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Abstract 

Item difficulty plays a crucial role in evaluating item 
quality, test form assembly, and interpretation of 
scores in large-scale assessments. Traditional 
approaches to estimate item difficulty rely on item 
response data collected in field testing, which can be 
time-consuming and costly. To overcome these 
challenges, text-based approaches leveraging machine 
learning and natural language processing, have 
emerged as promising alternatives. This paper reviews 
and synthesizes 37 articles on automated item 
difficulty prediction in large-scale assessments. Each 
study is synthesized in terms of the dataset, difficulty 
parameter, subject domain, item type, number of 
items, training and test data split, input, features, 
model, evaluation criteria, and model performance 
outcomes. Overall, text-based models achieved 
moderate to high predictive performance, highlighting 
the potential of text-based item difficulty modeling to 
enhance the current practices of item quality 
evaluation. 

1 Introduction 

Large-scale assessments are often used to make 
high-stakes decisions such as grade promotion, 
professional certification, or college admission, so 
they must adhere to professional standards for test 
development to ensure validity, reliability, and 
fairness (AERA, APA, & NCME, 2014). The most 
common approach for estimating item difficulty 
has conventionally been conducted through field-
testing, where newly created items are embedded 
in an operational test form. These items are used to 
collect item response data to estimate item 
parameters (e.g., difficulty) using classical test 
theory (CTT) or item response theory (IRT) and 
they are not used for scoring (Benedetto, 2023). 
Despite its ability to yield accurate item difficulty 
estimates, this approach has been criticized for 
being time-consuming and costly (AlKhuzaey et 

al., 2024; Hsu et al., 2018). Another approach for 
estimating item difficulty has been through expert 
ratings, though this is seldom used in developing 
large-scale assessments due to its subjective nature. 

To address these limitations, text-based 
approaches for item difficulty prediction have 
offered a fast, objective, and scalable alternative. 
The timeline of these approaches followed a few 
noticeable trends. In the early stages, the literature 
was dominated by feature-based approaches that 
relied on manually defined variables that are 
hypothesized to influence item difficulty (e.g., 
Loukina et al., 2016; Perkins et al., 1995). Later, 
studies started to include word embeddings, which 
are numeric vectors representing the semantic 
relationships among words (e.g., Hsu et al., 2018). 
With the development of deep learning, 
embeddings were also extracted from deep neural 
networks, considering how words and phrases 
interact within the context of the text (e.g., Xue et 
al., 2020). Most recently, since 2020, transformer-
based models, including small language models 
(SLMs) and large language models (LLMs), have 
been utilized, capturing nuanced semantic and 
contextual relationship (e.g., Li et al., 2025; Tack et 
al., 2024). These models have the potential to 
improve model predictive performance, but it 
comes at the cost of interpretability. 

The goal of the present review is to highlight the 
recent developments in the use of machine learning 
and language-model based approaches for item 
difficulty prediction, with a focus on large-scale 
assessments. Several research questions guide our 
investigation: (1) What text-based methods, 
especially advanced language model-based 
approaches, were applied to predict item difficulty? 
(2) What domains and item types were most 
frequently investigated? (3) Which text-based 
features were most frequently investigated in 
classic machine learning models? (4) Which 

Review of Text-Based Approaches to Item Difficulty  
Modeling in Large-Scale Assessments  

 
Sydney Peters, Nan Zhang, Hong Jiao, Ming Li, Tianyi Zhou 

University of Maryland 
sjpeters@umd.edu, hjiao@umd.edu 

 
 

 
 
 

37

mailto:sjpeters@umd.edu


 
 

evaluation criteria were used to assess model 
performance? (5) What was the distribution of 
evaluation outcomes? What does this reveal about 
the typical range and variability in item difficulty 
prediction modeling performance? 

2 Related Work 

The exploration of text-based approaches to model 
item difficulty has been ongoing for decades and a 
few studies have synthesized the research findings 
in a systematic way. Ferrara et al. (2022) conducted 
a domain-specific review that summarized 13 item 
difficulty modeling studies, focusing on high-
stakes reading comprehension exams. This review 
found that statistical models such as ordinary least 
squares regression were utilized in every study and 
only two studies employed natural language 
processing (NLP) techniques. These findings 
highlight the emerging but still limited text-based 
methods for item difficulty estimation. 

More recent reviews included articles that 
employed advanced models, which rapidly 
emerged from the mid-2010s (e.g., AlKhuzaey et 
al., 2024; Benedetto et al., 2023). Benedetto et al. 
(2023) conducted a narrative review of the 
literature and focused on approaches for question 
difficulty estimation from text from 38 studies 
published between 2015-2021. They provided a 
structured taxonomy to organize the approaches 
and analyzed the most effective methods in 
different scenarios. Results showed that, in general, 
simple models leveraging linguistic features 
performed just as well as end-to-end neural 
networks for language assessments; but for other 
subject domains (e.g., math, science) end-to-end 
neural networks, especially transformers led to 
increased performance. Their findings also 
highlighted a shift from readability and word-
complexity features-based classic machine 
learning models to modern deep learning-based, 
NLP approaches. 

AlKhuzaey et al. (2024) conducted a systematic 
review of 55 item difficulty prediction articles that 
placed no constraint on time frame, resulting in 
coverage from the years 1995 to 2022. Compared 
to previous reviews, they extended the scope to 
include an in-depth analysis of the most frequently 
investigated content domains, difficulty 
parameters, model features, models, input, item 
types, evaluation metrics, and the number of 
publications produced over the years. The results 
highlighted that linguistic play a critical role in 

estimating item difficulty, syntactic features are 
frequently captured using NLP tools to count 
textual elements, and with the development of 
neural language models, semantic features were 
increasingly explored. 

Similarly, Luecht (2025) summarized years of 
item difficulty modeling research through 2022. 
The author explains that item difficulty modeling 
has evolved along two pathways: the strong theory 
pathway and the statistical control pathway. The 
strong theory pathway was most prevalent in the 
early years of item difficulty modeling research, 
and it is based on the idea that item design choices 
should be grounded in strong cognitive and 
learning theories. With the rise of machine learning 
and NLP-based text analytics, there has been a 
gradual shift to the statistical control pathway, that 
aims to identify variables that empirically explain 
item difficulty. Under this framework, the primary 
focus is improving model prediction performance, 
rather than aligning with cognitive theory. 

Though AlKuzaey et al. (2024) and Bendetto et 
al. (2023) provided an in-depth summary of 
automated item difficulty prediction methods, they 
share similar limitations. All included articles were 
published no later than 2022 and they did not focus 
on large-scale assessments. Additionally, 
AlKhuzaey et al. (2024) included articles that used 
expert ratings as ground truth difficulty, but this is 
not a valid approach for item difficulty estimation 
in large-scale assessments due to subjectivity and 
inconsistency. 

Given that language model-based approaches 
have vastly developed in the past three years (2023-
2025), an updated synthesis of the literature is 
warranted. Another unique contribution of our 
review is the reporting of model performance 
outcomes, including the distribution of values 
obtained across evaluation metrics. This can act as 
a useful reference for future research by providing 
reference points for evaluating model performance. 

3 Methods 

We conducted a comprehensive literature search 
for articles published through May 2025 across 
multiple databased, including Google, Google 
Scholar, IEEE Xplore, ArXiv, Scopus, Springer, 
and ERIC. Additional searches were performed on 
the websites of the National Council on 
Measurement in Education (NCME) and a relevant 
competition platform (i.e., the NBME Item 
Difficulty Prediction Competition) to locate papers 
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submitted by participants. A Boolean search 
strategy was employed using keyword 
combinations in full text: (item OR question) AND 
difficulty AND (AI prediction OR prediction using 
machine learning OR automatic prediction OR 
modeling). 

After an initial screening based on titles, 93 
articles were identified. Next, 17 articles were 
excluded after reviewing the abstract and keywords 
for relevance, resulting in 76 articles. The full text 
of these articles was screened and 52 articles were 
excluded based on one or more of the following 
reasons: (1) the assessment was not large-scale, (2) 
the study focused on text complexity or readability 
rather than item difficulty, (3) the study did not 
focus on automated prediction based on item text 
(4) the article was a review, or (5) the item 
difficulty parameter was not obtained from item 
responses from human test-takers. A total of 24 
articles remained for in-depth analysis.  

Later, a forward hand-search was conducted to 
ensure that all related articles have been 
comprehensively included. For each included 
eligible article, we found all subsequent articles 
that cited it and conducted another round of 
screening. In this procedure, 19 additional articles 
were found, and after screening following the same 
exclusion criteria listed above, 13 articles were 
included in the review. In total, 37 articles were 
coded and analyzed for this review, consisting of 
conference papers (n = 20), journal articles (n = 7), 
research reports (n = 3), pre-prints (n = 5), and 
master’s or doctoral theses (n = 2).  

Since there could be more than one dataset or 
difficulty parameter analyzed in one paper, we treat 
these as separate studies. Consequently, 46 studies 
resulted from the 37 articles. To differentiate the 
number of articles from the number of studies, we 
used n  for the number of articles and k  for the 
number of studies, hereafter. 

For each study we record the article information 
including title, authors, and publication year; 
dataset name, difficulty parameter, subject domain, 
item type, number of items, train and test dataset 
split, engineered features, models, evaluation 
criteria, and model performance. Descriptive 
analyses were performed, and results were reported 
using count-based aggregation and percentages. 
Model performance outcomes for each evaluation 
criterion with sufficient data across studies were 
summarized using descriptive statistics including 

minimum, maximum, median, mean, and standard 
deviation. 

4 Results 

4.1 Publication Year 

Automated item difficulty prediction has come in 
two waves: one in the mid 1990s, and another 
beginning in the early 2010s. The resurgence is 
likely related to the peak of automated question 
generation research and the rise of computerized 
adaptive testing around 2014 to 2018 (AlKhuzaey 
et al., 2024; Kurdi et al., 2021), since item difficulty 
modeling is essential to evaluate the quality of 
newly created items. Ever since then research on 
this topic has been on the rise, with a large spike in 
2024 due to the Building Educational Applications 
(BEA) shared task on automated item difficulty 
prediction and response time that launched in June 
2024.  

4.2 Item Difficulty Parameter 

When the item difficulty parameter is a continuous 
parameter, item difficulty prediction is framed as a 
regression problem. In contrast, when it is defined 
using categorical levels (e.g., easy, medium, hard), 
it becomes a classification task (e.g., Hsu et al., 
2018). In the context of large-scale exams, it was 
found that most item difficulty studies predicted a 
continuous value, which is consistent with the 
common practice of representing item difficulty in 
terms of either p-values or IRT b-parameters. 
Specifically, the most frequently reported methods 
were IRT b-parameter (k=14, 30.43%), 
transformed p-value (k=11, 23.91%), and 
traditional p-value (k=9, 19.57%). Other 
approaches including categorical difficulty levels 
(k=5, 10.87%), error rate (k=4, 8.70%), and Delta 
(k=3, 6.52%), were less common. 

4.3 Subject Domain 

Test subject domains included language 
proficiency (k = 23, 50.00%), medicine (k = 15, 
32.61%), math (k = 4, 8.70%), science (k = 2, 
4.35%), analytical reasoning (k = 1, 2.17%), and 
social studies (k = 1, 2.17%). Language proficiency 
and medicine dominate the literature likely due to 
that the high volume of large-scale exams in these 
domains made the data publicly available. 
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4.4 Item Type 

Counting each item type once per study, a total of 
60 item types were identified across the reviewed 
materials because several articles examined 
multiple item types within the same study. Multiple 
choice (MC) items accounted for the largest share, 
appearing 38 times (63.33%), followed by fill-in-
the-blank reported eight times (13.33%), 
constructed-response items reported four times 
(6.67%), and matching items reported twice 
(3.33%). Each of the following item types were 
only reported once: complete-the-forms, notes, 
table, flowchart, or summary, complete-the-table, 
label the diagram, plan, or map, true/false, 
classifying, and sorting (3.33% each). 

4.5 Number of Items 

There was a wide range (348 to 106,210) in the 
number of items that were used across studies, 
showing great variability in dataset size. Most 
studies (k=17) used datasets between 500 and 
2,000 items, largely because 11 studies used the 
data from the BEA shared task with 667 items. 
Only two studies used a very large dataset with 
more than 30,000 items (i.e., RACE++ (106,210) 
used in Benedetto, 2023; IFLYTEK (30,817) used 
in Huang et al., 2017)1. 

4.6 Training and Test Dataset Split 

To develop different models for item difficulty 
prediction, a dataset is often divided into training, 
validation, and test datasets. The training set is used 
to learn patterns and relationships in the data, 
validation is used to fine-tune the model, and test is 
used to evaluate model performance on unseen 
data. Not all studies reported the percentage of data 
used for validation, so for consistency, training and 
validation percentages were combined for studies 
with three splits. We also note that several studies 
experimented with multiple train and test dataset 
splits (Benedetto, 2023; Bulut et al., 2024; Huang 
et al., 2017). 
     A wide variety of train/test data splits were 
observed. Reported as percentages they include: 
40/60, 50/50, 60/40, 70/30, 75/25, 80/20, 83/17, 
84/16, 85/15, 90/10, 93/7, and 95/5. The most 
common dataset split was 70% for training and 
30% for testing, reported 14 times (28.00%), 

 
1 RACE++ is a large-scale reading comprehension dataset; 
IFLYTEK refers to a language dataset from iFlytek, a 
Chinese technology company. 

followed by 80/20 reported six times (12.00%), and 
50/50, 90/10, and 95/5 reported three times each 
(6.00%, each). The remaining train and test data 
split combinations only appeared in two studies or 
less, and nine studies (18.00%) did not report this 
information. 

4.7 Input 

The input used to train the model refers exclusively 
to the original, unprocessed components of the item 
(i.e., item stem (lead-in and/or questions), correct 
answer, distractors, figures or reading passages 
when applicable). Again, some studies 
experimented with multiple combinations, and 
each was counted once per study, for a total count 
of 62. The most common combination of item 
components used as input was item stem, correct 
answer, and options, reported 19 times (30.65%) 
followed by item stem only reported nine times 
(14.52%), and item stem and correct answer 
reported six times (9.68%).  
     Some articles from the language proficiency 
tests included reading passages in the input; item 
stem, reading passage, correct answer and options 
was reported nine times (14.52%), and item stem 
and reading passage was reported seven times 
(11.29%). In general, utilizing all item components 
appears to be the most frequently used input text 
source for item difficulty modeling in the reviewed 
studies. 

4.8 Features 

A total count of 131 feature groups were found in 
46 studies, which are generally categorized as 
hand-crafted features or embeddings. This can be 
further classified into five broad categories: hand-
crafted linguistic features, features related to item 
metadata, LLM generated features, static 
embeddings, and contextualized embeddings. 

The first category of hand-crafted features are 
linguistic features (79 counts, 60.31%), and they 
consist of lexical features (e.g., number of words, 
length of words), syntactic features (e.g., sentence 
count, use of conjunctions), morphological features 
(e.g., word stems, lemmas), semantic features (e.g., 
semantic similarity between item stem and 
options), readability indices (e.g., Flesch Reading 
Ease, Gunning FOG Index), and content specific 
features (e.g., number of text-based numerical 
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values for math). The second set of hand-crafted 
features include item metadata features (21 counts, 
16.03%) including cognitive complexity, content 
standards, expert ratings, and item characteristics 
(e.g., number of choices for MC items). The third 
type of hand-crafted features are reasoning and 
thinking level features generated from LLMs (5 
counts, 3.82%). Some examples of this type 
include first-token probability, choice-order 
sensitivity, and justification length.  

As for embedding features, there are two 
categories: static embeddings and contextualized 
embeddings. Static embeddings (8 counts, 6.11%) 
include count-based model embeddings (e.g., 
Glove), and predictive model embeddings (e.g., 
word2vec). Contextual embeddings (18 counts, 
13.74%) include deep learning-based embeddings 
(e.g., ELMo), word-level SLM embeddings (e.g., 
BERT-base, DistilBERT, MPNet), sentence-level 
SLM embeddings from sentence-BERT and 
Longformer, and embeddings extracted from 
LLMs. 

4.9 Models 

Among all reviewed studies, a total of 61 models 
have been explored 160 times, as it was common 
for studies to compare multiple models. The 
models were classified into three categories: 
classical machine learning models (94 counts, 
58.75%), neural network based deep learning 
models (20 counts, 12.50%), and transformer-
based language models (46 counts, 28.75%). 
Among the transformer models, 39 counts 
(84.78%) were SLMs and 7 (15.22%) were LLMs. 
For a full list of models included in the review see 
Appendix A. 

Classical machine learning models typically rely 
on engineered features and are built on either 
statistical assumptions or algorithmic decision 
rules. They can be further classified as follows: 
linear and penalized regression models, decision 
tree-based models, probabilistic models, ensemble 
learning methods, kernel and distance-based 
models, and simple neural network-based models.  

Neural network-based deep learning models use 
multiple layers that mimic the functioning of 
human neurons to learn complex, non-linear 
representations from data. In this review, we define 
this category as including only neural network 
models with more than one hidden layer and that 
are not based on attention mechanisms. These 
models consisted of basic neural network 

architectures, convolutional neural networks, bi-
directional long short-term memory, and 
embeddings from language models (ELMo). 

Transformer-based language models represent a 
specialized subset of deep learning in which the 
transformer architecture, characterized by self-
attention mechanisms, is employed. The self-
attention mechanism contextualizes each word in 
the text by considering its relationship with all 
other words, regardless of position or distance. This 
category contains both SLMs and LLMs, where we 
defined SLM as language models containing less 
than 1 billion parameters. SLMs consisted of BERT 
and its variants, long-sequence transformers, T5, 
and GPT-2. LLMs consisted of the models in the 
families of GPT, Llama, Mistral-7B, Gemma-7B, 
Qwen-2, Yi-34b, and Phi3, though Claude and 
Gemini families could be utilized as well. 

We note several trends about the use of models 
through the years. Classical machine learning 
techniques have retained momentum due to their 
transparency, interpretability, efficiency, and 
robustness with small sample sizes. Neural 
network based deep learning models have been 
intermittently used beginning in 1995 and gaining 
moderate traction in 2019 to 2020. During this 
time, the use of neural-network-based deep 
learning models was approximately equal to the 
use of classical machine learning models. 
However, there has been a decline in the use of 
neural network based deep learning models that 
coincides with the rise of transformer-based 
models around 2020. Since then, classical machine 
learning models are still used, while transformer-
based models have been used for both predicting 
item difficulty and generating embeddings as 
features. 

4.10 Evaluation Criteria 

Model performance was assessed using 23 unique 
evaluation criteria and their application depended 
on whether item difficulty prediction was a 
regression or classification task. In this review 43 
studies were regression tasks and 3 were 
classification tasks. With regards to the regression 
tasks, the most common evaluation criteria were 
root mean square error (RMSE) (k=28, 31.82%), 
Pearson product moment correlation (k=17, 
19.32%), and 𝑅! (k=13, 14.77%), mean absolute 
error (k=8, 9.09%), and mean square error (k=5, 
5.68%). For classification tasks, exact accuracy 
was used for each study (k=3, 37.50%), and 
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adjacent accuracy was used when there were more 
than three difficulty levels (k=2, 25.00%). F1-
score, recall, and precision were used once 
(12.50% each). 

4.11 Model Performance 

Appendix B presents a table that summarizes the 
best-performing value for each evaluation criteria 
used in the reviewed studies. Evaluation criteria 
that were used twice were summarized with the 
minimum and maximum values. It is important to 
note that although the table summarizes the 
outcomes from most commonly used evaluation 
criteria, values are not directly comparable across 
studies due to different subject domains and item 
difficulty parameters without a common scale. 
Instead, it should be used to provide a sense of what 
constitutes a “typical result” based on the range and 
distribution of values obtained in the literature. 
     For the most commonly used evaluation metric 
in regression tasks, RMSE, the summary was made 
for p-value, transformed p-value, and Rasch model 
b-parameter. The RMSE for studies using p-value 
ranged from 0.165 to 0.268 (N=6, M=0.216, 
SD=0.035), while RMSE for studies using 
transformed p-values ranged from 0.253 to 0.308 
(N=10, M=0.291, SD=0.018). RMSE for studies 
using the Rasch model b parameter ranged from 
0.354 to 1.295 (N=8, M = 0.740, SD = 0.297). The 
RMSE based on other difficulty parameters (i.e., 
3PL, Delta, categorical levels), only contained one 
value for each, therefore a meaningful summary 
could not be produced.  
     The pattern persisted for other regression 
evaluation metrics. The Pearson correlation ranged 
from 0.040 to 0.870 (N=17, M=0.545, SD=0.225). 
𝑅!  values ranged from 0.208 to 0.788 (N=13, 
M=0.478, SD=0.200). 
     Similarly, the range for classification evaluation 
metrics also varied greatly across studies. Exact 
accuracy ranges from 0.325 to 0.806 (N=3, 
M=0.567, SD=0.241). However, the moderate to 
very high adjacent accuracy values (N = 2, 0.65 and 
0.982) indicate that even when the model’s 
prediction is not exactly correct, it is close, often 
just one category away from the true difficulty 
level. 

5 Discussion 

The aim of this review was to highlight and 
summarize trends in text-based item difficulty 
prediction research in the large-scale assessment 

setting, with a focus on advanced machine learning 
and language model-based approaches. A total of 
46 studies from 37 articles were synthesized and 
results showed high potential for automated 
prediction of item difficulty parameters. 
     Our review makes several contributions to 
large-scale educational assessments. We provide 
large-scale educational assessment programs with 
foundational information that can be used to guide 
the implementation of automated approaches for 
item difficulty in the test development process. We 
provide practical insights into the optimal input and 
prompting strategies such as including all item 
components in the input and using a larger portion 
of the data for training leads to increased model 
performance. Our review can also be used as 
guidance for model and feature selection, outlining 
critical considerations for methodological choices. 
Overall, automated item difficulty modeling can be 
used to reduce the time and cost of traditional field 
testing to evaluate item quality. 
     Additionally, this review presents major 
contributions to the field of machine learning. 
Unlike previous reviews that have only synthesized 
the literature through 2022, the present review 
captures the significant growth of research in the 
past three years, as well as how methodological 
approaches have evolved since the 1990s. Another 
unique contribution of our review is the numerical 
distribution of model performance outcomes across 
all studies. The distribution of outcomes acts as a 
reference point that future researchers can use to set 
realistic expectations and to contextualize their 
model performance results. 
     Nonetheless, our review has a few limitations 
including the potential bias due to the 
overrepresentation of papers from the BEA shared 
task, lack of diversity in certain aspects of the 
datasets (e.g., item type, content domain), 
unexplained variability in model performance, and 
limited reporting of observed range of the IRT b-
parameter. The latter complicates interpretation of 
scale-dependent evaluation metrics that were 
summarized in the model performance section. 
Future studies should prioritize dataset diversity, 
transparent reporting of methodology, and 
approaches that balance interpretability with the 
capabilities of state-of-the-art language models. 
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Appendix A. List of Models Included in the Review. 
Classical Machine Learning Models: 

1. Linear and Penalized Regression Models: Ordinary Least Square Regression, Principal Components  
Regression, Partial Least Squares Regression, Elastic Net Regression, Lasso Regression,  
Ridge Regression/Ridge (L2) Penalized Regression, Linear Logistic Test Model (LLTM) 

2. Decision Tree-Based Models: Classification and Regression Trees (CART), Classification Trees,  
Decision Tree Regression, Extra Trees, Random Forest, Regression Trees 

3. Probabilistic Models: Naive Bayes Classifier, Gaussian Processes, Probabilistic language model 
4. Ensemble Learning Models: AdaBoost, Cat-Boost, Gradient Boosting, Gradient Boosting Decision  

Trees, Light Gradient Boosting Machine, XGBoost, XGBoost-based SHAP Model 
5. Kernel and Distance-Based Models: k-Nearest Neighbors, Support Vector Machines 
6. Simple Neural Network Based Models: Adaptive Neuro-Fuzzy Inference System (ANFIS),  

One Neuron Network (with no hidden layer), Three-Layer Backpropagation Neural  
Network (with only one hidden layer) 
 
 

Neural Network Based Deep Learning Models: 
1. Basic Neural Network Architectures: Artificial Neural Network (ANN), Multilayer-Perceptron 

 (MLP), Dense Neural Network 
2. Convolutional Neural Networks (CNNs) and Variants: Convolutional Neural Network (CNN),  

Attention-based CNN (ACNN), Hierarchical Attention-Based CNN (HBCNN), Multi-Scale  
Attention CNN (MACNN), Temporal CNN (TCNN), Temporal Attention CNN (TACNN). 

3. Bidirectional Long Short-Term Memory (Bi-LSTM) 
 
Transformer-Based Language Models 
Small Language Models: 

1. BERT and its Variants: BERT, BERT-ClinicalQA, Clinical-BERT, BioClinicalBERT,  
Bio_ClinicalBERT_emrqa, Bio_ClinicalBERT_FTMT, Clinical-BigBird, BioMedBERT,  
PubMedBERT, DistilBERT, ConvBERT, DeBERTa, RoBERTa, Electra, BioMedElectra 

2. Long-Sequence Transformers: Longformer, Clinical-Longformer, Longformer-Base-4096, BigBird 
3. GPT-2 
4. T5 

Large Language Models: 
1. GPT Family: GPT-4, GPT-4o 
2. Llama-7B 
3. Mistral-7B 
4. Gemma-7B 
5. Phi 3

46



 
 

Appendix B. Model Performance Summary. 

Evaluation Criterion Count Min Max Median Mean SD 
Regression Tasks       
RMSE       
     Based on p-value 6 .165 .268 .214 .216 .035 
     Based on transformed p-value 10 .253 .308 .297 .291 .018 
     Based on Rasch model 8 .354 1.295 .693 .740 .297 
MSE 5 .013 .521 .064 .203 .227 
MAE 7 .185 .58 .240 .307 .159 
Correlation       
     Pearson 17 .04 .87 .550 .545 .225 
     Spearman 4 .25 .790 .496 .508 .221 
R-Squared 13 .208 .788 .525 .478 .200 
Match 2 .757 .780 - - - 
Classification Tasks       
Accuracy       
     Exact 3 .325 .806 .569 .567 .241 
     Adjacent 2 .65 .982 - - - 
Note. For studies that reported multiple models or evaluation criteria, only the best-performing value 
for each evaluation criterion was included. Only evaluation criteria that provided enough information 
(k ≥ 2) for meaningful analysis were included. We also note that we report the same number of 
decimals that were presented in the articles. 

47


