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Abstract

Item difficulty plays a crucial role in evaluating item
quality, test form assembly, and interpretation of
scores in large-scale assessments. Traditional
approaches to estimate item difficulty rely on item
response data collected in field testing, which can be
time-consuming and costly. To overcome these
challenges, text-based approaches leveraging machine
learning and natural language processing, have
emerged as promising alternatives. This paper reviews
and synthesizes 37 articles on automated item
difficulty prediction in large-scale assessments. Each
study is synthesized in terms of the dataset, difficulty
parameter, subject domain, item type, number of
items, training and test data split, input, features,
model, evaluation criteria, and model performance
outcomes. Overall, text-based models achieved
moderate to high predictive performance, highlighting
the potential of text-based item difficulty modeling to
enhance the current practices of item quality
evaluation.

1 Introduction

Large-scale assessments are often used to make
high-stakes decisions such as grade promotion,
professional certification, or college admission, so
they must adhere to professional standards for test
development to ensure validity, reliability, and
fairness (AERA, APA, & NCME, 2014). The most
common approach for estimating item difficulty
has conventionally been conducted through field-
testing, where newly created items are embedded
in an operational test form. These items are used to
collect item response data to estimate item
parameters (e.g., difficulty) using classical test
theory (CTT) or item response theory (IRT) and
they are not used for scoring (Benedetto, 2023).
Despite its ability to yield accurate item difficulty
estimates, this approach has been criticized for
being time-consuming and costly (AlKhuzaey et
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al., 2024; Hsu et al., 2018). Another approach for
estimating item difficulty has been through expert
ratings, though this is seldom used in developing
large-scale assessments due to its subjective nature.

To address these limitations, text-based
approaches for item difficulty prediction have
offered a fast, objective, and scalable alternative.
The timeline of these approaches followed a few
noticeable trends. In the early stages, the literature
was dominated by feature-based approaches that
relied on manually defined variables that are
hypothesized to influence item difficulty (e.g.,
Loukina et al., 2016; Perkins et al., 1995). Later,
studies started to include word embeddings, which
are numeric vectors representing the semantic
relationships among words (e.g., Hsu et al., 2018).
With the development of deep learning,
embeddings were also extracted from deep neural
networks, considering how words and phrases
interact within the context of the text (e.g., Xue et
al., 2020). Most recently, since 2020, transformer-
based models, including small language models
(SLMs) and large language models (LLMs), have
been utilized, capturing nuanced semantic and
contextual relationship (e.g., Li et al., 2025; Tack et
al., 2024). These models have the potential to
improve model predictive performance, but it
comes at the cost of interpretability.

The goal of the present review is to highlight the
recent developments in the use of machine learning
and language-model based approaches for item
difficulty prediction, with a focus on large-scale
assessments. Several research questions guide our
investigation: (1) What text-based methods,
especially advanced language model-based
approaches, were applied to predict item difficulty?
(2) What domains and item types were most
frequently investigated? (3) Which text-based
features were most frequently investigated in
classic machine learning models? (4) Which
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evaluation criteria were used to assess model
performance? (5) What was the distribution of
evaluation outcomes? What does this reveal about
the typical range and variability in item difficulty
prediction modeling performance?

2 Related Work

The exploration of text-based approaches to model
item difficulty has been ongoing for decades and a
few studies have synthesized the research findings
in a systematic way. Ferrara et al. (2022) conducted
a domain-specific review that summarized 13 item
difficulty modeling studies, focusing on high-
stakes reading comprehension exams. This review
found that statistical models such as ordinary least
squares regression were utilized in every study and
only two studies employed natural language
processing (NLP) techniques. These findings
highlight the emerging but still limited text-based
methods for item difficulty estimation.

More recent reviews included articles that
employed advanced models, which rapidly
emerged from the mid-2010s (e.g., AlKhuzaey et
al., 2024; Benedetto et al., 2023). Benedetto et al.
(2023) conducted a narrative review of the
literature and focused on approaches for question
difficulty estimation from text from 38 studies
published between 2015-2021. They provided a
structured taxonomy to organize the approaches
and analyzed the most effective methods in
different scenarios. Results showed that, in general,
simple models leveraging linguistic features
performed just as well as end-to-end neural
networks for language assessments; but for other
subject domains (e.g., math, science) end-to-end
neural networks, especially transformers led to
increased performance. Their findings also
highlighted a shift from readability and word-
complexity features-based classic machine
learning models to modern deep learning-based,
NLP approaches.

AlKhuzaey et al. (2024) conducted a systematic
review of 55 item difficulty prediction articles that
placed no constraint on time frame, resulting in
coverage from the years 1995 to 2022. Compared
to previous reviews, they extended the scope to
include an in-depth analysis of the most frequently
investigated  content  domains,  difficulty
parameters, model features, models, input, item
types, evaluation metrics, and the number of
publications produced over the years. The results
highlighted that linguistic play a critical role in
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estimating item difficulty, syntactic features are
frequently captured using NLP tools to count
textual elements, and with the development of
neural language models, semantic features were
increasingly explored.

Similarly, Luecht (2025) summarized years of
item difficulty modeling research through 2022.
The author explains that item difficulty modeling
has evolved along two pathways: the strong theory
pathway and the statistical control pathway. The
strong theory pathway was most prevalent in the
early years of item difficulty modeling research,
and it is based on the idea that item design choices
should be grounded in strong cognitive and
learning theories. With the rise of machine learning
and NLP-based text analytics, there has been a
gradual shift to the statistical control pathway, that
aims to identify variables that empirically explain
item difficulty. Under this framework, the primary
focus is improving model prediction performance,
rather than aligning with cognitive theory.

Though AlKuzaey et al. (2024) and Bendetto et
al. (2023) provided an in-depth summary of
automated item difficulty prediction methods, they
share similar limitations. All included articles were
published no later than 2022 and they did not focus
on large-scale  assessments. Additionally,
AlKhuzaey et al. (2024) included articles that used
expert ratings as ground truth difficulty, but this is
not a valid approach for item difficulty estimation
in large-scale assessments due to subjectivity and
inconsistency.

Given that language model-based approaches
have vastly developed in the past three years (2023-
2025), an updated synthesis of the literature is
warranted. Another unique contribution of our
review is the reporting of model performance
outcomes, including the distribution of wvalues
obtained across evaluation metrics. This can act as
a useful reference for future research by providing
reference points for evaluating model performance.

3 Methods

We conducted a comprehensive literature search
for articles published through May 2025 across
multiple databased, including Google, Google
Scholar, IEEE Xplore, ArXiv, Scopus, Springer,
and ERIC. Additional searches were performed on
the websites of the National Council on
Measurement in Education (NCME) and a relevant
competition platform (i.e., the NBME Item
Difficulty Prediction Competition) to locate papers



submitted by participants. A Boolean search
strategy was employed using keyword
combinations in full text: (item OR question) AND
difficulty AND (Al prediction OR prediction using
machine learning OR automatic prediction OR
modeling).

After an initial screening based on titles, 93
articles were identified. Next, 17 articles were
excluded after reviewing the abstract and keywords
for relevance, resulting in 76 articles. The full text
of these articles was screened and 52 articles were
excluded based on one or more of the following
reasons: (1) the assessment was not large-scale, (2)
the study focused on text complexity or readability
rather than item difficulty, (3) the study did not
focus on automated prediction based on item text
(4) the article was a review, or (5) the item
difficulty parameter was not obtained from item
responses from human test-takers. A total of 24
articles remained for in-depth analysis.

Later, a forward hand-search was conducted to
ensure that all related articles have been
comprehensively included. For each included
eligible article, we found all subsequent articles
that cited it and conducted another round of
screening. In this procedure, 19 additional articles
were found, and after screening following the same
exclusion criteria listed above, 13 articles were
included in the review. In total, 37 articles were
coded and analyzed for this review, consisting of
conference papers (n = 20), journal articles (n = 7),
research reports (n = 3), pre-prints (n = 5), and
master’s or doctoral theses (n = 2).

Since there could be more than one dataset or
difficulty parameter analyzed in one paper, we treat
these as separate studies. Consequently, 46 studies
resulted from the 37 articles. To differentiate the
number of articles from the number of studies, we
used n for the number of articles and k& for the
number of studies, hereafter.

For each study we record the article information
including title, authors, and publication year;
dataset name, difficulty parameter, subject domain,
item type, number of items, train and test dataset
split, engineered features, models, evaluation
criteria, and model performance. Descriptive
analyses were performed, and results were reported
using count-based aggregation and percentages.
Model performance outcomes for each evaluation
criterion with sufficient data across studies were
summarized using descriptive statistics including
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minimum, maximum, median, mean, and standard
deviation.

4 Results

4.1 Publication Year

Automated item difficulty prediction has come in
two waves: one in the mid 1990s, and another
beginning in the early 2010s. The resurgence is
likely related to the peak of automated question
generation research and the rise of computerized
adaptive testing around 2014 to 2018 (AlKhuzaey
etal., 2024; Kurdi et al., 2021), since item difficulty
modeling is essential to evaluate the quality of
newly created items. Ever since then research on
this topic has been on the rise, with a large spike in
2024 due to the Building Educational Applications
(BEA) shared task on automated item difficulty
prediction and response time that launched in June
2024.

4.2 Item Difficulty Parameter

When the item difficulty parameter is a continuous
parameter, item difficulty prediction is framed as a
regression problem. In contrast, when it is defined
using categorical levels (e.g., easy, medium, hard),
it becomes a classification task (e.g., Hsu et al.,
2018). In the context of large-scale exams, it was
found that most item difficulty studies predicted a
continuous value, which is consistent with the
common practice of representing item difficulty in
terms of either p-values or IRT b-parameters.
Specifically, the most frequently reported methods

were IRT  b-parameter (k=14, 30.43%),
transformed p-value (&=11, 23.91%), and
traditional  p-value (k=9, 19.57%). Other

approaches including categorical difficulty levels
(=5, 10.87%), error rate (k=4, 8.70%), and Delta
(=3, 6.52%), were less common.

4.3

Test subject domains included language
proficiency (k = 23, 50.00%), medicine (k = 15,
32.61%), math (k = 4, 8.70%), science (k = 2,
4.35%), analytical reasoning (k = 1, 2.17%), and
social studies (k= 1, 2.17%). Language proficiency
and medicine dominate the literature likely due to
that the high volume of large-scale exams in these
domains made the data publicly available.

Subject Domain



4.4 Item Type

Counting each item type once per study, a total of
60 item types were identified across the reviewed
materials because several articles examined
multiple item types within the same study. Multiple
choice (MC) items accounted for the largest share,
appearing 38 times (63.33%), followed by fill-in-
the-blank reported eight times (13.33%),
constructed-response items reported four times
(6.67%), and matching items reported twice
(3.33%). Each of the following item types were
only reported once: complete-the-forms, notes,
table, flowchart, or summary, complete-the-table,
label the diagram, plan, or map, true/false,
classifying, and sorting (3.33% each).

4.5 Number of Items

There was a wide range (348 to 106,210) in the
number of items that were used across studies,
showing great variability in dataset size. Most
studies (k=17) used datasets between 500 and
2,000 items, largely because 11 studies used the
data from the BEA shared task with 667 items.
Only two studies used a very large dataset with
more than 30,000 items (i.e., RACE++ (106,210)
used in Benedetto, 2023; IFLYTEK (30,817) used
in Huang et al., 2017)".

4.6 Training and Test Dataset Split

To develop different models for item difficulty
prediction, a dataset is often divided into training,
validation, and test datasets. The training set is used
to learn patterns and relationships in the data,
validation is used to fine-tune the model, and test is
used to evaluate model performance on unseen
data. Not all studies reported the percentage of data
used for validation, so for consistency, training and
validation percentages were combined for studies
with three splits. We also note that several studies
experimented with multiple train and test dataset
splits (Benedetto, 2023; Bulut et al., 2024; Huang
etal., 2017).

A wide variety of train/test data splits were
observed. Reported as percentages they include:
40/60, 50/50, 60/40, 70/30, 75/25, 80/20, 83/17,
84/16, 85/15, 90/10, 93/7, and 95/5. The most
common dataset split was 70% for training and
30% for testing, reported 14 times (28.00%),

1 RACE++ is a large-scale reading comprehension dataset;
IFLYTEK refers to a language dataset from iFlytek, a
Chinese technology company.
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followed by 80/20 reported six times (12.00%), and
50/50, 90/10, and 95/5 reported three times each
(6.00%, each). The remaining train and test data
split combinations only appeared in two studies or
less, and nine studies (18.00%) did not report this
information.

4.7 Input

The input used to train the model refers exclusively
to the original, unprocessed components of the item
(i.e., item stem (lead-in and/or questions), correct
answer, distractors, figures or reading passages
when applicable). Again, some studies
experimented with multiple combinations, and
each was counted once per study, for a total count
of 62. The most common combination of item
components used as input was item stem, correct
answer, and options, reported 19 times (30.65%)
followed by item stem only reported nine times
(14.52%), and item stem and correct answer
reported six times (9.68%).

Some articles from the language proficiency
tests included reading passages in the input; item
stem, reading passage, correct answer and options
was reported nine times (14.52%), and item stem
and reading passage was reported seven times
(11.29%). In general, utilizing all item components
appears to be the most frequently used input text
source for item difficulty modeling in the reviewed
studies.

4.8 Features

A total count of 131 feature groups were found in
46 studies, which are generally categorized as
hand-crafted features or embeddings. This can be
further classified into five broad categories: hand-
crafted linguistic features, features related to item
metadata, LLM generated features, static
embeddings, and contextualized embeddings.

The first category of hand-crafted features are
linguistic features (79 counts, 60.31%), and they
consist of lexical features (e.g., number of words,
length of words), syntactic features (e.g., sentence
count, use of conjunctions), morphological features
(e.g., word stems, lemmas), semantic features (e.g.,
semantic similarity between item stem and
options), readability indices (e.g., Flesch Reading
Ease, Gunning FOG Index), and content specific
features (e.g., number of text-based numerical



values for math). The second set of hand-crafted
features include item metadata features (21 counts,
16.03%) including cognitive complexity, content
standards, expert ratings, and item characteristics
(e.g., number of choices for MC items). The third
type of hand-crafted features are reasoning and
thinking level features generated from LLMs (5
counts, 3.82%). Some examples of this type
include first-token probability, choice-order
sensitivity, and justification length.

As for embedding features, there are two
categories: static embeddings and contextualized
embeddings. Static embeddings (8 counts, 6.11%)
include count-based model embeddings (e.g.,
Glove), and predictive model embeddings (e.g.,
word2vec). Contextual embeddings (18 counts,
13.74%) include deep learning-based embeddings
(e.g., ELMo), word-level SLM embeddings (e.g.,
BERT-base, DistilBERT, MPNet), sentence-level
SLM embeddings from sentence-BERT and
Longformer, and embeddings extracted from
LLMs.

4.9 Models

Among all reviewed studies, a total of 61 models
have been explored 160 times, as it was common
for studies to compare multiple models. The
models were classified into three categories:
classical machine learning models (94 counts,
58.75%), neural network based deep learning
models (20 counts, 12.50%), and transformer-
based language models (46 counts, 28.75%).
Among the transformer models, 39 counts
(84.78%) were SLMs and 7 (15.22%) were LLMs.
For a full list of models included in the review see
Appendix A.

Classical machine learning models typically rely
on engineered features and are built on either
statistical assumptions or algorithmic decision
rules. They can be further classified as follows:
linear and penalized regression models, decision
tree-based models, probabilistic models, ensemble
learning methods, kemel and distance-based
models, and simple neural network-based models.

Neural network-based deep learning models use
multiple layers that mimic the functioning of
human neurons to learn complex, non-linear
representations from data. In this review, we define
this category as including only neural network
models with more than one hidden layer and that
are not based on attention mechanisms. These
models consisted of basic neural network
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architectures, convolutional neural networks, bi-
directional long short-term memory, and
embeddings from language models (ELMo).

Transformer-based language models represent a
specialized subset of deep learning in which the
transformer architecture, characterized by self-
attention mechanisms, is employed. The self-
attention mechanism contextualizes each word in
the text by considering its relationship with all
other words, regardless of position or distance. This
category contains both SLMs and LLMs, where we
defined SLM as language models containing less
than 1 billion parameters. SLMs consisted of BERT
and its variants, long-sequence transformers, TS5,
and GPT-2. LLMs consisted of the models in the
families of GPT, Llama, Mistral-7B, Gemma-7B,
Qwen-2, Yi-34b, and Phi3, though Claude and
Gemini families could be utilized as well.

We note several trends about the use of models
through the years. Classical machine learning
techniques have retained momentum due to their
transparency, interpretability, efficiency, and
robustness with small sample sizes. Neural
network based deep learning models have been
intermittently used beginning in 1995 and gaining
moderate traction in 2019 to 2020. During this
time, the use of neural-network-based deep
learning models was approximately equal to the
use of classical machine learning models.
However, there has been a decline in the use of
neural network based deep learning models that
coincides with the rise of transformer-based
models around 2020. Since then, classical machine
learning models are still used, while transformer-
based models have been used for both predicting
item difficulty and generating embeddings as
features.

4.10 Evaluation Criteria

Model performance was assessed using 23 unique
evaluation criteria and their application depended
on whether item difficulty prediction was a
regression or classification task. In this review 43
studies were regression tasks and 3 were
classification tasks. With regards to the regression
tasks, the most common evaluation criteria were
root mean square error (RMSE) (£=28, 31.82%),
Pearson product moment correlation (k=17,
19.32%), and R? (k=13, 14.77%), mean absolute
error (k=8, 9.09%), and mean square error (k=5,
5.68%). For classification tasks, exact accuracy
was used for each study (k=3, 37.50%), and



adjacent accuracy was used when there were more
than three difficulty levels (&=2, 25.00%). F1-
score, recall, and precision were used once
(12.50% each).

4.11 Model Performance

Appendix B presents a table that summarizes the
best-performing value for each evaluation criteria
used in the reviewed studies. Evaluation criteria
that were used twice were summarized with the
minimum and maximum values. It is important to
note that although the table summarizes the
outcomes from most commonly used evaluation
criteria, values are not directly comparable across
studies due to different subject domains and item
difficulty parameters without a common scale.
Instead, it should be used to provide a sense of what
constitutes a “typical result” based on the range and
distribution of values obtained in the literature.

For the most commonly used evaluation metric
in regression tasks, RMSE, the summary was made
for p-value, transformed p-value, and Rasch model
b-parameter. The RMSE for studies using p-value
ranged from 0.165 to 0.268 (N=6, M=0.216,
S$D=0.035), while RMSE for studies using
transformed p-values ranged from 0.253 to 0.308
(N=10, M=0.291, SD=0.018). RMSE for studies
using the Rasch model b parameter ranged from
0.354 to 1.295 (N=8, M = 0.740, SD = 0.297). The
RMSE based on other difficulty parameters (i.c.,
3PL, Delta, categorical levels), only contained one
value for each, therefore a meaningful summary
could not be produced.

The pattern persisted for other regression
evaluation metrics. The Pearson correlation ranged
from 0.040 to 0.870 (N=17, M=0.545, SD=0.225).
R? values ranged from 0.208 to 0.788 (N=13,
M=0.478, SD=0.200).

Similarly, the range for classification evaluation
metrics also varied greatly across studies. Exact
accuracy ranges from 0.325 to 0.806 (N=3,
M=0.567, SD=0.241). However, the moderate to
very high adjacent accuracy values (NV=2, 0.65 and
0.982) indicate that even when the model’s
prediction is not exactly correct, it is close, often
just one category away from the true difficulty
level.

5 Discussion

The aim of this review was to highlight and
summarize trends in text-based item difficulty
prediction research in the large-scale assessment

42

setting, with a focus on advanced machine learning
and language model-based approaches. A total of
46 studies from 37 articles were synthesized and
results showed high potential for automated
prediction of item difficulty parameters.

Our review makes several contributions to
large-scale educational assessments. We provide
large-scale educational assessment programs with
foundational information that can be used to guide
the implementation of automated approaches for
item difficulty in the test development process. We
provide practical insights into the optimal input and
prompting strategies such as including all item
components in the input and using a larger portion
of the data for training leads to increased model
performance. Our review can also be used as
guidance for model and feature selection, outlining
critical considerations for methodological choices.
Overall, automated item difficulty modeling can be
used to reduce the time and cost of traditional field
testing to evaluate item quality.

Additionally, this review presents major
contributions to the field of machine learning.
Unlike previous reviews that have only synthesized
the literature through 2022, the present review
captures the significant growth of research in the
past three years, as well as how methodological
approaches have evolved since the 1990s. Another
unique contribution of our review is the numerical
distribution of model performance outcomes across
all studies. The distribution of outcomes acts as a
reference point that future researchers can use to set
realistic expectations and to contextualize their
model performance results.

Nonetheless, our review has a few limitations
including the potential bias due to the
overrepresentation of papers from the BEA shared
task, lack of diversity in certain aspects of the
datasets (e.g., item type, content domain),
unexplained variability in model performance, and
limited reporting of observed range of the IRT b-
parameter. The latter complicates interpretation of
scale-dependent evaluation metrics that were
summarized in the model performance section.
Future studies should prioritize dataset diversity,
transparent reporting of methodology, and
approaches that balance interpretability with the
capabilities of state-of-the-art language models.
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Appendix A. List of Models Included in the Review.

Classical Machine Learning Models:

1.

98]

e

Linear and Penalized Regression Models: Ordinary Least Square Regression, Principal Components
Regression, Partial Least Squares Regression, Elastic Net Regression, Lasso Regression,

Ridge Regression/Ridge (L2) Penalized Regression, Linear Logistic Test Model (LLTM)

Decision Tree-Based Models: Classification and Regression Trees (CART), Classification Trees,
Decision Tree Regression, Extra Trees, Random Forest, Regression Trees

Probabilistic Models: Naive Bayes Classifier, Gaussian Processes, Probabilistic language model
Ensemble Learning Models: AdaBoost, Cat-Boost, Gradient Boosting, Gradient Boosting Decision
Trees, Light Gradient Boosting Machine, XGBoost, XGBoost-based SHAP Model

Kernel and Distance-Based Models: k-Nearest Neighbors, Support Vector Machines

Simple Neural Network Based Models: Adaptive Neuro-Fuzzy Inference System (ANFIS),

One Neuron Network (with no hidden layer), Three-Layer Backpropagation Neural

Network (with only one hidden layer)

Neural Network Based Deep Learning Models:

1.

2.

3.

Basic Neural Network Architectures: Artificial Neural Network (ANN), Multilayer-Perceptron
(MLP), Dense Neural Network

Convolutional Neural Networks (CNNs) and Variants: Convolutional Neural Network (CNN),
Attention-based CNN (ACNN), Hierarchical Attention-Based CNN (HBCNN), Multi-Scale
Attention CNN (MACNN), Temporal CNN (TCNN), Temporal Attention CNN (TACNN).

Bidirectional Long Short-Term Memory (Bi-LSTM)

Transformer-Based Language Models
Small Language Models:

L.

BERT and its Variants: BERT, BERT-ClinicalQA, Clinical-BERT, BioClinical BERT,
Bio_ClinicalBERT emrqa, Bio_ClinicalBERT FTMT, Clinical-BigBird, BioMedBERT,
PubMedBERT, DistilBERT, ConvBERT, DeBERTa, RoBERTa, Electra, BioMedElectra

2. Long-Sequence Transformers: Longformer, Clinical-Longformer, Longformer-Base-4096, BigBird
3. GPT-2
4. TS5
Large Language Models:
1. GPT Family: GPT-4, GPT-40
2. Llama-7B
3. Mistral-7B
4. Gemma-7B
5. Phi3
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Appendix B. Model Performance Summary.

Evaluation Criterion Count Min Max Median Mean  SD
Regression Tasks
RMSE
Based on p-value 6 165 268 214 216 .035
Based on transformed p-value 10 253 308 297 291 018
Based on Rasch model 8 354 1.295 .693 740 297
MSE 013 521 .064 203 227
MAE 185 .58 240 307 159
Correlation
Pearson 17 .04 .87 .550 545 225
Spearman 4 25 .790 496 .508 221
R-Squared 13 208 788 525 478 .200
Match 2 157 780 - - -
Classification Tasks
Accuracy
Exact 3 325 806 .569 567 241
Adjacent 2 .65 982 - - -

Note. For studies that reported multiple models or evaluation criteria, only the best-performing value
for each evaluation criterion was included. Only evaluation criteria that provided enough information

(k = 2) for meaningful analysis were included. We also note that we report the same number of

decimals that were presented in the articles.
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