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Abstract 
Aligning test items to content standards is a critical 
step in test development to collect validity evidence 
based on content.  Item alignment has typically been 
conducted by human experts, but this judgmental 
process can be subjective and time-consuming. This 
study investigated the performance of fine-tuned small 
language models (SLMs) for automated item 
alignment using data from a large-scale standardized 
reading and writing test for college admissions. 
Different SLMs were trained for both domain and skill 
alignment. The model performance was evaluated 
using precision, recall, accuracy, weighted F1 score, 
and Cohen's kappa on two test sets. The impact of 
input data types and training sample sizes was also 
explored. Results showed that including more textual 
inputs led to better performance gains than increasing 
sample size. For comparison, classic suprvised 
machine learning classifiers were trained on 
multilingual-E5 embeddings. Fine-tuned SLMs 
consistently outperformed these models, particularly 
for fine-grained skill alignment. To better understand 
model classifications, semantic similarity analyses 
including cosine similarity, Kullback-Leibler 
divergence of embedding distributions, and two-
dimension projections of item embeddings revealed 
that certain skills in the two test datasets were 
semantically too close, providing evidence for the 
observed misclassification patterns. 
1. Introduction 

Item alignment is part of alignment defined 
as the consistency among assessments, content 
standards, and instructional practices (Smith & 
O’Day, 1990; Webb, 1997). The degree of item 
alignment to content standards is critical evidence 

for validity based on content. Item alignment is 
typically conducted manually by content experts. 
The process involves reviewing test items one by 
one and determining which content standards 
each item aims to measure. Experts rely on their 
subject-matter expertise and professional 
judgement to assess alignment. Thus, this 
approach has clear limitations. First, manual 
alignment is time-consuming and labor-intensive 
especially for large-scale assessments (Bier et al., 
2019; Ding et al., 2025; Zhou & Ostrow, 2022). 
Second, reliance on expert judgement introduces 
subjectivity (Camilli, 2024; Khan et al., 2021). 
Third, as test items are designed to measure more 
complex domains and skills, incorporating 
multiple skills, domains or hierarchical label 
structures makes manual methods increasingly 
insufficient (Li et al., 2024). 

To address these limitations, researchers 
started exploring using machine learning and 
natural language processing (NLP) techniques. 
These approaches aim to enhance consistency, 
reduce labor, and enable scalability in large-scale 
assessment (Qu et al., 2011). Broadly, automated 
item alignment methods can be classified into two 
categories: feature-based models and language 
model-based approaches. Feature-based methods 
can be further divided into two categories: 
linguistic feature-based models and embedding-
based models. 

Recently, advances in transformer-based 
language models have introduced new modeling 
approaches to automated item alignment. These 
include small language models (SLMs), such as 
BERT, RoBERTa, and DeBERTa, which are often 
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fine-tuned on labeled items to directly map item 
text to the content standards (e.g., Ding et al., 
2025; Shen et al., 2021; Tan & Kim, 2024). 
Another emerging trend involves large language 
models (LLMs), such as GPT-4, which use 
prompting or fine-tuning strategies to classify or 
generate labels without additional training (Li et 
al., 2024; Liu et al., 2025; Moore et al., 2024). 
2. Related Work 

Automated item alignment is typically 
formulated as a classification task, where the goal 
is to assign items to predefined content standards 
based on item text. Early studies relied on feature-
based models. In supervised or unsupervised 
classification tasks, test items were mapped to 
one or more content labels using classifiers such 
as support vector machines (SVM; Karlovcec et 
al., 2012; Yilmazel et al., 2007), Latent Dirichlet 
Allocation (LDA; Anderson et al., 2020), and 
XGBoost (Tian et al., 2022). For instance, 
Karlovcec et al. (2012) applied SVM and K-
nearest neighbor (KNN) to classify ASSISTments 
math items into 106 content labels, while Pardos 
and Dabu (2017) used skip-gram and bag-of-
words features for item alignment to 198 content 
labels. Extracted linguistic features included bag-
of-words, TF-IDF, and keyword overlaps, which 
did not well capture contextual or sequential 
information. 

With the rise of neural network models, 
convolutional neural networks (CNNs; Kim, 
2014) and recurrent neural networks (RNNs; 
Schuster & Paliwal, 1997) were adopted. 
BiLSTM, a type of RNN, was particularly 
effective for sequence modeling. Sun et al. (2018) 
showed that BiLSTM outperformed classic 
methods (e.g., SVM) in English question 
alignment with an F1 score of 0.562 vs. 0.447. 
More approaches employed embeddings 
extracted from Word2Vec (Mikolov et al., 2013), 
GloVe (Pennington et al., 2014), or contextual 
embeddings from models like BERT (Devlin et 
al., 2019). For example, Tian et al. (2022) used 
Word2Vec embeddings and keyphrase features 
with XGBoost to align high school math items, 

outperforming baseline models such as VSM, 
SVM, NN, and LSTM. 

SLMs such as BERT and RoBERTa have 
been applied in item alignment using fine-tuned 
methods. Shen et al. (2021) found that fine-tuned 
BERT outperformed both classic classifiers and 
BERT model without fine-tuning. Khan et al. 
(2021) developed the Catalog system to align 
items with the NGSS standards using BERT and 
GPT-based semantic similarity measures. Tan and 
Kim (2024) compared FastText+XGBoost, fine-
tuned BERT-base/large, RoBERTa-large, and 
GPT-3.5 with prompting, reporting that 
RoBERTa-large consistently performed best. 
Similarly, Ding et al. (2025) proposed a 
RoBERTa-based model, which outperformed 
BiLSTM, BiGRU, and BERT in math item 
alignment. 

LLMs like GPT-3.5 and GPT-4 have also 
been explored for item alignment via prompting. 
Wang et al. (2023) used GPT-4 to classify medical 
test items using zero- and few-shot prompts. Li et 
al. (2024) explored alignment as binary 
classification task, prompting LLMs with item 
text and candidate knowledge descriptions along 
with a self-reflection step that allow the model to 
re-evaluate and revise its initial prediction. Their 
results showed that GPT-4 performed best, 
achieving over 90% accuracy.  Moore et al. 
(2024) used GPT-4 to directly generate 
knowledge components, simulating expert 
annotation and even constructing hierarchical 
ontologies.  

In summary, feature-based models extract 
linguistic features or use embeddings as features 
but often lack task adaptation. Fine-tuned SLMs, 
though less explored, offer an efficient middle 
ground between classic machine learning models 
and costly LLMs, with less privacy concern and 
better scalability for large-scale assessment 
contexts. 

To address gaps in the literature on 
automated item alignment in large-scale 
educational assessment, this study investigates 
how SLMs can be fine-tuned for item content 
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alignment in large-scale reading and writing 
assessments. Specifically, this study addresses the 
following research questions: 
1. How do sample size and input data type affect 
the item alignment accuracy? 
2. How do different SLMs perform in aligning 
test items to skill and domain categories? 
3. Where do misclassifications occur? 
3. Methods 
3.1 Data 
This study used 1270 items from the SAT 
Reading and Writing (RW) section, with 80% for 
training and 20% for testing. Additionally, 1052 
items from the PSAT 8/9 RW section were used 
as an external test set to evaluate fine-tuned 
models’ generalizability. Each item includeed a 
prompt, a question, four answer options, the 
correct answer or key, and a rationale explaining 
both correct and incorrect answers. Some items 
also contain graphs or tables, which were 
converted into text descriptions and LaTeX 
respectively. Each item measures one of the 10 
skills nested under 4 content domains including 
Standard English Conventions, Information and 
Ideas, Expression of Ideas, and Craft and 
Structure. Skill labels include Boundaries, Form, 
Structure and Sense, Command of Evidence, 
Inferences, Central Ideas and Details, 
Transitions, Rhetorical Synthesis, Words in 
Context, Text Structure and Purpose, and Cross-
Text Connections. 
3.2 Sample Size and Input Data 

To investigate the impact of sample size and 
input data on item alignment accuracy, the study 
experimented with different sample sizes and 
input data in the training dataset. BERT-base was 
first used for such exploration. Specifically, this 
study first sampled 500, 750, and 1000 items from 
the full 1270 dataset. Each subset was further split 
into training and test datasets using a ratio of 80% 
vs 20%. Their training datasets contained 400, 
600, and 800 items respectively. The models’ 
performance was evaluated on test sets. Nine 
input data types were experimented as listed 
below: 

1. Prompt only 
2. Prompt+table+figure 
3. Prompt+table+figure+options 
4. Prompt+table+figure+options+key 
5. Prompt+table+figure+options+key+rationale 
6. Prompt+table+figure+question  
7. Prompt+table+figure+question+options 
8. Prompt+table+figure+question+options+key 
9. Prompt+table+figure+question+options+key 
+rationale 
3.3 Models 

To answer the second question about SLMs 
performance in item alignment, several SLMs 
were fine-tuned. This study explored both SLM-
based modeling approaches and embedding-
based classic supervised machine learning 
models. The 12 fine-tuned SLMs include BERT-
base, BERT-large (Devlin et al., 2019), ALBERT-
base (Lan et al., 2019), DistilBERT-base (Sanh et 
al., 2019), All-DistilRoBERTa (Liu et al., 2019; 
Sanh et al., 2019), ELECTRA-small, ELECTRA-
base (Clark et al., 2020), RoBERTa-base, 
RoBERTa-large (Liu et al., 2019), DeBERTa-
base (He et al., 2020), DeBERTa-large (He et al., 
2021), and ConvBERT (Jiang et al., 2020). 
For comparison, embeddings from multilingual-
E5-large-instruct model were extracted using the 
CLS token and used to train supervised machine 
learning models including logistic regression, 
SVM, Naive Bayes, Random Forest, Gradient 
Boosting, XGBoost, LightGBM, MLP, and 
KNN. 
3.4 Model Fine-Tuning 

Prior to setting up the training configuration, 
this study conducted a series of exploratory 
experiments to evaluate the effects of different 
hyperparameter settings. Specifically, this study 
compared multiple learning rates (1e-5, 2e-5, and 
3e-5), warm-up ratio (0 and 0.1), learning rate 
scheduler (linear and cosine), and checkpoints 
(epoch-wise and step-wise). Based on model 
performance with different settings, the following 
configuration was selected for all models. That is, 
models were trained with 15 epochs using the 
AdamW optimizer, a learning rate of 2e-5, a batch 
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size of 8, and a linear learning rate scheduler with 
a warmup ratio of 0.1. Each SLM was fine-tuned 
separately for the domain and skill alignment. 
Item input texts were tokenized using the 
tokenizer of each SLM and truncated to a 
maximum length of 512 tokens. The model 
performance was evaluated in terms of accuracy, 
recall, precision, weighted F1 score, and Cohen’s 
kappa coefficient on both the SAT test dataset and 
the PSAT items. 
3.5 Exploration for Misclassification  

To understand the underlying causes of 
model misclassification, this study used a range 
of embedding-based analytical techniques. First, 
this study calculated all-pairwise cosine 
similarity between the selected skill groups with 
high rates of observed misclassification to 
quantify their semantic proximity in the 
embedding space. Second, To visualize the 
structure of the embeddings, this study applied 
three common dimensionality reduction 
techniques, including principal component 
analysis (PCA), t-distributed stochastic neighbor 
embedding (t-SNE), and isometric mapping 
(ISOMAP), to project the item embeddings from 
the best performing models into a two 
dimensional space for the clustering patterns. 
Third, KL divergence was calculated between 
skill-specific embedding distributions. Lower KL 
scores suggest semantically similarity. 
4. Results 
4.1 Impact of Sample Size and Input Data  
This study examined how input data and sample 
size affected item alignment accuracy using the 
BERT-base model. As shown in Table A.1 and 
A.2 in appendix, input data had a more substantial 
impact than sample size on both skill and domain 
alignment performance. Across all sample sizes, 
models trained with minimal inputs of 
"prompt_only" consistently yielded the lowest 
performance, while including more item 
components such as options, keys, rationales, and 
question improved model performance. For 
instance, in the skill alignment task with 400 
training samples, weighted F1 score increased 

from 0.664 with “prompt_only” to 0.919 with all 
input data. However, the accuracy increase was 
not monotonic along with adding more input data. 
For example, when 400 items were used for 
training, adding the rationale led to decreased 
weighted F1 from 0.981 to 0.935. 

It is worthy of note, adding question resulted 
in a sharp jump in alignment accuracy. For 
example, when 400 items were used for training,  
weighted F1 score for skill alignment increased 
from 0.664 with "prompt_only" to 0.893  with 
"prompt_table_figure_qtext". This dramatic 
increase was due to that many items in the same 
domain such as "Standard English Conventions" 
shared nearly identical question templates like 
"Which choice completes the text so that it 
conforms to the conventions of Standard 
English?" These question templates were likely to 
act as shortcut features, allowing models to 
memorize superficial patterns rather than learn 
the semantic relationship between content and 
skill or domain labels. To mitigate this issue, all 
questions was removed from the input data.  

In contrast, increasing the training sample 
size from 400 to 800 yielded modest 
improvement, particularly when compared with 
the increase achieved through adding input data. 
For example, for skill alignment with 
“prompt_only,” weighted F1 score improved 
from 0.664 for a sample size of 400 to 0.787 for a 
sample size of 600, whereas the same level of 
performance increase could be surpassed by 
adding more input data even with small sample 
sizes. A similar pattern was observed for domain 
alignment even though weighted F1 score was 
0.919 with a sample size of 400 and 
“prompt_only” but F1 score increased to 0.927 
with a sample size of 600 and all input data. These 
findings suggested that though larger training 
sample size increased accuracy, the more input 
data led to larger improvement in alignment 
accuracy more effectively. 
4.2 The Impact of Hyper-Parameters for 
Fine-Tuning SLMs 

To evaluate the effect of fine-tuning settings, 
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a full factorial experiment was conducted using 
BERT-base with different combinations of 
learning rate (1e-5, 2e-5, 5e-5), warm-up ratio 
(0.0, 0.1), learning rate scheduler (linear, cosine), 
and checkpoint strategy (epoch-wise, step-wise). 
The results showed that BERT-base model 
maintained strong performance across all hyper-
parameter combinations. Weighted F1 scores, 
accuracy, and Cohen’s kappa remained above 
0.98 in nearly all cases, indicating a high degree 
of robustness to hyper-parameter choices.  
4.3 Model Performance Comparison 

Tables A.3 and A.4 in Appendix compared 
model performance on the SAT test set for skill 
and domain alignment. Across all metrics, fine-
tuned SLMs significantly outperformed classical 
embedding-based classifiers. For skill alignment, 
ConvBERT and RoBERTa-large achieved perfect 
scores on all metrics, and even the worst 
performing ALBERT-base still performed well 
with weighted F1 of 0.943. Feature-based 
classifiers yielded lower performance, with 
weighted F1 scores ranging from 0.513 to 0.829. 
Among them, MLP showed the best performance. 
Domain alignment appeared to be an easier task, 
with most SLMs achieving nearly perfect results. 
Several models, including RoBERTa-large, 
ConvBERT, and DeBERTa-base, achieved 
perfect scores on all metrics. Feature-based 
classifiers also performed reasonably well, with 
weighted F1 scores generally above 0.84, 
indicating domain alignment task was easier. 

The generalizability of fine-tuned SLMs was 
further tested on the PSAT dataset (Tables A.5 and 
A.6). While model performance dropped slightly 
compared to SAT test data, most models still 
performed well. For skill alignment, ELECTRA-
base and RoBERTa-large remained the best 
performance with weighted F1 scores larger than 
0.99, and DeBERTa-base and ALBERT-base 
performed well too with F1 score larger than 0.95. 
For domain alignment, DeBERTa-base 
performed best with all metrics having a value of 
0.997. RoBERTa-base, RoBERTa-large also 
performed well with all metrics of 0.994. These 

findings suggest that models trained on SAT 
items can be generalized to PSAT item alignment 
when the same content framework are followed. 
4.4 Exploration of Misclassification 

Though the overall accuracy of aligning 
PSAT items was high using the model trained on 
SAT items, some skill-specific item alignment 
displayed high misclassification rate. Table A.7 
presents F1 scores for skills on PSAT items. 
Several models, including BERT-base, BERT-
large, ConvBERT, All-DistilRoBERTa, 
ELECTRA-small, RoBERTa-base, DeBERTa-
large, and DistilBERT-base exhibited evident 
decrease in F1 scores on Skill 4 for Inferences and 
Skill 5 for Central Ideas and Details. Items for 
assessing these two Skills were often 
misclassified into Skill 8 for Words in Context. 

To investigate misclassification, this study 
computed pairwise cosine similarities between 
iembeddings of items assessing Skills 4, 5, and 8 
in SAT and PSAT. Results revealed high semantic 
similarity between Skill 4 and 8 with mean cosine 
similarity of 0.827 for SAT and  0.828 for PSAT 
and between Skill 5 and 8 with mean cosine 
similarity of 0.825 for SAT and 0.823 for PSAT. 

Further, this study visualized the item-level 
embeddings using dimensionality reduction 
techniques, including PCA, t-SNE, and ISOMAP. 
The two-dimension projected embeddings for 
Skills 4 and 8, as well as Skills 5 and 8, showed 
considerable overlap across six plots. The four 
skill clusters occupied overlapping regions in the 
latent space, with no clear visual boundaries 
between them, indicating that the items shared 
highly similar semantic characteristics. 

In addition, KL divergence was used to 
assess how PSAT Skills 4 and 5 align with each 
SAT skill in the embedding space. The results 
showed that SAT Skill 8 consistently exhibited 
low KL divergence (17.986 and 25.491) with the 
two PSAT skills, indicating the high semantic 
similarity. These results provide empirical 
evidence showing the semantic similarity 
between PSAT Skills 4/5 items and Skill 8 
respectively where misclassification occurred. 
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5. Discussion and Conclusion 
This study fine-tuned SLMs for automated 

item alignment in large-scale reading and writing 
assessments. Using SAT and PSAT data, items 
were aligned to both domains and skills, with 
skills nested within domains. The results 
demonstrated that fine-tuned SLMs substantially 
outperformed embedding-based classic machine 
learning models. Fine-tuned SLMs achieved high 
performance across all metrics, particularly in 
domain alignment. Even the weakest model, 
ALBERT-base, yielded weighted F1 score of 
0.943. In contrast, embedding-based models 
trained on SLM yielded F1 scores ranging from 
0.513 to 0.829, highlighting the superiority of 
end-to-end fine-tuning of SLMs. 

More input data consistently outperformed 
the models trained with fewer input data. 
Increasing the sample size alone yielded 
relatively moderate improvements in model 
performance, especially when the input data were 
limited. However, the benefit of more input data 
was not monotonically increasing. With a sample 
size of 500, adding the rationale to the input data 
alongside the prompt, tables, figures, question, 
options, and key led to decreased performance. 
As sample size increased, this negative effect 
disappeared, suggesting an interaction between 
input data and sample size. 

ELECTRA-base, RoBERTa-large, and 
DeBERTa-base demonstrated good 
generalizability on PSAT item alignment. 
Nevertheless, items measuring Inferences as well 
as Central Ideas and Details were frequently 
misclassified as Words in Context. Cosine 
Similarity and KL divergence analysis confirmed 
high overlapping in the embedding space across 
these skills, while two dimension projections 
using PCA, t-SNE, and ISOMAP further 
illustrated indistinct category boundaries. 

Despite the promising results of SLMs in 
item content alignment demonstrated, this study 
has some limitations. First, items were all single-
coded items. In some item content alignment, 
items may be double, triple, even multiple coded. 

Future research can explore more complex multi-
coded item content alignment. Second, LLMs 
such as GPT-4 have shown promise in recent 
studies, they were not included in this study due 
to cost, transparency, and test security concerns. 
Future work may examine prompt-based LLMs 
alongside fine-tuned SLMs to assess their relative 
strengths in large-scale educational assessment 
programs. 

In summary, this study evaluated multiple 
SLMs for automated item alignment to content 
standards. The investigation of the impact of 
sample size and input data types provided 
empirical evidence about these design factors in 
training SLMs for automated item alignment. The 
analyses related to misclassification errors help 
future studies to conduct quality control of any 
low performing cases. Though the current study 
used SAT and PSAT Reading and Writing items, 
the methods used for developing models for 
automated item alignment can be readily applied 
to state assessment programs when item 
alignment to content standards is needed. 
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Appendix 
Table A.1 
Performance of BERT-base Models across Sample Sizes and Input Data for Skill Alignment 

Sample 
Sizes 

Input Conditions Accuracy Precision Recall 
Weighted 

F1 
Cohen’s 
Kappa 

400 

prompt_only 0.700 0.690 0.700 0.664 0.662 
prompt_table_figure 0.810 0.813 0.810 0.801 0.786 
prompt_table_figure_options 0.900 0.904 0.900 0.897 0.886 
prompt_table_figure_options_key 0.880 0.886 0.880 0.876 0.864 
prompt_table_figure_options_key_rationale 0.920 0.926 0.920 0.919 0.909 
prompt_table_figure_qtext 0.890 0.915 0.890 0.893 0.876 
prompt_table_figure_qtext_options 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options_key 0.980 0.984 0.980 0.981 0.977 
prompt_table_figure_qtext_options_key_rationale 0.940 0.970 0.940 0.935 0.932 

600 

prompt_only 0.787 0.796 0.787 0.787 0.760 
prompt_table_figure 0.767 0.795 0.767 0.754 0.738 
prompt_table_figure_options 0.880 0.876 0.880 0.871 0.865 
prompt_table_figure_options_key 0.900 0.911 0.900 0.898 0.887 
prompt_table_figure_options_key_rationale 0.933 0.948 0.933 0.932 0.925 
prompt_table_figure_qtext 0.947 0.948 0.947 0.947 0.940 
prompt_table_figure_qtext_options 0.993 0.994 0.993 0.993 0.992 
prompt_table_figure_qtext_options_key 0.980 0.980 0.980 0.980 0.977 
prompt_table_figure_qtext_options_key_rationale 0.980 0.982 0.980 0.980 0.977 

800 

prompt_only 0.800 0.817 0.800 0.798 0.777 
prompt_table_figure 0.815 0.812 0.815 0.811 0.793 
prompt_table_figure_options 0.865 0.887 0.865 0.871 0.849 
prompt_table_figure_options_key 0.890 0.915 0.890 0.896 0.877 
prompt_table_figure_options_key_rationale 0.850 0.883 0.850 0.855 0.832 
prompt_table_figure_qtext 0.950 0.950 0.950 0.950 0.944 
prompt_table_figure_qtext_options 0.990 0.990 0.990 0.990 0.989 
prompt_table_figure_qtext_options_key 0.995 0.995 0.995 0.995 0.994 
prompt_table_figure_qtext_options_key_rationale 0.995 0.995 0.995 0.995 0.994 

 
Table A.2 
Performance of BERT-base Models across Sample Sizes and Input Data for Domain Alignment 

Sample 
Sizes 

Input Conditions Accuracy Precision Recall 
Weighted 

F1 
Cohen’s 
Kappa 

400 
prompt_only 0.920 0.929 0.920 0.919 0.891 
prompt_table_figure 0.930 0.931 0.930 0.930 0.905 
prompt_table_figure_options 0.960 0.963 0.960 0.960 0.945 
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prompt_table_figure_options_key 0.970 0.973 0.970 0.970 0.959 
prompt_table_figure_options_key_rationale 0.990 0.990 0.990 0.990 0.986 
prompt_table_figure_qtext 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options 0.970 0.973 0.970 0.970 0.959 
prompt_table_figure_qtext_options_key 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options_key_rationale 0.980 0.981 0.980 0.980 0.973 

600 

prompt_only 0.900 0.900 0.900 0.900 0.866 
prompt_table_figure 0.900 0.902 0.900 0.899 0.866 
prompt_table_figure_options 0.953 0.958 0.953 0.954 0.937 
prompt_table_figure_options_key 0.953 0.960 0.953 0.954 0.937 
prompt_table_figure_options_key_rationale 0.927 0.934 0.927 0.927 0.902 
prompt_table_figure_qtext 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options_key 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options_key_rationale 0.987 0.987 0.987 0.987 0.982 

800 

prompt_only 0.885 0.888 0.885 0.885 0.846 
prompt_table_figure 0.900 0.901 0.900 0.900 0.866 
prompt_table_figure_options 0.965 0.966 0.965 0.965 0.953 
prompt_table_figure_options_key 0.960 0.962 0.960 0.960 0.947 
prompt_table_figure_options_key_rationale 0.940 0.947 0.940 0.941 0.920 
prompt_table_figure_qtext 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options_key 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options_key_rationale 0.990 0.990 0.990 0.990 0.987 
 
Table A.3 
Model Performance on SAT Skill Alignment 

Model Precision Recall Accuracy Weighted F1 Cohen’s Kappa 
BERT-base 0.996 0.996 0.996 0.996 0.996 
BERT-large 0.989 0.988 0.988 0.988 0.987 
ALBERT-base 0.949 0.945 0.945 0.943 0.938 
ConvBERT 1.000 1.000 1.000 1.000 1.000 
All-DistilRoBERTa 0.985 0.984 0.984 0.984 0.982 
ELECTRA-base 0.992 0.992 0.992 0.992 0.991 
ELECTRA-small 0.974 0.969 0.969 0.966 0.965 
RoBERTa-base 0.996 0.996 0.996 0.996 0.996 
RoBERTa-large 1.000 1.000 1.000 1.000 1.000 
DeBERTa-base 0.985 0.984 0.984 0.984 0.982 
DeBERTa-large 0.996 0.996 0.996 0.996 0.996 
DistilBERT-base 0.992 0.992 0.992 0.992 0.991 
Logistic Regression 0.538 0.646 0.646 0.563 0.593 
SVM 0.642 0.701 0.701 0.643 0.658 
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Naive Bayes 0.764 0.744 0.744 0.749 0.713 
Random Forest 0.591 0.610 0.571 0.513 0.554 
Gradient Boosting 0.575 0.583 0.594 0.573 0.526 
XGBoost 0.618 0.610 0.610 0.597 0.560 
LightGBM 0.652 0.665 0.665 0.643 0.621 
MLP 0.816 0.823 0.835 0.829 0.800 
KNN 0.524 0.535 0.535 0.513 0.476 

 
Table A.4 
Model Performance on SAT Domain Alignment 

Model Precision Recall Accuracy Weighted F1 Cohen’s Kappa 
BERT-base 0.996 0.996 0.996 0.996 0.995 
BERT-large 0.996 0.996 0.996 0.996 0.995 

ALBERT-base 0.967 0.965 0.965 0.965 0.952 
ConvBERT 1.000 1.000 1.000 1.000 1.000 

All-DistilRoBERTa 0.996 0.996 0.965 0.965 0.995 
ELECTRA-base 0.996 0.996 0.996 0.996 0.995 
ELECTRA-small 0.980 0.980 0.980 0.980 0.973 
RoBERTa-base 1.000 1.000 1.000 1.000 1.000 
RoBERTa-large 1.000 1.000 1.000 1.000 1.000 
DeBERTa-base 1.000 1.000 1.000 1.000 1.000 
DeBERTa-large 0.996 0.996 0.996 0.996 0.995 
DistilBERT-base 0.992 0.992 0.992 0.992 0.989 

Logistic Regression 0.879 0.878 0.878 0.878 0.834 
SVM 0.901 0.894 0.894 0.894 0.857 

Naive Bayes 0.839 0.827 0.827 0.827 0.767 
Random Forest 0.812 0.807 0.783 0.781 0.735 

Gradient Boosting 0.852 0.850 0.846 0.846 0.796 
XGBoost 0.829 0.823 0.823 0.824 0.760 

LightGBM 0.848 0.846 0.846 0.847 0.792 
MLP 0.923 0.921 0.921 0.921 0.893 
KNN 0.727 0.724 0.724 0.719 0.627 

 
Table A.5 
Model Performance on PSAT Skill Alignment 

Model Precision Recall Accuracy Weighted F1 Cohen’s Kappa 
BERT-base 0.935 0.894 0.894 0.878 0.879 
BERT-large 0.906 0.827 0.827 0.797 0.802 
ALBERT-base 0.969 0.961 0.961 0.961 0.956 
ConvBERT 0.902 0.887 0.887 0.870 0.871 
All-DistilRoBERTa 0.931 0.907 0.907 0.887 0.895 
ELECTRA-base 0.993 0.993 0.993 0.993 0.993 
ELECTRA-small 0.744 0.760 0.760 0.722 0.728 
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RoBERTa-base 0.959 0.942 0.942 0.929 0.935 
RoBERTa-large 0.994 0.994 0.994 0.994 0.994 
DeBERTa-base 0.978 0.976 0.976 0.976 0.973 
DeBERTa-large 0.927 0.894 0.894 0.868 0.879 
DistilBERT-base 0.940 0.920 0.920 0.910 0.910 
Logistic Regression 0.708 0.723 0.723 0.653 0.682 
SVM 0.861 0.804 0.804 0.763 0.776 
Naive Bayes 0.862 0.853 0.853 0.855 0.834 
Random Forest 0.938 0.933 0.920 0.919 0.924 
Gradient Boosting 0.881 0.879 0.883 0.882 0.864 
XGBoost 0.917 0.914 0.914 0.914 0.903 
LightGBM 0.938 0.937 0.937 0.936 0.929 
MLP 0.963 0.963 0.961 0.961 0.958 
KNN 0.695 0.695 0.695 0.687 0.655 

 
Table A.6 
Model Performance on PSAT Domain Alignment 

Model Precision Recall Accuracy Weighted F1 Cohen’s Kappa 
BERT-base 0.947 0.934 0.934 0.934 0.912 
BERT-large 0.986 0.985 0.985 0.985 0.980 
ALBERT-base 0.892 0.820 0.820 0.803 0.762 
ConvBERT 0.971 0.967 0.967 0.967 0.956 
All-DistilRoBERTa 0.986 0.986 0.986 0.986 0.981 
ELECTRA-base 0.928 0.904 0.904 0.902 0.872 
ELECTRA-small 0.949 0.937 0.937 0.937 0.916 
RoBERTa-base 0.994 0.994 0.994 0.994 0.992 
RoBERTa-large 0.994 0.994 0.994 0.994 0.992 
DeBERTa-base 0.997 0.997 0.997 0.997 0.996 
DeBERTa-large 0.988 0.988 0.988 0.988 0.983 
DistilBERT-base 0.940 0.926 0.926 0.925 0.901 
Logistic Regression 0.899 0.898 0.898 0.899 0.864 
SVM 0.934 0.933 0.933 0.933 0.911 
Naive Bayes 0.860 0.857 0.857 0.857 0.810 
Random Forest 0.959 0.959 0.953 0.953 0.945 
Gradient Boosting 0.959 0.959 0.958 0.958 0.945 
XGBoost 0.968 0.968 0.968 0.968 0.957 
LightGBM 0.969 0.969 0.969 0.969 0.958 
MLP 0.964 0.964 0.963 0.963 0.952 
KNN 0.799 0.798 0.798 0.796 0.730 

 
Table A.7 
Skill Level Performance of Fine-Tuned Small Language Models for PSAT 

Model Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6 Skill 7 Skill 8 Skill 9 Skill 10 
BERT-base 0.996 0.992 0.997 0.692 0.250 0.991 1.000 0.737 0.924 0.986 
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BERT-large 0.992 0.992 0.981 0.200 0.075 1.000 0.996 0.630 0.672 1.000 
ALBERT-base 0.988 0.976 0.968 0.824 0.797 0.995 1.000 0.993 0.981 1.000 
ConvBERT 0.992 0.996 0.972 0.150 0.678 1.000 1.000 0.741 0.900 1.000 
All-DistilRoBERTa 0.992 0.992 0.963 0.108 0.683 0.926 1.000 0.937 0.917 0.986 
ELECTRA-base 0.988 0.992 0.997 1.000 0.974 1.000 1.000 0.993 0.987 1.000 
ELECTRA-small 0.988 0.988 0.672 0.000 0.000 1.000 1.000 0.619 0.653 0.839 
RoBERTa-base 0.992 0.992 0.955 0.333 0.774 1.000 1.000 0.997 0.993 1.000 
RoBERTa-large 0.996 0.996 0.991 0.986 0.974 1.000 1.000 0.997 1.000 1.000 
DeBERTa-base 0.996 0.996 0.984 0.867 0.900 0.995 1.000 0.984 0.980 1.000 
DeBERTa-large 0.992 0.984 1.000 0.056 0.798 0.995 1.000 0.800 0.695 1.000 
DistilBERT-base 0.996 0.996 0.991 0.824 0.424 0.995 0.996 0.904 0.746 1.000 

Note. Skill 1 = Boundaries; Skill 2 = Form, Structure, and Sense; Skill 3 = Command of Evidence; 
Skill 4 = Inferences; Skill 5 = Central Ideas and Details; Skill 6 = Transitions; Skill 7 = Rhetorical 
Synthesis; Skill 8 = Words in Context; Skill 9 = Text Structure and Purpose; Skill 10 = Cross-Text 
Connections. 
 
Figure A.1 
PCA Projection of Embeddings for Skill 4 (Inferences) vs. Skill 8 (Words in Context) for SAT and PSAT 
Items 
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Figure A.2 
t-SNE Projection of Embeddings for Skill 4 (Inferences) vs. Skill 8 (Words in Context) for SAT and PSAT 
Items 

 

 
Figure A.3 
ISOMAP Projection of Embeddings for Skill 4 (Inferences) vs. Skill 8 (Words in Context) for SAT and 
PSAT Items 
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Figure A.4 
PCA Projection of Embeddings for Skill 5 (Central Ideas and Details) vs. Skill 8(Words in Context) for 
SAT and PSAT Items 

 

 
Figure A.5 
t-SNE Projection of Embeddings for Skill 5 (Central Ideas and Details) vs. Skill 8 (Words in Context) 
for SAT and PSAT Items 
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Figure A.6 
ISOMAP Projection of Embeddings for Skill 5 (Central Ideas and Details) vs. Skill 8 (Words in Context) 
for SAT and PSAT Items 

 
 
Table A.8 
KL Divergence betweeen PSAT Skill 4 and Each SAT Skill 

35



 

From To KL divergence 
PSAT skill 4 SAT skill 1 32.927 
PSAT skill 4 SAT skill 2 38.059 
PSAT skill 4 SAT skill 4 42.588 
PSAT skill 4 SAT skill 4 44.503 
PSAT skill 4 SAT skill 5 40.996 
PSAT skill 4 SAT skill 6 13.610 
 PSAT skill 4 SAT skill 7 26.869 
PSAT skill 4 SAT skill 8 17.986 
PSAT skill 4 SAT skill 9 44.342 
PSAT skill 4 SAT skill 10 74.312 

 
Table A.9 
KL Divergence betweeen PSAT Skill 5 and Each SAT Skill 

From To KL divergence 
PSAT skill 5 SAT skill 1 44.096 
PSAT skill 5 SAT skill 2 48.358 
PSAT skill 5 SAT skill 3 48.800 
PSAT skill 5 SAT skill 4 65.873 
PSAT skill 5 SAT skill 5 41.134 
PSAT skill 5 SAT skill 6 44.554 
PSAT skill 5 SAT skill 7 40.371 
PSAT skill 5 SAT skill 8 25.491 
PSAT skill 5 SAT skill 9 43.649 
PSAT skill 5 SAT skill 10 83.533 
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