then be annotated and classified
to provide locally defined information on conven-
tions (Korre and Pavlopoulos, 2020). Once these
annotations have been derived, we incorporate the
annotations using Extensible Markup Language
(XML) for easy parsing, which facilitates natural
integration into an AWE system based on essays
encoded in HTML.

We must also be cognizant that increased au-
tomation can exacerbate biases, especially for En-
glish Language Learners (Ormerod, 2022a). For
this reason, we also examine whether this pipeline
leads to greater bias by examining the standardized
mean difference for the relevant subgroups.

In §2, we describe our methods, including the
data used, the models, and the approach. The per-
formance of the annotation models and the scoring
models are presented in §3. We will discuss the
findings and suggest future directions in §4.

2 Method

2.1 Data

The PERSUADE corpus is an openly available
dataset of 25,996 argumentative essays between
grades 6 and 12 on a range of 15 different topics
(Crossley et al., 2022). The essays are responses to
prompts that are either dependent on source mate-
rial, or independent of source material. The set has
been divided into a training set and a test set by the
original authors. An outline of the composition of
these two sets is presented in Table 1.

2.1.1 Annotations

A key characteristic of the corpus that makes it
useful from the standpoint of computational argu-
mentation is the annotations. The argumentative
clauses of each essay were identified and classified
into one of seven classes:

1. Lead (L): An introduction that begins with a
statistic, a quotation, a description, or some
other device to grab the reader’s attention and
point toward the thesis.

Position (P): An opinion or conclusion on the
main question

. Claim (C1): A claim that supports the posi-
tion
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Avg.
Grade Train Test Total | Len.
6 688 684 1372 | 294.6
8 5614 4015 9629 | 3749
9 1831 235 2066 | 426.6
10 4654 3620 8274 | 407.6
11 1863 1220 3083 | 610.9
12 243 161 404 | 469.0
Unk. 701 467 1168 | 452.5
Total 15594 10402 25996 | 418.1

Table 1: The grade level and length statistics for the
training and testing splits for the PERSUADE corpus,
and the counts of essays that are responses to prompts
that are dependent (Dep.) on source material and inde-
pendent (Ind..) of source material.

Counterclaim (C2): A claim that refutes an-
other claim or gives an opposing reason to the
position

. Rebuttal (R): A claim that refutes a counter-
claim

Evidence (E): Ideas or examples that support
claims, counterclaims, rebuttals, or the posi-
tion

Concluding Statement (C3): A concluding
statement that restates the position and claims

There are an average of 11.0 annotated compo-
nents in each essay. Some descriptive statistics on
the distribution of applied labels can be found in
Table 2. Among the labels, the most frequently
applied labels are Claims and Evidence and the
least frequently applied labels are Counterclaims
and Rebuttals. In accordance with state standards,
the development of a counter-argument in persua-
sive essay writing is developed at grades eight and
beyond, hence, Counterclaims and Rebuttals are
rarely applied at the sixth-grade level.



6 8 9 10 11 12 Score| 1 2 3 4 5 6
L 43 45 47 59 60 5.0 % ‘ 4.0 219 322 259 127 34
P 98 90 91 99 70 83
Cl 272 277 276 298 312 343 Table 3: The score distribution for the PERSUADE
c2 21 28 52 25 53 50  dataset
R 1.5 22 37 17 43 20
E 273 257 208 287 234 275 The key differentiators in the rubric between
¢ 80 75 76 87 69 75 high and low scoring essays are the clarity of

Table 2: Some descriptive statistics regarding the distri-
bution of annotations with respect to the various grade
levels.

We did not use the effectiveness scores for the
discourse elements in this study. This was a con-
scious choice due to the fairly low agreement be-
tween the effectiveness scores assigned by human
raters (x = 0.316). Similar attempts at judging the
quality of arguments have also yielded low agree-
ment rates (Gretz et al., 2019; Toledo et al., 2019).

2.1.2 Scores

Each essay was graded against a standardized SAT
holistic essay scoring rubric, which was slightly
modified for the source-based essays 2. Based on
the rubric, a high-scoring essay (5-6) demonstrates
mastery through effective development of a clear
point of view, strong critical thinking with appro-
priate supporting evidence, well-organized struc-
ture with coherent progression of ideas, skillful
language use with varied vocabulary and sentence
structure, and minimal grammatical errors. In con-
trast, a lower-scoring essay (1-3) exhibits signifi-
cant weaknesses: vague or limited viewpoint, weak
critical thinking with insufficient evidence, poor
organization resulting in disjointed presentation,
limited vocabulary with incorrect word choices,
frequent sentence structure problems, and numer-
ous grammatical errors that interfere with meaning.

The score distribution is fairly regular, with the
highest and lowest scores being the rarest. The full
score distribution can be found in Table 3. The re-
ported inter-rated reliability, as reported in (Cross-
ley et al., 2022), is given by k = 0.745 (see (6)).

“https://www.kaggle.com/datasets/davidspencer/persuade-
rubric-holistic-essay-scoring
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thought, quality of supporting evidence, organiza-
tional coherence, and technical proficiency in lan-
guage use. The premise behind the approach is that
organizational coherence and technical proficiency
in language are both made clearer by highlighting
the argumentative components and conventions-
based errors. Provided our pipeline for annotating
essays is sufficiently accurate, these annotations
should help the engine align scores with the rubric.

2.1.3 Augmented Data

The input into the scoring model was augmented
to use the annotation information using Extensi-
ble Markup Language (XML). We have an XML
tag per argumentative component type. To anno-
tate conventions errors, we used the ERRANT tool
(Bryant et al., 2017). The ERRANT tool classi-
fies errors into 25 different main types, with many
of these categories appearing with three differ-
ent subtypes: "R" for replace, "M" for missing,
and "U" for Unnecessary. For example, one cate-
gory, "PUNCT", refers to a punctuation error. We
can either replace, remove, or add punctuation to
a sentence to make it correct, corresponding to
"R:PUNCT", "U:PUNCT", and "M:PUNCT", re-
spectively. We refer to (Bryant et al., 2017) for a
full explanation of the categories.

To simplify the categories for annotation pur-
poses, we divide all possible ERRANT annotations
into three labels: <Spelling >, <PunctOrth >,
and <Grammar >. The <Spelling > label is
applied to the subcategories of "SPELL", the
<PunctOrth > is applied to the subcategories of
"PUNCT" and "ORTH", while all other categories
are designated as having labels of <Grammar >.
This means that we have a total of 10 annotation la-
bels: 7 associated with argumentative components
and 3 for convention errors. An example of the in-
put into the model is shown in Figure 1. Since we
do not have human-annotated data, the augmented
data relies on the output from an annotation model
and a spell-correction model, both of which can
contribute to annotations that are less accurate.



<Lead>There can be many <Spelling>
advanteges</Spelling> and <Spelling>
disadvanteges</Spelling> to having a

car but the <Spelling>advanteges
<Spelling> to not having a <Grammar>card
</Grammar> greatly outweighs having one.
</Lead>There can be many reasons why not
having a car is great but the main three
are <Claim>it reduces pollution reduces
stress</Claim> and <Claim>having less
cars reduces the <Spelling>noice
<Spelling> pollution in a city. </Claim>
Can you imagine a place with no cars?

Figure 1: An example of the model input using an ex-
cerpt of an annotated essay.

Demographics: The last detail of this dataset,
which makes it exceptionally well-suited to the
investigation of AES in an operational setting, is
the accompanying demographic information. This
allows us to investigate any additional potential
bias introduced in modeling. We measure bias
by the original operational standards defined by
Williamson et al. (Williamson et al., 2012). While
this standard is important for many reasons, there
have been numerous alternative approaches to bias
(Ormerod et al., 2022).

key  Subgroup Train  Test

WC  White/Caucasian 7012 4559

HL  Hispanic/Latino 3869 2691

BA  Black/African 2975 1984
American

AP Asian/Pacific Islander 1072 671

Mix Two or more 598 424

Nat  American Indian 68 73
Alaskan Native

ELL English Language 1330 914
Learner

DE  Disadvantaged 5391 4252
Economically

ID Identified Disability 1516 1172

Table 4: The main subgroup populations in the train and
test set.

The population of various subgroups in the train
and test split, as presented in the data, have been
outlined in Table 4.
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2.2 Modeling details

Since the advantages of the transformer were first
celebrated (Vaswani et al., 2017) and BERT was
trained (Devlin et al., 2018), many of the state-
of-the-art results can be attributed to transformer-
based LLMs (Wang et al., 2019). For this reason,
we restrict our attention to fine-tuned transformer-
based LLMs, whose architectures can be described
as encoder, decoder, or encoder-decoder models
(Vaswani et al., 2017). As a general rule, encoder
models excel in natural language inference tasks
(Devlin et al., 2018), decoder models excel in gen-
erative tasks (Radford et al., 2018), and encoder-
decoder models excel in translation, where the task
benefits from representation learning (Raffel et al.,
2020).

2.2.1 Annotation model

The task of annotations can be framed as a token-
classification task, where each token is classified
into one of eight possible labels, one for each possi-
ble argumentative component in addition to one ex-
tra label for unannotated regions. This task lends it-
self to an encoder-based model trained as a masked
language model like BERT (Devlin et al., 2018).
Since BERT, arguably the best performing series
of models are Microsofts’ DeBERTa model series
(He et al., 2021). The problem with these models
is that many of the essays exceed the 512 token
limit after tokenization. For this reason, we turn to
a newly developed long context model known as
ModernBERT (Warner et al., 2024).

Aside from some differences in the choices of
normalization layers (Xiong et al., 2020), the use
of gated activation functions (Shazeer, 2020), and
more extensive pretaining, the biggest difference
in the architecture is the use of Rotational Posi-
tional Embeddings (RoPE) (Su et al., 2024). To
understand how RoPE works, in the original im-
plementation of attention, the output of attention
is given as a function of the key vectors, k;, query
vectors, ¢;, and value vectors, vy, given by

eXP(qukn/\/a) _
> exp(ghk;/Vd)

where key, query, and value vectors are functions
of the embedding vectors at the first attention layer.
The standard construction is that these functions
be affine linear functions (linear with a bias term),
where the positional embedding is the addition of
token embeddings and some learnable positional

ey
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embedding terms. Instead of adding a vector, we
define the query and key vectors using

km = R& , Wiam
2

where Rde,m a block-diagonal matrix of 2-

dimensional rotation matrices, 74, given by

d
dm = R@,quxma

3)

Rém = diag(rme,, - - - ,ngd/z),
- (COS(b —sin (b)
¢~ \sing cosop )’

with 0; = 9~2(0-1/d The term ¥ is called the
ROPE Theta. The key idea is that this transforma-
tion encodes positional information by rotating to-
ken embeddings in a particular manner that allows
the model to understand relative distances between
tokens rather than just absolute positions.

The ModernBERT model, like BERT, is trained
as a masked-language model with an encoder and
a token classification head. The structure of the
encoder includes multiple layers of self-attention
in which the attention layers alternate between ro-
tary embeddings with base ¥ = 1 x 10* and ¥ =
1.6 x 10°. However, the training was done in two
phases. By adjusting the value of ¢, researchers
developed a way to scale the context length of the
RoPE embedding (Fu et al., 2024), which has been
applied to many other models (Al@Meta, 2024).
Using this technique, the ModernBERT model was
pretrained on 1.7 trillion tokens with a context
length of 1024 with a ¥ = 10~*, which was ex-
tended to 8196 by additional training with altered
layers in which 9 = 1.6 x 10°. In this manner, one
way of thinking of the change in ¥ values in the
encoder is that the attention mechanism alternates
between global and local attention.

It should be noted that many architectures have
attempted to circumvent the context limitation,
such as the Reformer (Kitaev et al., 2020), Long-
former (Beltagy et al., 2020), Transformer-XL (Dai
et al., 2019), and XLNet (Yang et al., 2019), to
name a few. Many of these solutions use some sort
of sliding context window and/or a recurrent adap-
tation of the transformer architecture. Extending
the context using rotary positional embeddings is
more computationally efficient and effective at scal-
ing to large context lengths, making ModernBERT
a more appropriate choice in this context.

The pretrained ModernBERT model was modi-
fied for annotation by adding a classification head
to the encoder. The annotator model possesses a

4
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classification head with 9 output dimensions: 7
for argumentative component labels, 1 for unanno-
tated text, and 1 for padded variables (which can
be disregarded). The output represents log proba-
bilities for each label. This model was trained to
predict the annotations for each token in the train-
ing set using the cross-entropy loss function and
the Adam optimizer with a learning rate of le-6
over 10 epochs. We simplified the training by not
having a development set.

2.2.2 Spelling and Grammar

The most successful and accurate way to perform
GEC has been to utilize representation learning,
hence, we seek an encoder-decoder model, which
is a sequence-to-sequence model (Sutskever et al.,
2014). The premise behind this method is that we
are able to use the encoder to map sentences to
a vector space that encodes the semantic informa-
tion, while a decoder maps from the vector space
to grammatically correct text (Rothe et al., 2021).
This suggests we use a T5 model, pretrained as
a text-to-text transformer and fine-tuned to per-
form grammatical error correction (GEC) (Mar-
tynov et al., 2023). Once the correction is defined,
the original sentence and the correction are used as
input into the ERRANT tool to produce a classified
correction (Korre and Pavlopoulos, 2020).

2.2.3 Scoring Models

Given the model input includes both the essay
and any annotations, we require long-context mod-
els. While we have experimented with the use of
QLoRA-trained generative Models (Ormerod and
Kwako, 2024), to simplify the presentation, we use
the ModernBERT model for scoring in addition to
annotation. In this case, the scoring models were
constructed by appending a linear classification
head to the ModernBERT model with 6 targets,
one for each score point.

2.3 Evaluation

We have two models to evaluate: an annotation
model and a classification model. There are many
challenges to assessing annotations for argumen-
tative clauses. We need to carefully define what
it means for a particular clause to be identified
and correctly classified, given that certain iden-
tifications may not perfectly align with the pre-
dicted components. For holistic scoring, there are
many more well-defined and accepted standards
presented by Williamson et al. (Williamson et al.,
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Figure 2: A diagram representing the scoring pipeline.

2012).

2.3.1 Annotator Evaluations

The standard described by the annotated argumen-
tative essay dataset (Stab and Gurevych, 2014a,b)
is reduced to a classification of IOB tags, where
the governing statistic is an F1 score. Our guiding
principle is the original rules for the competition?,
in which we use the ground truth and consider a
match if there is over 50% overlap between the two
identified components. Given a match using this
rule, matching the argumentative type is considered
a true positive (TP), unmatched components are
considered false negatives (FN), while predicted la-
bel mismatches are considered false positives (FP).
The final reported value is the F1 score, given by
the familiar formula

2TP

F1 = .
2rP+ FP+ FN

4)

We can compare agreements for each label applied
based on the ground truth. In this way, for each type
of argumentative component type, we have a cor-
responding F1 score. In accordance with the rules
of the competition, the final F1 statistic of inter-
est is the macro average, given by the unweighted
average over all the classes.

3https://www.kaggle.com/c/feedback-prize-
2021/overview
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2.3.2 Error Annotations

When it comes to annotating errors in the use of
language, since the errors in the essays were not
explicitly annotated by hand, we have no direct
way of evaluating the accuracy of any annotations.
We can only rely on the accuracy of the individ-
ual components. The TS model we used has been
evaluated in (Martynov et al., 2023) with respect to
the JFLEG dataset (Napoles et al., 2017) and the
BEAG60k dataset (Jayanthi et al., 2020). According
to those benchmarks, the accuracy of the model
used is comparable to ChatGPT and GPT-4.

2.3.3 Automated Scoring Evaluations

For the scoring model, we use the standards
for agreement specified by Williamson et al.
(Williamson et al., 2012). The first and primary
statistic used to describe agreement is Cohen’s
quadratic weighted kappa (QWK) (Cohen, 1960).
Given scores between 1 and N, we define the
weighted kappa statistic by the formula

_ 2 wiiOi

2 wij Eij
where O;; is the number of observed instances
where the first rater assigns a score of ¢ and the
second rater assigns a score of j, and E;; are the
expected number of instances that first rater assigns
a score of ¢ and the second rater assigns a score
of j based purely on the random assignment of
scores given the two rater’s score distribution. This
becomes the QWK when we apply the quadratic

weighting: i
()

(N= 12 (N
The QWK takes values from —1 and 1, indicating
perfect disagreement and agreement, respectively.
It is often interpreted as the probability of agree-
ment beyond random chance. The second statistic
used is exact agreement, which is viewed as less
reliable since uneven score distributions can skew
it.

The last statistic used is the standardized mean
difference (SMD). If y; represents the true score
and y, represents the predicted score, then the
SMD is given by

k=1

(6)

iy —

BT
V(o (p)? +o(u)?)/2

This statistic can be interpreted as a standardized
relative bias. A positive or negative value indi-
cates that the model is introducing some positive or

SMD(yt,yp) = )




negative bias in the modeling process, respectively.
Furthermore, when we restrict this calculation to
scores for a specific demographic, assuming that
demographic is sufficiently well-represented, the
SMD is considered a gauge of the bias associated
with the modeling for that subgroup.

3 Results

3.1 Annotation Accuracy

Using the 50% overlap rule, we present the number
of true positives, false positives, and false nega-
tives, and the resulting F1 score for each of the
component types, excluding unannotated. These
results are presented in Table 5.

TP FP  FN F1
L 4332 270 95 0.960
P 6359 832 205 0.924
Cl1 | 20764 2057 1094 0.929
C2| 1839 654 164 0.818
R 1443 495 106 0.827
E | 18838 1653 1299 0.927
C3 | 5874 321 321 0.950

Table 5: The number of true positives (matched compo-
nents and labels), false positives (matched components,
unmatched labels), and false negatives (unmatched com-
ponents) between the true annotations and the predicted
annotations by component type.

These scores are exceptionally high, with the
lowest performance given by the annotator’s ability
to discern counterclaims and rebuttals. As an in-
dication of the annotated errors in language, the
pipeline highlighted 2795 spelling errors, 1401
grammatical errors, and 201 punctuation or orthog-
raphy errors. The pipeline used does not seem to
be uncovering as many errors as expected.

3.2 Scoring Accuracy

Given that the classification head is typically
randomly initialized, we were also interested in
whether these results were stable. We trained the
scorer 10 times and reported the average, minimum,
and maximum agreement levels for each agreement
statistic we listed above. These statistics can be
found in Table 6.

All the models performed well above the human
baseline. Out of the 10 separate trials, no model
trained on the full-text alone scored as accurately
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as any of the models trained on the component an-
notated data or the data with both argumentative
components and language errors annotated. An
interesting observation is that the SMD, as calcu-
lated by (8), is only positive for models trained
on the combined annotations, and that the models
trained on component annotated text showed the
most controlled SMDs.

3.3 Potential bias

To investigate the possibility of potential bias, we
consider the SMD defined on subgroups. These
SMDs are presented in Table 7.

Key Orig. Comp. Error Comb.
Female 0.12 0.11  0.12 0.06
WwC 0.09 0.11  0.08 0.15
HL -025 -025 -024 -0.19
BA -0.17  -0.16 -0.20 -0.17
AP 0.44 045 053 0.52
Nat -043 041 -044 -0.21
Mix 0.08 0.07 0.12 0.01
ELL -0.59  -0.60 -0.62 -0.54
DE -036  -035 -037 -0.32
ID -0.51 -048 -049 -0.42

Table 7: The bias in the various subgroups as measured
by SMD for the particular subgroup.

While the resulting bias was higher than ex-
pected, a cursory look seems to suggest that the
use of combined annotations is mitigating some of
the biases rather than exacerbating them.

This work is one of a number of works that high-
light the growing need to address the bias intro-
duced by automation, especially for ELL students
(Ormerod et al., 2022). This suggests we need to
apply bias mitigation, which could be of the form
of a regression-based system with adjusted cut-off
points (Ormerod, 2022b), or some sort of reinforce-
ment learning mechanism.

4 Discussion

The results of this study demonstrate that incor-
porating feedback-oriented annotations into auto-
mated essay scoring (AES) pipelines can signifi-
cantly improve scoring accuracy and provide mean-
ingful, interpretable insights for students. The work
of Uto and Uchida (2020) suggests this is also true
for traditional global features. What we propose



QWK Exa SMD
Avg Min Max | Avg Min Max | Avg Min Max
Full Text Only 0.860 0.859 0.862 | 672 669 67.5|-0.023 -0.027 -0.018
Component Annotated | 0.868 0.867 0.870 | 689 68.6 69.1 | -0.013 -0.017 -0.009
Error Annotated 0.858 0.856 0.859 | 67.1 669 67.5|-0.025 -0.028 -0.022
Combined Annotations | 0.866 0.867 0.870 | 684 68.0 68.9 | 0.021 0.016 0.025
Human Baseline 0.745

Table 6: The average QWK, Exa, and SMD results on the test set for over 10 trials of training the scoring model.

is a realignment of AES to incorporate AWE ele-
ments so that we can provide students with more
than just a score.

One of the most critical findings from this study
concerns the potential for introduced bias, particu-
larly among subgroups such as English Language
Learners (ELLs). Our SMD analysis revealed no-
table disparities across demographic groups, echo-
ing previous research on the disproportionate im-
pact of automated systems on linguistically diverse
populations. While the current pipeline demon-
strates strong overall performance, these disparities
underscore the importance of ongoing bias mitiga-
tion strategies. However, we know that SMDs can
be unreliable, especially for subgroups with smaller
populations. Future work should explore meth-
ods such as regression-based adjustments, fairness-
aware training techniques, or reinforcement learn-
ing approaches that explicitly account for subgroup
characteristics.
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