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Abstract
Aligning test items to content standards is a critical
step in test development to collect validity evidence
based on content. Item alignment has typically been
conducted by human experts, but this judgmental
process can be subjective and time-consuming. This
study investigated the performance of fine-tuned small
(SLMs) for

alignment using data from a large-scale standardized

language models automated item
reading and writing test for college admissions.
Different SLMs were trained for both domain and skill
alignment. The model performance was evaluated
using precision, recall, accuracy, weighted F1 score,
and Cohen's kappa on two test sets. The impact of
input data types and training sample sizes was also
explored. Results showed that including more textual
inputs led to better performance gains than increasing
For comparison,

sample size. classic suprvised

machine classifiers were trained on

Fine-tuned SLMs

consistently outperformed these models, particularly

learning
multilingual-ES  embeddings.
for fine-grained skill alignment. To better understand
model classifications, semantic similarity analyses
Kullback-Leibler

divergence of embedding distributions, and two-

including  cosine  similarity,
dimension projections of item embeddings revealed
that certain skills in the two test datasets were
semantically too close, providing evidence for the
observed misclassification patterns.
1. Introduction

Item alignment is part of alignment defined
as the consistency among assessments, content
standards, and instructional practices (Smith &
O’Day, 1990; Webb, 1997). The degree of item

alignment to content standards is critical evidence
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for validity based on content. Item alignment is
typically conducted manually by content experts.
The process involves reviewing test items one by
one and determining which content standards
each item aims to measure. Experts rely on their
subject-matter  expertise and professional
Thus, this

approach has clear limitations. First, manual

judgement to assess alignment.

alignment is time-consuming and labor-intensive
especially for large-scale assessments (Bier et al.,
2019; Ding et al., 2025; Zhou & Ostrow, 2022).
Second, reliance on expert judgement introduces
subjectivity (Camilli, 2024; Khan et al., 2021).
Third, as test items are designed to measure more
complex domains and skills, incorporating
multiple skills, domains or hierarchical label
structures makes manual methods increasingly
insufficient (Li et al., 2024).

To address these limitations, researchers
started exploring using machine learning and
natural language processing (NLP) techniques.
These approaches aim to enhance consistency,
reduce labor, and enable scalability in large-scale
assessment (Qu et al., 2011). Broadly, automated
item alignment methods can be classified into two
categories: feature-based models and language
model-based approaches. Feature-based methods
can be further divided into two categories:
linguistic feature-based models and embedding-
based models.

Recently, advances in transformer-based
language models have introduced new modeling
approaches to automated item alignment. These
include small language models (SLMs), such as

BERT, RoBERTa, and DeBERTa, which are often
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fine-tuned on labeled items to directly map item
text to the content standards (e.g., Ding et al.,
2025; Shen et al., 2021; Tan & Kim, 2024).
Another emerging trend involves large language
models (LLMs), such as GPT-4, which use
prompting or fine-tuning strategies to classify or
generate labels without additional training (Li et
al., 2024; Liu et al., 2025; Moore et al., 2024).

2. Related Work

Automated item alignment is typically
formulated as a classification task, where the goal
is to assign items to predefined content standards
based on item text. Early studies relied on feature-
based models. In supervised or unsupervised
classification tasks, test items were mapped to
one or more content labels using classifiers such
as support vector machines (SVM; Karlovcec et
al., 2012; Yilmazel et al., 2007), Latent Dirichlet
Allocation (LDA; Anderson et al., 2020), and
XGBoost (Tian et al., 2022). For instance,
Karlovcec et al. (2012) applied SVM and K-
nearest neighbor (KNN) to classify ASSISTments
math items into 106 content labels, while Pardos
and Dabu (2017) used skip-gram and bag-of-
words features for item alignment to 198 content
labels. Extracted linguistic features included bag-
of-words, TF-IDF, and keyword overlaps, which
did not well capture contextual or sequential
information.

With the rise of neural network models,
convolutional neural networks (CNNs; Kim,
2014) and recurrent neural networks (RNNs;
Schuster & Paliwal, 1997) were adopted.
BiLSTM, a type of RNN, was particularly
effective for sequence modeling. Sun et al. (2018)
showed that BiLSTM outperformed classic
methods (e.g., SVM) in English question
alignment with an F1 score of 0.562 vs. 0.447.
More approaches employed embeddings
extracted from Word2Vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), or contextual
embeddings from models like BERT (Devlin et
al., 2019). For example, Tian et al. (2022) used
Word2Vec embeddings and keyphrase features
with XGBoost to align high school math items,
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outperforming baseline models such as VSM,
SVM, NN, and LSTM.

SLMs such as BERT and RoBERTa have
been applied in item alignment using fine-tuned
methods. Shen et al. (2021) found that fine-tuned
BERT outperformed both classic classifiers and
BERT model without fine-tuning. Khan et al.
(2021) developed the Catalog system to align
items with the NGSS standards using BERT and
GPT-based semantic similarity measures. Tan and
Kim (2024) compared FastText+XGBoost, fine-
tuned BERT-base/large, RoBERTa-large, and
GPT-3.5 that
RoBERTa-large consistently performed best.
Similarly, Ding et al. (2025) proposed a
RoBERTa-based model, which outperformed
BiLSTM, BiGRU, and BERT in math item
alignment.

LLMs like GPT-3.5 and GPT-4 have also
been explored for item alignment via prompting.
Wang et al. (2023) used GPT-4 to classify medical
test items using zero- and few-shot prompts. Li et
(2024)
classification task, prompting LLMs with item

with  prompting, reporting

al. explored alignment as binary
text and candidate knowledge descriptions along
with a self-reflection step that allow the model to
re-evaluate and revise its initial prediction. Their
results showed that GPT-4 performed best,
achieving over 90% accuracy.
(2024) used GPT-4

knowledge

Moore et al.
to directly generate

components, simulating expert
annotation and even constructing hierarchical
ontologies.

In summary, feature-based models extract
linguistic features or use embeddings as features
but often lack task adaptation. Fine-tuned SLMs,
though less explored, offer an efficient middle
ground between classic machine learning models
and costly LLMs, with less privacy concern and

better scalability for large-scale assessment

contexts.
To address gaps in the literature on
automated item alignment in large-scale

educational assessment, this study investigates
how SLMs can be fine-tuned for item content



alignment in large-scale reading and writing
assessments. Specifically, this study addresses the
following research questions:

1. How do sample size and input data type affect
the item alignment accuracy?

2. How do different SLMs perform in aligning
test items to skill and domain categories?

3. Where do misclassifications occur?

3. Methods

3.1 Data

This study used 1270 items from the SAT
Reading and Writing (RW) section, with 80% for
training and 20% for testing. Additionally, 1052
items from the PSAT 8/9 RW section were used
as an external test set to evaluate fine-tuned
models’ generalizability. Each item includeed a
prompt, a question, four answer options, the
correct answer or key, and a rationale explaining
both correct and incorrect answers. Some items
also contain graphs or tables, which were
converted into text descriptions and LaTeX
respectively. Each item measures one of the 10
skills nested under 4 content domains including
Standard English Conventions, Information and
Ideas, Expression of lIdeas, and Craft and
Structure. Skill labels include Boundaries, Form,
Structure and Sense, Command of Evidence,
Central Ideas and Details,
Transitions, Rhetorical Synthesis, Words

Context, Text Structure and Purpose, and Cross-

Inferences,

in

Text Connections.
3.2 Sample Size and Input Data

To investigate the impact of sample size and
input data on item alignment accuracy, the study
experimented with different sample sizes and
input data in the training dataset. BERT-base was
first used for such exploration. Specifically, this
study first sampled 500, 750, and 1000 items from
the full 1270 dataset. Each subset was further split
into training and test datasets using a ratio of 80%
vs 20%. Their training datasets contained 400,
600, and 800 items respectively. The models’
performance was evaluated on test sets. Nine
input data types were experimented as listed
below:

21

. Prompt only

. Prompt+table+figure

. Prompt+table+figuretoptions

. Prompt+table+figure+options+key

. Prompt+table+figuretoptionstkey+rationale
. Prompt-+table+figuret+question

. Prompt-+table+figure+questiont+options

. Prompt+table+figuret+question+options+key

O 0 9 N L»i A W N~

. Prompt+table+figuret+question+options+key
+rationale
3.3 Models

To answer the second question about SLMs
performance in item alignment, several SLMs
were fine-tuned. This study explored both SLM-
based modeling approaches and embedding-
based classic supervised machine learning
models. The 12 fine-tuned SLMs include BERT-
base, BERT-large (Devlin et al., 2019), ALBERT-
base (Lan et al., 2019), DistilBERT-base (Sanh et
al., 2019), All-DistilRoBERTa (Liu et al., 2019;
Sanh et al., 2019), ELECTRA-small, ELECTRA-
base (Clark et al., 2020), RoBERTa-base,
RoBERTa-large (Liu et al., 2019), DeBERTa-
base (He et al., 2020), DeBERTa-large (He et al.,
2021), and ConvBERT (Jiang et al., 2020).
For comparison, embeddings from multilingual-
ES5-large-instruct model were extracted using the
CLS token and used to train supervised machine
learning models including logistic regression,
SVM, Naive Bayes, Random Forest, Gradient
Boosting, XGBoost, LightGBM, MLP, and
KNN.
3.4 Model Fine-Tuning

Prior to setting up the training configuration,
this study conducted a series of exploratory
experiments to evaluate the effects of different
hyperparameter settings. Specifically, this study
compared multiple learning rates (le-5, 2e-5, and
3e-5), warm-up ratio (0 and 0.1), learning rate
scheduler (linear and cosine), and checkpoints
(epoch-wise and step-wise). Based on model
performance with different settings, the following
configuration was selected for all models. That is,
models were trained with 15 epochs using the
AdamW optimizer, a learning rate of 2e-5, a batch



size of 8, and a linear learning rate scheduler with
a warmup ratio of 0.1. Each SLM was fine-tuned
separately for the domain and skill alignment.
Item input texts were tokenized using the
tokenizer of each SLM and truncated to a
maximum length of 512 tokens. The model
performance was evaluated in terms of accuracy,
recall, precision, weighted F1 score, and Cohen’s
kappa coefficient on both the SAT test dataset and
the PSAT items.
3.5 Exploration for Misclassification

To understand the underlying causes of
model misclassification, this study used a range
of embedding-based analytical techniques. First,
this
similarity between the selected skill groups with

study calculated all-pairwise cosine
high rates of observed misclassification to
the

embedding space. Second, To visualize the

quantify their semantic proximity in
structure of the embeddings, this study applied

three common dimensionality reduction
techniques, including principal component
analysis (PCA), t-distributed stochastic neighbor
embedding (t-SNE), and isometric mapping
(ISOMAP), to project the item embeddings from
the best performing models into a two
dimensional space for the clustering patterns.
Third, KL divergence was calculated between
skill-specific embedding distributions. Lower KL
scores suggest semantically similarity.

4. Results

4.1 Impact of Sample Size and Input Data
This study examined how input data and sample
size affected item alignment accuracy using the
BERT-base model. As shown in Table A.1 and
A.2 in appendix, input data had a more substantial
impact than sample size on both skill and domain
alignment performance. Across all sample sizes,
of

"prompt_only" consistently yielded the lowest

models trained with minimal inputs

performance, while including more item
components such as options, keys, rationales, and
question improved model performance. For
instance, in the skill alignment task with 400

training samples, weighted F1 score increased
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from 0.664 with “prompt_only” to 0.919 with all
input data. However, the accuracy increase was
not monotonic along with adding more input data.
For example, when 400 items were used for
training, adding the rationale led to decreased
weighted F1 from 0.981 to 0.935.

It is worthy of note, adding question resulted
in a sharp jump in alignment accuracy. For
example, when 400 items were used for training,
weighted F1 score for skill alignment increased
from 0.664 with "prompt only" to 0.893 with
This

increase was due to that many items in the same

"prompt_table figure qtext". dramatic
domain such as "Standard English Conventions"
shared nearly identical question templates like
"Which choice completes the text so that it
of Standard
English?" These question templates were likely to

conforms to the conventions
act as shortcut features, allowing models to
memorize superficial patterns rather than learn
the semantic relationship between content and
skill or domain labels. To mitigate this issue, all
questions was removed from the input data.
In contrast, increasing the training sample
from 400 800 yielded modest
improvement, particularly when compared with

size to
the increase achieved through adding input data.
skill with
“prompt_only,” weighted F1 score improved
from 0.664 for a sample size of 400 to 0.787 for a
sample size of 600, whereas the same level of

For example, for alignment

performance increase could be surpassed by
adding more input data even with small sample
sizes. A similar pattern was observed for domain
alignment even though weighted F1 score was
0919 with a size of 400
“prompt_only” but F1 score increased to 0.927

sample and
with a sample size of 600 and all input data. These
findings suggested that though larger training
sample size increased accuracy, the more input
data led to larger improvement in alignment
accuracy more effectively.
4.2 The Impact of Hyper-Parameters for
Fine-Tuning SLMs

To evaluate the effect of fine-tuning settings,



a full factorial experiment was conducted using
BERT-base with different combinations of
learning rate (le-5, 2e-5, Se-5), warm-up ratio
(0.0, 0.1), learning rate scheduler (linear, cosine),
and checkpoint strategy (epoch-wise, step-wise).
The results showed that BERT-base model
maintained strong performance across all hyper-
parameter combinations. Weighted F1 scores,
accuracy, and Cohen’s kappa remained above
0.98 in nearly all cases, indicating a high degree
of robustness to hyper-parameter choices.
4.3 Model Performance Comparison

Tables A.3 and A.4 in Appendix compared
model performance on the SAT test set for skill
and domain alignment. Across all metrics, fine-
tuned SLMs significantly outperformed classical
embedding-based classifiers. For skill alignment,
ConvBERT and RoBERTa-large achieved perfect
scores on all metrics, and even the worst
performing ALBERT-base still performed well
with weighted F1 of 0.943. Feature-based
classifiers yielded lower performance, with
weighted F1 scores ranging from 0.513 to 0.829.
Among them, MLP showed the best performance.
Domain alignment appeared to be an easier task,
with most SLMs achieving nearly perfect results.
Several models, including RoBERTa-large,
ConvBERT, and DeBERTa-base,
perfect scores on all metrics. Feature-based

achieved

classifiers also performed reasonably well, with
weighted F1
indicating domain alignment task was easier.

scores generally above 0.84,

The generalizability of fine-tuned SLMs was
further tested on the PSAT dataset (Tables A.5 and
A.6). While model performance dropped slightly
compared to SAT test data, most models still
performed well. For skill alignment, ELECTRA-
base and RoBERTa-large remained the best
performance with weighted F1 scores larger than
0.99, and DeBERTa-base and ALBERT-base
performed well too with F1 score larger than 0.95.
DeBERTa-base
performed best with all metrics having a value of
0.997. RoBERTa-base, RoBERTa-large also
performed well with all metrics of 0.994. These

For domain  alignment,
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findings suggest that models trained on SAT
items can be generalized to PSAT item alignment
when the same content framework are followed.
4.4 Exploration of Misclassification

Though the overall accuracy of aligning
PSAT items was high using the model trained on
SAT items, some skill-specific item alignment
displayed high misclassification rate. Table A.7
presents F1 scores for skills on PSAT items.
Several models, including BERT-base, BERT-
large, ConvBERT, All-DistilRoBERTa,
ELECTRA-small, RoBERTa-base, DeBERTa-
large, and DistilBERT-base exhibited evident
decrease in F1 scores on Skill 4 for Inferences and
Skill 5 for Central Ideas and Details. Items for
Skills
misclassified into Skill 8 for Words in Context.

assessing these two were often

To investigate misclassification, this study
computed pairwise cosine similarities between
iembeddings of items assessing Skills 4, 5, and 8
in SAT and PSAT. Results revealed high semantic
similarity between Skill 4 and 8 with mean cosine
similarity of 0.827 for SAT and 0.828 for PSAT
and between Skill 5 and 8 with mean cosine
similarity of 0.825 for SAT and 0.823 for PSAT.

Further, this study visualized the item-level
embeddings using dimensionality reduction
techniques, including PCA, t-SNE, and ISOMAP.
The two-dimension projected embeddings for
Skills 4 and 8, as well as Skills 5 and 8, showed
considerable overlap across six plots. The four
skill clusters occupied overlapping regions in the
latent space, with no clear visual boundaries
between them, indicating that the items shared
highly similar semantic characteristics.

In addition, KL divergence was used to
assess how PSAT Skills 4 and 5 align with each
SAT skill in the embedding space. The results
showed that SAT Skill 8 consistently exhibited
low KL divergence (17.986 and 25.491) with the
two PSAT skills, indicating the high semantic
results
evidence showing the semantic similarity
between PSAT Skills 4/5 items and Skill 8

respectively where misclassification occurred.

similarity. These provide empirical



5. Discussion and Conclusion

This study fine-tuned SLMs for automated
item alignment in large-scale reading and writing
assessments. Using SAT and PSAT data, items
were aligned to both domains and skills, with
skills
demonstrated that fine-tuned SLMs substantially

nested within domains. The results
outperformed embedding-based classic machine
learning models. Fine-tuned SLMs achieved high
performance across all metrics, particularly in
domain alignment. Even the weakest model,
ALBERT-base, yielded weighted F1 score of
0.943. In contrast, embedding-based models
trained on SLM yielded F1 scores ranging from
0.513 to 0.829, highlighting the superiority of
end-to-end fine-tuning of SLMs.

More input data consistently outperformed
the models trained with fewer input data.
Increasing the sample size alone yielded
relatively moderate improvements in model
performance, especially when the input data were
limited. However, the benefit of more input data
was not monotonically increasing. With a sample
size of 500, adding the rationale to the input data
alongside the prompt, tables, figures, question,
options, and key led to decreased performance.
As sample size increased, this negative effect
disappeared, suggesting an interaction between
input data and sample size.

ELECTRA-base, RoBERTa-large,
DeBERTa-base demonstrated

generalizability on PSAT

and
good
item alignment.
Nevertheless, items measuring /nferences as well
as Central Ideas and Details were frequently
Words
Similarity and KL divergence analysis confirmed

misclassified as in Context. Cosine
high overlapping in the embedding space across
these skills, while two dimension projections
using PCA, t-SNE, and ISOMAP further
illustrated indistinct category boundaries.
Despite the promising results of SLMs in
item content alignment demonstrated, this study
has some limitations. First, items were all single-
coded items. In some item content alignment,
items may be double, triple, even multiple coded.

Future research can explore more complex multi-
coded item content alignment. Second, LLMs
such as GPT-4 have shown promise in recent
studies, they were not included in this study due
to cost, transparency, and test security concerns.
Future work may examine prompt-based LLMs
alongside fine-tuned SLMs to assess their relative
strengths in large-scale educational assessment
programs.

In summary, this study evaluated multiple
SLMs for automated item alignment to content
standards. The investigation of the impact of
sample size and input data types provided
empirical evidence about these design factors in
training SLMs for automated item alignment. The
analyses related to misclassification errors help
future studies to conduct quality control of any
low performing cases. Though the current study
used SAT and PSAT Reading and Writing items,
the methods used for developing models for
automated item alignment can be readily applied
state assessment when item

to programs

alignment to content standards is needed.
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Appendix

Table A.1
Performance of BERT-base Models across Sample Sizes and Input Data for Skill Alignment

Sa@ple Input Conditions Accuracy Precision Recall Weighted  Cohen’s
Sizes F1 Kappa
prompt_only 0.700 0.690 0.700 0.664 0.662
prompt_table figure 0.810 0.813 0.810 0.801 0.786
prompt_table figure options 0.900 0.904 0.900 0.897 0.886
prompt_table figure options key 0.880 0.886 0.880 0.876 0.864
400  prompt table figure options key rationale 0.920 0.926 0.920 0.919 0.909
prompt_table figure qtext 0.890 0.915 0.890 0.893 0.876
prompt_table figure gtext options 1.000 1.000 1.000 1.000 1.000
prompt_table figure qtext options_key 0.980 0.984 0.980 0.981 0.977
prompt table figure gtext options key rationale 0.940 0.970 0.940 0.935 0.932
prompt_only 0.787 0.796 0.787 0.787 0.760
prompt_table figure 0.767 0.795 0.767 0.754 0.738
prompt_table figure options 0.880 0.876 0.880 0.871 0.865
prompt_table figure options key 0.900 0911 0.900 0.898 0.887
600  prompt table figure options key rationale 0.933 0.948 0.933 0.932 0.925
prompt table figure gtext 0.947 0.948 0.947 0.947 0.940
prompt_table figure qtext options 0.993 0.994 0.993 0.993 0.992
prompt_table figure gtext options key 0.980 0.980 0.980 0.980 0.977
prompt_table figure qtext options_key rationale 0.980 0.982 0.980 0.980 0.977
prompt_only 0.800 0.817 0.800 0.798 0.777
prompt_table figure 0.815 0.812 0.815 0.811 0.793
prompt_table figure options 0.865 0.887 0.865 0.871 0.849
prompt_table figure options key 0.890 0.915 0.890 0.896 0.877
800  prompt table figure options key rationale 0.850 0.883 0.850 0.855 0.832
prompt_table figure qtext 0.950 0.950 0.950 0.950 0.944
prompt_table figure qtext options 0.990 0.990 0.990 0.990 0.989
prompt_table figure gtext options key 0.995 0.995 0.995 0.995 0.994
prompt_table figure gtext options key rationale 0.995 0.995 0.995 0.995 0.994
Table A.2

Performance of BERT-base Models across Sample Sizes and Input Data for Domain Alignment

Sampl Weighted Cohen’
a.mp © Input Conditions Accuracy Precision Recall c1ee onen s
Sizes F1 Kappa

prompt_only 0.920 0.929 0.920 0919 0.891
400  prompt_table figure 0.930 0.931 0.930 0.930 0.905
prompt_table figure options 0.960 0.963 0.960 0.960 0.945
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prompt_table figure options_key 0.970 0.973 0.970 0.970 0.959
prompt_table figure options_key rationale 0.990 0.990 0.990 0.990 0.986
prompt_table figure qtext 1.000 1.000 1.000 1.000 1.000
prompt_table figure qtext options 0.970 0.973 0.970 0.970 0.959
prompt_table figure qtext options key 1.000 1.000 1.000 1.000 1.000
prompt_table figure qtext options key rationale 0.980 0.981 0.980 0.980 0.973
prompt_only 0.900 0.900 0.900 0.900 0.866
prompt_table figure 0.900 0.902 0.900 0.899 0.866
prompt_table figure options 0.953 0.958 0.953 0.954 0.937
prompt_table figure options_key 0.953 0.960 0.953 0.954 0.937
600  prompt table figure options_key rationale 0.927 0.934 0.927 0.927 0.902
prompt_table figure qtext 1.000 1.000 1.000 1.000 1.000
prompt_table figure qtext options 1.000 1.000 1.000 1.000 1.000
prompt_table figure qtext options_key 1.000 1.000 1.000 1.000 1.000
prompt_table figure qtext options_key rationale 0.987 0.987 0.987 0.987 0.982
prompt_only 0.885 0.888 0.885 0.885 0.846
prompt_table figure 0.900 0.901 0.900 0.900 0.866
prompt_table figure options 0.965 0.966 0.965 0.965 0.953
prompt_table figure options_key 0.960 0.962 0.960 0.960 0.947
800  prompt table figure options_key rationale 0.940 0.947 0.940 0.941 0.920
prompt_table figure qtext 1.000 1.000 1.000 1.000 1.000
prompt table figure qtext options 1.000 1.000 1.000 1.000 1.000
prompt_table figure qtext options key 1.000 1.000 1.000 1.000 1.000
prompt_table figure qtext options key rationale 0.990 0.990 0.990 0.990 0.987

Table A.3
Model Performance on SAT Skill Alignment
Model Precision  Recall  Accuracy Weighted F1  Cohen’s Kappa

BERT-base 0.996 0.996 0.996 0.996 0.996
BERT-large 0.989 0.988 0.988 0.988 0.987
ALBERT-base 0.949 0.945 0.945 0.943 0.938
ConvBERT 1.000 1.000 1.000 1.000 1.000
All-DistilRoBERTa 0.985 0.984 0.984 0.984 0.982
ELECTRA-base 0.992 0.992 0.992 0.992 0.991
ELECTRA-small 0.974 0.969 0.969 0.966 0.965
RoBERTa-base 0.996 0.996 0.996 0.996 0.996
RoBERTa-large 1.000 1.000 1.000 1.000 1.000
DeBERTa-base 0.985 0.984 0.984 0.984 0.982
DeBERTa-large 0.996 0.996 0.996 0.996 0.996
DistilBERT-base 0.992 0.992 0.992 0.992 0.991
Logistic Regression 0.538 0.646 0.646 0.563 0.593
SVM 0.642 0.701 0.701 0.643 0.658

29



Naive Bayes 0.764 0.744 0.744 0.749 0.713
Random Forest 0.591 0.610 0.571 0.513 0.554
Gradient Boosting 0.575 0.583 0.594 0.573 0.526
XGBoost 0.618 0.610 0.610 0.597 0.560
LightGBM 0.652 0.665 0.665 0.643 0.621
MLP 0.816 0.823 0.835 0.829 0.800
KNN 0.524 0.535 0.535 0.513 0.476
Table A.4

Model Performance on SAT Domain Alignment

Model Precision ~ Recall =~ Accuracy Weighted F1 =~ Cohen’s Kappa

BERT-base 0.996 0.996 0.996 0.996 0.995
BERT-large 0.996 0.996 0.996 0.996 0.995
ALBERT-base 0.967 0.965 0.965 0.965 0.952
ConvBERT 1.000 1.000 1.000 1.000 1.000
All-DistilRoBERTa  0.996 0.996 0.965 0.965 0.995
ELECTRA-base 0.996 0.996 0.996 0.996 0.995
ELECTRA-small 0.980 0.980 0.980 0.980 0.973
RoBERTa-base 1.000 1.000 1.000 1.000 1.000
RoBERTa-large 1.000 1.000 1.000 1.000 1.000
DeBERTa-base 1.000 1.000 1.000 1.000 1.000
DeBERTa-large 0.996 0.996 0.996 0.996 0.995
DistilBERT-base 0.992 0.992 0.992 0.992 0.989
Logistic Regression  0.879 0.878 0.878 0.878 0.834
SVM 0.901 0.894 0.894 0.894 0.857
Naive Bayes 0.839 0.827 0.827 0.827 0.767
Random Forest 0.812 0.807 0.783 0.781 0.735
Gradient Boosting 0.852 0.850 0.846 0.846 0.796
XGBoost 0.829 0.823 0.823 0.824 0.760
LightGBM 0.848 0.846 0.846 0.847 0.792
MLP 0.923 0.921 0.921 0.921 0.893

KNN 0.727 0.724 0.724 0.719 0.627

Table A.5

Model Performance on PSAT Skill Alignment

Model Precision Recall  Accuracy Weighted F1 ~ Cohen’s Kappa
BERT-base 0.935 0.894 0.894 0.878 0.879
BERT-large 0.906 0.827 0.827 0.797 0.802
ALBERT-base 0.969 0.961 0.961 0.961 0.956
ConvBERT 0.902 0.887 0.887 0.870 0.871
All-DistilRoBERTa 0.931 0.907 0.907 0.887 0.895
ELECTRA-base 0.993 0.993 0.993 0.993 0.993
ELECTRA-small 0.744 0.760 0.760 0.722 0.728
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RoBERTa-base 0.959 0.942 0.942 0.929 0.935
RoBERTa-large 0.994 0.994 0.994 0.994 0.994
DeBERTa-base 0.978 0.976 0.976 0.976 0.973
DeBERTa-large 0.927 0.894 0.894 0.868 0.879
DistilBERT-base 0.940 0.920 0.920 0.910 0.910
Logistic Regression 0.708 0.723 0.723 0.653 0.682
SVM 0.861 0.804 0.804 0.763 0.776
Naive Bayes 0.862 0.853 0.853 0.855 0.834
Random Forest 0.938 0.933 0.920 0.919 0.924
Gradient Boosting 0.881 0.879 0.883 0.882 0.864
XGBoost 0.917 0914 0914 0.914 0.903
LightGBM 0.938 0.937 0.937 0.936 0.929
MLP 0.963 0.963 0.961 0.961 0.958
KNN 0.695 0.695 0.695 0.687 0.655

Table A.6

Model Performance on PSAT Domain Alignment

Model Precision = Recall  Accuracy Weighted F1 ~ Cohen’s Kappa

BERT-base 0.947 0.934 0.934 0.934 0.912
BERT-large 0.986 0.985 0.985 0.985 0.980
ALBERT-base 0.892 0.820 0.820 0.803 0.762
ConvBERT 0.971 0.967 0.967 0.967 0.956
All-DistilRoBERTa 0.986 0.986 0.986 0.986 0.981
ELECTRA-base 0.928 0.904 0.904 0.902 0.872
ELECTRA-small 0.949 0.937 0.937 0.937 0.916
RoBERTa-base 0.994 0.994 0.994 0.994 0.992
RoBERTa-large 0.994 0.994 0.994 0.994 0.992
DeBERTa-base 0.997 0.997 0.997 0.997 0.996
DeBERTa-large 0.988 0.988 0.988 0.988 0.983
DistilBERT-base 0.940 0.926 0.926 0.925 0.901
Logistic Regression 0.899 0.898 0.898 0.899 0.864
SVM 0.934 0.933 0.933 0.933 0911
Naive Bayes 0.860 0.857 0.857 0.857 0.810
Random Forest 0.959 0.959 0.953 0.953 0.945
Gradient Boosting 0.959 0.959 0.958 0.958 0.945
XGBoost 0.968 0.968 0.968 0.968 0.957
LightGBM 0.969 0.969 0.969 0.969 0.958
MLP 0.964 0.964 0.963 0.963 0.952
KNN 0.799 0.798 0.798 0.796 0.730

Table A.7

Skill Level Performance of Fine-Tuned Small Language Models for PSAT

Model Skill 1 Skill2 Skill3 Skill4 Skill5 Skill6 Skill7 Skill8 Skill9  Skill 10
BERT-base 0996 0992 0.997 0.692 0.250 0.991 1.000  0.737  0.924 0.986
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BERT-large 0.992 0992 0.981 0.200  0.075 1.000 0996 0.630 0.672 1.000
ALBERT-base 0988 0976 0968 0.824 0.797  0.995 1.000 0993  0.981 1.000
ConvBERT 0.992 0996 0972 0.150 0.678 1.000 1.000 0.741 0.900 1.000
All-DistilRoBERTa 0.992 0992 0.963 0.108 0.683  0.926 1.000 0937 0917 0.986
ELECTRA-base 0.988 0992  0.997 1.000 0974 1.000 1.000 0993  0.987 1.000
ELECTRA-small 0988 0988 0.672  0.000 0.000 1.000 1.000 0.619 0.653 0.839
RoBERTa-base 0992 0992 0955 0333 0.774 1.000 1.000 0997 0.993 1.000
RoBERTa-large 0.996 0996 0.991 0.986 0974 1.000 1.000  0.997 1.000 1.000
DeBERTa-base 0996 0996 0984 0.867 0.900 0.995 1.000 0984  0.980 1.000
DeBERTa-large 0.992  0.984 1.000 0.056 0.798  0.995 1.000 0.800 0.695 1.000
DistilBERT-base 0.996 0996 0.991 0.824 0424 0995 0996 0904 0.746 1.000
Note. Skill 1 = Boundaries; Skill 2 = Form, Structure, and Sense; Skill 3 = Command of Evidence;
Skill 4 = Inferences; Skill 5 = Central Ideas and Details; Skill 6 = Transitions; Skill 7 = Rhetorical
Synthesis; Skill 8 = Words in Context; Skill 9 = Text Structure and Purpose; Skill 10 = Cross-Text
Connections.
Figure A.1
PCA Projection of Embeddings for Skill 4 (Inferences) vs. Skill 8 (Words in Context) for SAT and PSAT
Items
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Figure A.2

t-SNE Projection of Embeddings for Skill 4 (Inferences) vs. Skill 8 (Words in Context) for SAT and PSAT
Items
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Figure A.3

ISOMAP Projection of Embeddings for Skill 4 (Inferences) vs. Skill 8 (Words in Context) for SAT and
PSAT Items
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Figure A .4
PCA Projection of Embeddings for Skill 5 (Central Ideas and Details) vs. Skill 8(Words in Context) for
SAT and PSAT Items
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Figure A.5
t-SNE Projection of Embeddings for Skill 5 (Central Ideas and Details) vs. Skill 8 (Words in Context)
for SAT and PSAT Items

34



30 ® & o®
@ o ©
q ® °
® .. .. o © d
20 v o 2 e %o . . -
e | ® o Po%, [ ° i lg = |®
o
o-...'.'.'Oo ..00....0 -
10 ® - | o o ® @ L -2 o gn »
o [, LRI * e,y ¢ . o o
~ . ® oo 0% o 0q oo O, °
;- pl * e o |. ® 0 & ] ° ... L ] < ]
2 o T s tn— w0 —1_—prp
g sLw. Al o 3w o
E ° pte @ . <’ o ° .0 L4 * L]
8 ‘ . ° 5 o b il e® . e "
0 SRR R A ®l e
e (¢ o o/ ®0¢® BT
° o e o ® O.' ®.0 @ .
-20 = 00 (] LI L °
o0 @ ™Y
° ° [ ® °
° o ¢ .
® SAT-Skill 5
=30 e ~ L ] ® % o PSAT-Skill5
® SAT-Skill 8
» " © PSAT - Skill 8
-40 =30 -20 -10 0 10 20 30 40

Component 1

Figure A.6
ISOMAP Projection of Embeddings for Skill 5 (Central Ideas and Details) vs. Skill 8 (Words in Context)
for SAT and PSAT Items

Q
[ ]
40
30
m. )
20 LI 4 '
~ g .o Mg g . e
o \.. . LIS o9 o
@ ° 9.9 Y 8
10 ORI
g ° [ ] h " @ ]
g e o S [ ] L
[ ] o e
§ 0 .“"~ ol% o, 0®0° Ffs |
? " ) oo I3 o
° [ @ ® °
o e '. ¢ *% L o
— I 4ﬂ_‘;
10 Y 00/ %9 & [oo "..o o
° ° *T 0 §°® o
® ®
” °°q0 o ®. o SAT-Skill5 |
°q @  PSAT - Skill 5
® SAT - Skill 8
30 ® PSAT - Skill 8
- 0 10 20 30 40

Component 1

Table A.8
KL Divergence betweeen PSAT Skill 4 and Each SAT Skill
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Table A.9

From To KL divergence
PSAT skill 4 SAT skill 1 32.927
PSAT skill 4 SAT skill 2 38.059
PSAT skill 4 SAT skill 4 42.588
PSAT skill 4 SAT skill 4 44.503
PSAT skill 4 SAT skill 5 40.996
PSAT skill 4 SAT skill 6 13.610
PSAT skill 4 SAT skill 7 26.869
PSAT skill 4 SAT skill 8 17.986
PSAT skill 4 SAT skill 9 44.342
PSAT skill 4 SAT skill 10 74.312

KL Divergence betweeen PSAT Skill 5 and Each SAT Skill

From To KL divergence
PSAT skill 5 SAT skill 1 44.096
PSAT skill 5 SAT skill 2 48.358
PSAT skill 5 SAT skill 3 48.800
PSAT skill 5 SAT skill 4 65.873
PSAT skill 5 SAT skill 5 41.134
PSAT skill 5 SAT skill 6 44.554
PSAT skill 5 SAT skill 7 40.371
PSAT skill 5 SAT skill 8 25.491
PSAT skill 5 SAT skill 9 43.649
PSAT skill 5 SAT skill 10 83.533
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