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Abstract

This study investigates methods for item dif-
ficulty modeling in large-scale assessments
using both small and large language models.
We introduce novel data augmentation strate-
gies, including on-the-fly augmentation and
distribution balancing, that surpass benchmark
performances, demonstrating their effective-
ness in mitigating data imbalance and improv-
ing model performance. Our results showed
that fine-tuned small language models such
as BERT and RoBERTa yielded lower root
mean squared error than the first-place win-
ning model in the BEA 2024 Shared Task com-
petition, whereas domain-specific models like
BioClinicalBERT and PubMedBERT did not
provide significant improvements due to distri-
butional gaps. Majority voting among small
language models enhanced prediction accu-
racy, reinforcing the benefits of ensemble learn-
ing. Large language models (LLMs), such as
GPT-4, exhibited strong generalization capa-
bilities but struggled with item difficulty pre-
diction, likely due to limited training data and
the absence of explicit difficulty-related con-
text. Chain-of-thought prompting and rationale
generation approaches were explored but did
not yield substantial improvements, suggesting
that additional training data or more sophisti-
cated reasoning techniques may be necessary.
Embedding-based methods, particularly using
NV-Embed-v2, showed promise but did not out-
perform our best augmentation strategies, indi-
cating that capturing nuanced difficulty-related
features remains a challenge.

1 Introduction

Standardized tests rely on a detailed analysis of
item attributes to ensure psychometric quality of
items and test forms. A key attribute is the dif-
ficulty level of each item, which is related to the
likelihood that an examinee will answer an item
correctly. By producing items across a wide diffi-
culty spectrum, it is expected the same measure-

ment precision can be achieved at different ability
levels. Moreover, while items that are more chal-
lenging typically result in longer response times,
the duration of responses can also shed light on
examinees’ engagement and cognitive strategies,
thereby enhancing the validity of the test outcomes.
In addition, having a comprehensive understanding
of item characteristics is critical for implementing
advanced testing methods such as automated item
generation, automated item selection in test form
assembly, computerized adaptive testing, and in-
dividualized assessments (Baylari and Montazer,
2009; Wauters et al., 2012; Kubiszyn and Borich,
2024)

Typically, estimation of item difficulty and the
response time required to answer items are derived
from item response data gathered during field test-
ing. However, field testing demands a large sample
of examinees, which in turn drives up test adminis-
tration costs (Bejar, 1983; Impara and Plake, 1998).
As a result, researchers have explored alternative
methods to predict item characteristics without re-
sorting to actual test administration. One strategy
involves soliciting difficulty estimates from domain
experts and professionals involved in test develop-
ment, yet this method has not consistently yielded
reliable or satisfactory results (Wauters et al., 2012;
Attali et al., 2014).

Another research avenue focuses on predicting
item attributes based solely on the textual content
of the items, including source passages, item stems,
and response options (Hsu et al., 2018; Yaneva
et al., 2019). This approach leverages text-mining
techniques to extract both superficial features (e.g.,
word counts) and more complex features (e.g., se-
mantic similarities between sentences), which are
then used in sophisticated statistical models for pre-
diction. In our study, we employed cutting-edge
language models (LMs) for the development of
predictive models aimed at estimating these item
characteristics. This paper provides a comprehen-
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Figure 1: The Item Difficulty Distributions of USMLE
Steps 1, 2, and 3 Training Datasets.

sive account of the methodologies implemented
and the results obtained from our best-performing
models for predicting item difficulty demonstrated
using an empirical dataset.

2 Methods

2.1 Datasets

Building on this line of research, this study used
data from the National Board of Medical Exam-
iners (NBME) initiated BEA 2024 Shared Task 1

to automate the prediction of item difficulty and
response time. The released dataset included 667
items that were previously used and have since
been retired from the United States Medical Li-
censing Examination® (USMLE®)—a series of
high-stakes exams 2 that inform medical licensure
decisions in the United States. These items, drawn
from USMLE Steps 1, 2 Clinical Knowledge (CK),
and 3, span a diverse range of topics relevant to
medical practice. During the BEA 2024 Shared
Task, participating research teams were challenged
to leverage NLP techniques using 466 items to de-
velop models to predict item difficulty.

Subsequently, the models developed from the
initial phase were applied to a second dataset con-
taining 201 items. This testing set shared the same
structural characteristics as the first, except that
the values for item difficulty and response time
were initially concealed. These values were dis-
closed only after the BEA 2024 submission dead-
line, thereby facilitating a fair evaluation of the
model’s performance in predicting outcomes.

1https://sig-edu.org/sharedtask/2024
2https://www.usmle.org/step-exams

Figure 1 presents the item difficulty distribu-
tions for Steps 1, 2, and 3 USMLE in the train-
ing data. The larger values indicate more difficult
items. The item difficulty for each Step exam is
not evenly distributed. The data imbalance issue
is severely critical for this task as the majority of
the data lies in the low-difficult range, and only a
small number of items is difficult items. This data
sparsity in some item difficulty ranges may cause
non-representation issues when the item difficulty
modeling is developed.

2.2 Models and Methods for Item Difficulty
Prediction

This study explored a variety of different methods
ranging (i) from small language models (SLM)
to large language models (LLMs); (ii) from
embedding-based methods to auto-regressive meth-
ods; and (iii) from finetune-based methods to
inference-only methods. In addition, LLMs with
different fine-tuning and prompting techniques
were explored. These explorations thoroughly cov-
ered the most widely accepted methods off the
shelf, which can serve as detailed guidance for
future endeavors to other datasets.

2.2.1 SLMs: BERT and its Variants
This study started experimentation with directly
fine-tuning small language models for difficulty
prediction. We treat this task as a regression task
that directly predicts the difficulty value for each
item. The models incorporated are mostly encoder-
only language models but also some models with
encoder-decoder structures, including BERT (De-
vlin et al., 2018), RoBERTa (Liu et al., 2019),
DistillBERT (Sanh et al., 2020),deBERTa (He
et al., 2021),ELECTRA (Clark et al., 2020), Con-
vBERT (Jiang et al., 2020), T5 (Raffel et al., 2023),
BioClinicalBERT (Alsentzer et al., 2019), and Pub-
MedBERT (Gu et al., 2021). These models intend
to set the baseline for comparison. Further, data
augmentation was implemented to enhance the pre-
diction accuracy.

2.2.2 Ensemble of SLMs with Majority Voting
Usually, ensemble models are expected to perform
better than single-base models. Thus, we explored
a commonly used majority voting method to gener-
ate more robust results from single SLMs. For the
regression task, we used majority voting, which is
the average predicted value from different models
that participate in the voting process. Compared
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with single-model predictions, majority voting is
expected to be more robust since the training pro-
cess is always affected by randomness, and the
voting may alleviate the effects of randomness.

2.2.3 SLMs with Data Augmentation
The NLPAug (Ma, 2019) package is utilized for
implementing data augmentation. Two types of
data augmentation strategies were explored in this
study. The two types of data augmentation strate-
gies include: (i) Augmentation on the fly, and (ii)
Augmentation with distribution balancing.
Augmentation-on-the-Fly

In this strategy, we randomly augment original
training samples every time it is sent to the model
for training. Under this circumstance, all the sam-
ples seen by the model are a random augmented
version of the original sample, which means the
model will not see any identical samples during the
epochs of training. This strategy is mostly widely
used in the machine learning community as it pre-
vents the model from overfitting to the samples.
Augmentation with Distribution Balancing

This strategy is more complicated as it is spe-
cially designed for this task. As shown in Figure
1, the data imbalance issue is severely critical for
this task. The majority of the data lies in the low-
difficult range, and only a small set of data has high
difficulties, e.g., above 0.8. Thus, this imbalance
issue causes most of the methods to fail for the
prediction, even for our Augmentation-on-the-Fly
strategy, as it does not change the frequencies of
each sample trained by the model.

Thus, to deal with this issue, we were motivated
to balance the sample sizes across the whole dis-
tribution, i.e., generate more data for the difficulty
levels with lower density and fix them during train-
ing. As a regression task, it is naturally difficult
to make the data more balanced as they are not
as discrete as classification tasks. So, in order to
solve it, we first separate all the data samples into
20 bins by fixed intervals and then merge the ad-
jacent bins such that there are at least 2 samples
in each bin. This preliminary process converts the
consecutive values into discrete bins. Then, we
randomly sample 1 instance from each bin to form
the validation set. The remaining instances form
the training set. This separation ensures that the
validation set is balanced enough for fair evaluation.
In the remaining bins of the training set, we then
randomly augment the existing training samples
into a predefined count, i.e., 8 in our experiment.

Under this circumstance, the sample counts across
all the bins, i.e., the whole distribution, become
largely balanced. Then, during training, we fix
these samples and do not do augmentation during
training. This strategy largely alleviates the dis-
tribution imbalance issue and prevents the model
from overfitting to high-frequent samples.
Ensemble of Two Data Augmentation Strategies

Both strategies have their own merits. Thus,
we further implement an ensemble strategy. For
each given instance, each of the above two mod-
els generates its own prediction, and then these
two predicted values are averaged to simulate the
ensemble of the two strategies.

2.2.4 SLMs with LLM Rationales
The training dataset contains only the questions, op-
tions, and answers; however, the goal of this study
is to predict the difficulties of these items. Thus,
there exists a critical gap between the input (item
text) and the target (item difficulty). If the input
does not contain any information regarding the dif-
ficulty, obviously, it will be difficult for SLMs to
predict the item’s difficulties.

Given the strong reasoning capabilities of LLMs
and the potential insights that the chain-of-thought
(CoT) prompting technique may provide in reason-
ing, we hypothesize that incorporating additional
rationales that specifically analyze the difficulty of
the given items will benefit SLMs in capturing the
representative key features in item difficulty mod-
eling. Thus, motivated by the success of CoT (Wei
et al., 2023), we employed GPT-4 (OpenAI et al.,
2024) to generate a detailed analysis of the item dif-
ficulties of different instances, which we refer to as
rationales. Then, we concatenate these rationales
with the original item text for training the SLMs.
The SLMs experimented with are BERT, T5, and
Longformer (Beltagy et al., 2020).

2.2.5 BERT with Step-Wise Data
Augmentation

Another critical issue of the existing training
dataset is its imbalanced nature across exams in
the three steps. As shown in Figure 1, the number
of step 1 exam items is larger than that for the step
2 and step 3 exam items. To solve this issue, a step-
wise data augmentation strategy was implemented
using the Python package: NLPAug(Ma, 2019) to
augment data in steps 2 and 3 exams for training
the BERT model as it was the best-performing base
model. Thus, the proposed step-wise data augmen-
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tation strategy yielded more augmented data points
for step 2 and step 3 exams, while fewer augmented
data points for step 1 exam. Further, this step-wise
data augmentation method was applied to augment
data for the BERT model augmented with the LLM
rationales already.

2.2.6 LLMs Finetuning and In-context
Learning

All the above methods are based on small language
models. In addition, we explored how LLMs per-
formed on this task. Finetuning on LLMs is typ-
ically the most commonly used technique when
we need LLMs to handle a new task. However,
most of the modern LLMs follow the decoder-
only structure, which predicts each token in an
auto-regressive manner. The modern decoder-only
LLMs are more capable of text generation rather
than regression tasks, especially when the task is
not previously learned during the pretraining phase.

The first category of method we explored was
the finetune-based method. Since we only have
hundreds of training samples, which is typically
not enough for LLMs, we select Phi3 (Abdin
et al., 2024) as our base LLM and utilize the full
finetuning and LoRA finetuning strategies (Hu
et al., 2021). In addition, In-context Learning
(ICL) (Brown et al., 2020) is another widely used
method for LLM prediction. ICL is less affected
by the sparsity of the training data. Thus, we also
explored using ICL. One of the biggest advantages
of ICL is that it does not require training, thus, it
can be used in any LLM, even for closed-source
LLMs like GPT-4.

2.2.7 LLMs Embeddings
Previous explorations on LLMs employed the
auto-regressive manner of decoder-only structures,
which might not be able to well capture the distri-
bution from training data. Typically, embeddings
are more effective for regression tasks. Thus, we
further explored using LLM embeddings for the
prediction, specifically, we utilized the most cur-
rent state-of-the-art embedding model NV-Embed-
v2 (Lee et al., 2024) as the encoder for item dif-
ficulty modeling. Further, we trained several ad-
ditional layers for the difficulty prediction. We
also explored combining the benefits of the auto-
regressive manner and the benefits of the embed-
ding method together by first generating rationales
that specifically analyze the difficulty of the given
items, then the SOTA embedding LLMs are utilized

to capture the overall distribution of the training
data.

2.3 Evaluation of Model Performances

This study used the root mean squared error
(RMSE) to evaluate the model performance. This is
the evaluation criterion used in the competition. To
use the results from the competition as a reference
to evaluate the performance of the models and the
methods we proposed in this study, we computed
RMSE for each model and method explored.

3 Results

3.1 SLMs: BERT, Its Variants, and the
Ensemble Models

The performance of the fine-tuned SLMs and the
ensemble models is summarized in Table 1. As
noted, BERT and Roberta have the top perfor-
mances, with BERT yielding the smallest RMSE.
Contrary to our expectation, utilizing BERT trained
with medical-related data (BioClinicalBERT and
PubMedBert) does not show an evident improve-
ment in model performance in predicting item dif-
ficulty, which might be caused by the class imbal-
ance in the potential distribution gaps. These two
models might have a better general understanding
of medical-related knowledge, but this knowledge
still has a gap in understanding and reasoning item
difficulty, which is a basic concept in the psycho-
metric analysis of test items.

The ensembled BERT with a Majority Voting
strategy (with RMSE of 0.2981) also exceeds the
first place on the leaderboard, showing the effective-
ness of this strategy. However, BioClinicalBERT
and PubMedBert do not benefit from the ensemble
strategy. It is reasonable that the performances of
these models are originally not good, and voting
by multiple not high-performing models may not
necessarily further increase the performance.

3.2 SLMs with Data Augmentation

Our best-performing model is BERT with an en-
semble of two types of data augmentation strategies.
Both data augmentation strategies (Augmentation-
on-the-fly and Augmentation with distribution bal-
ancing result in excellent performances that ex-
ceeded the first place (RMSE: 0.299) on the leader-
board. Augmentation-on-the-fly yielded RMSE of
0.2975 while augmentation with distribution bal-
ancing yields 0.2985 of RMSE, which also exceeds
the first place on the leaderboard. Further, the en-
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Table 1: Performances for Fine-Tuned SLMs: BERT
and its Variants and SLMs with Majority Voting

Model RMSE

BERT 0.2990
RoBERTa 0.2997
DistilBERT 0.3022
DeBERTa 0.3060
ELECTRA 0.3026
ConvBERT 0.3015
T5 0.3023
BioClinicalBERT 0.3043
PubMedBert 0.3067
BERT (Majority Voting) 0.2981
BioClinicalBERT (Majority Voting) 0.3052
PubMedBert (Majority Voting) 0.3086

Table 2: Performance of the BERT Models with Differ-
ent Data Augmentation Strategies and the Top Perform-
ing Models in the Leaderboard.

Rank Studied Methods/Team Name RMSE

Ours Ensemble of Two Strategies 0.2926
Ours Augmentation-on-the-Fly 0.2975
Ours Augmentation with Balancing 0.2985

1 electra 0.299
2 UPN-ICC (run1) 0.303
3 Roberta 0.304
4 RandomForest 0.305
5 ENSEMBLE 0.305
6 Predictions 0.305
7 FEAT 0.305
8 ROBERTA 0.306

semble of these two strategies further leads to an
extraordinary performance of 0.2926 in terms of
RMSE, which also exceeds the first place on the
leaderboard by a really large margin. The perfor-
mances are further compared in Table 2.

3.3 SLMs with LLM rationales

We used GPT-4 to generate detailed rationales for
the difficulties of the items. We concatenated the
generated rationales with the original item text for
training BERT, T5, and Longformer. The model
performances are summarized in Table 3. The mod-
els did not perform as effectively as expected. This
might be related to the sparsity of the training data
in each step exam. When the sample size of the
training data is relatively small for each step exam,

Table 3: Performances for SLMs with LLM Rationales

Model RMSE

BERT + GPT4 rationales 0.3029
T5 + GPT4 rationales 0.3047
Longformer + GPT4 rationales 0.3050

Table 4: Performances for SLMs with Step-wise Data
Augmentation

Model RMSE

BERT + Step 0.3009
BERT + GPT4 rationales + Step 0.3000

even the generated rationales may not be able to
capture the key item characteristics that distinguish
them in terms of item difficulty, though the sample
size for each step exam has been increased.

3.4 BERT with Step-Wise Data Augmentation

With the step-wise data augmentation strategy,
more synthetic data points were generated to in-
crease more item samples for step 2 and step 3
exams, while slightly more items for the step 1
exam. Step-wise data augmentation was applied to
both the BERT model and the BERT model with
rationals as data augmentation. The performances
of these two models are presented in Table 4. The
step-wise data augmentation did not improve the
performances of the BERT model, and the BERT
model with rationales as augmented data was not
better than the first-place model on the leaderboard,
both with a slightly larger RMSE of 0.3. This find-
ing indicated that the class imbalance issue in item
difficulty distribution is more severe than the class
imbalance across the exams in different steps.

3.5 LLMs Finetuning and In-context
Learning

We fine-tuned Phi3 as our base LLM and utilized
the full finetuning and LoRA finetuning methods.
Although the LoRA finetuning method is typically
useful for low-resource situations, the tremendous
distribution gap between the LLM itself and the
learning target causes the LLM to hardly learn any-
thing. On the other hand, when utilizing full fine-
tuning, the LLM is able to partially learn the distri-
bution of the learning target and thus predict item
difficulty in the testing dataset with a reasonable
value. However, the sparsity of the training samples
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Table 5: Performances for LLMs In-context Learning.

Model RMSE

Phi3 with full finetuning 0.3816
Phi3 with Lora finetuning 0.7632
GPT4 0.3556
GPT4 (ICL) 0.3553

Table 6: Performances for LLMs Embeddings

Model RMSE

NV-Embed-v2 0.3065
NV-Embed-v2 + GPT4 rationales 0.3023

largely affects its performance, yielding an RMSE
of 0.3816, the worst among the models explored in
this study except Phi3 with Lora finetuning.

The performances of GPT-4 for item difficulty
prediction, with or without using ICL are presented
in Table 5. The performances for GPT-4 and GPT-4
with ICL were both worse than the first place on the
leaderboard with RMSE larger than 0.355. These
results not only show that ICL is not effective on
this task but also indicate the difficulty of this task,
even the powerful GPT-4 can not yield promising
performance.

3.6 LLM Embeddings
As embeddings are effective for regression tasks,
we utilized the embedding model NV-Embed-v2 as
the encoder and trained several additional layers for
the difficulty prediction. Further, NV-Embed-v2
was enhanced by the rationales generated by GPT-
4. The model performances are summarized in
Table 6. The performances of these two approaches
did not beat the first place in the leaderboard with
RMSE larger than 0.302. Again, this indicates the
difficulty of this task due to the small sample size
of training data and the class imbalance issue when
item difficulty is represented on a continuous scale.

4 Discussion and Conclusion

In this study, we explored different language mod-
els as well as different data augmentation methods
for item difficulty modeling for large-scale stan-
dardized assessments, leveraging both SLMs and
LLMs. Our results demonstrated that the applica-
tion of data augmentation techniques, particularly
our proposed method combining both on-the-fly
data augmentation and distribution balancing data
augmentation, achieved a slightly lower RMSE of

0.2926. This performance surpasses the first-place
winning model in the BEA 2024 Shared Task com-
petition leaderboard (RMSE = 0.299), indicating
that our ensemble approach slightly outperforms all
other reported models on the leaderboard for this
dataset. This finding highlights the effectiveness
of data augmentation in improving model perfor-
mance and mitigating the challenges posed by data
imbalance sparsity in some regions of the item dif-
ficulty scale.

Our comparative analysis of different mod-
eling approaches revealed several key insights.
Firstly, while fine-tuning SLMs such as BERT and
RoBERTa yielded smaller RMSE, the introduc-
tion of domain-specific models such as BioClin-
icalBERT and PubMedBERT did not significantly
improve model performance, likely due to distribu-
tional gaps between medical literature and test item
difficulty prediction. Moreover, majority voting
among multiple models provided additional robust-
ness, further confirming the benefits of ensemble
learning techniques in regression tasks.

The integration of LLMs introduced additional
challenges. While models such as GPT-4 exhib-
ited strong generalization capabilities in other NLP
tasks, their performance in item difficulty predic-
tion was limited. This outcome suggests that the
scarcity of training data and the absence of explicit
difficulty-related context in the input might hin-
der the effectiveness of LLMs in this task. Our
attempts to bridge this gap using chain-of-thought
prompting and rationale generation did not yield
substantial improvements, likely due to insufficient
training data to fully capture the key item character-
istics along the item difficulty scale and ultimately
exploit the advantages of LLM-based reasoning.

Note that even though the difference between the
RMSE of our best-performing model, an ensem-
ble of BERT models with two data augmentation
strategies, and that of the first-place model in the
competition was only 0.0064, the impact of such a
difference might be meaningful for high-stakes test-
ing programs. In large-scale standardized assess-
ments for high-stakes decisions like the USMLE,
small numerical improvements in predictive met-
rics such as RMSE may translate into practically
meaningful impacts. More accurate item difficulty
predictions may lead to improved item selection,
test assembly, and better-informed decisions about
examinees. Future studies may explore the impact
of such slight improvement in item difficulty pre-
diction on improvements at the overall test level.
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