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Abstract

Correct answers to math problems don’t re-
veal if students understand concepts or just
memorized procedures. Conversation-Based
Assessment (CBA) addresses this through Al
dialogue, but reliable scoring requires costly
pilots and specialized expertise. Our Criteria
Development Platform (CDP) enables pre-pilot
optimization using synthetic data, reducing de-
velopment from months to days. Testing 17
math items through 68 iterations, all achieved
our reliability threshold (MCC > 0.80) after
refinement — up from 59% initially. Without re-
finement, 7 items would have remained below
this threshold. By making reliability valida-
tion accessible, CDP empowers educators to
develop assessments meeting automated scor-
ing standards.

1 Background

When students solve math problems correctly,
teachers face a critical challenge: they cannot tell
if students understand the concepts or just mem-
orized the steps. A student who correctly solves
1.5(2 — 4h) = 6h might understand why division
maintains equality, or might simply execute a mem-
orized procedure. When students do not solve a
problem correctly, the only information available
is that they entered an incorrect answer. It is un-
knowable whether they had a partial or incomplete
understanding of the problem. Traditional tests
cannot provide evidence about students’ thought
process when answering questions, creating a gap
that affects teaching decisions and student support.

Conversation-Based Assessment (CBA) en-
ables the assessment of conceptual understand-
ing through adaptive dialogue (Yildirim-Erbasli
and Bulut, 2023). In CBA, students explain their
reasoning, similar to constructed response items
(Williamson et al., 2012). Unlike static written
responses, CBA adapts based on student answers
— asking follow-ups when needed and providing
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appropriate feedback (Jackson et al., 2018). This
interaction provides evidence indicating whether
students grasp underlying concepts.

CBA technology has progressed from scripted
to generative systems. Early approaches required
authoring specific response-reply pairs (Zapata-
Rivera et al., 2015), essentially building complete
dialogue trees that anticipated every possible stu-
dent response. Later systems like Quizbot used
semantic matching to map student responses to pre-
written feedback (Ruan et al., 2019), but educators
still had to design and construct all potential con-
versation paths beforehand.

Large Language Models (LLMs) introduced in
2022 (OpenAl, 2024) marked a paradigm shift. In-
stead of pre-building dialogue trees, these newer
systems allow students to respond openly in their
own words, with the Al using NLP methods to
understand and categorize responses dynamically
(Bergerhoff et al., 2024). This eliminates the bur-
den of anticipating and scripting every possible
conversation branch, making CBA development
accessible to educators without the resources for
complex dialogue engineering.

Yet this freedom from pre-coding dialogue paths
creates a different challenge. When systems can
accept any student response rather than matching
against predetermined patterns, they must interpret
novel expressions of understanding in real-time.
While these models are capable of such evaluation,
without explicit guidance about what constitutes
conceptual mastery, their scoring decisions may
lack the consistency needed for reliable assessment.

Scoring criteria provide this needed guidance,
giving structure to open-ended evaluation. By ex-
plicitly defining what constitutes conceptual mas-
tery for each item, these criteria enable CBA sys-
tems to evaluate diverse student responses consis-
tently and generate appropriate follow-ups. Good
criteria help Al Scorers match human grader relia-
bility (Henkel et al., 2024), especially when subject
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matter experts write item-specific criteria rather
than generic prompts (Frohn et al., 2025).

Creating reliable scoring criteria requires meet-
ing established assessment standards, with Al and
human graders reaching similar conclusions. Edu-
cational assessment typically requires strong agree-
ment (e.g., k > 0.70) (Williamson et al., 2012;
Wood et al., 2021). These thresholds challenge tra-
ditional empirical validation because they require
extensive time and resources to reach (Williamson
et al., 2012). Developers draft criteria, pilot them
with real students, and compare Al scores to hu-
man ratings. Discrepancies trigger revision and
re-piloting. Most items require multiple cycles, tak-
ing months and requiring fresh student data each
time.

Even when time and resources are available, the
validation process requires specialized technical
knowledge that content authors often lack, such
as: dataset development (developing and labeling
balanced, diverse synthetic datasets), metric com-
putation (choosing and calculating coefficients),
iteration management (managing multiple criteria
refinements and their associated datasets), and in-
terpreting results (setting targets and identifying
which changes were meaningful). Without this
expertise, efforts may yield unreliable results.

These twin challenges — lengthy validation cy-
cles and specialized expertise requirements — create
a bottleneck in CBA development. Without tools to
test criteria before student pilots, developers must
choose between deploying potentially unreliable
assessments or investing months in iterative pilot
studies. At Khan Academy, these challenges drove
us to develop an alternative to time-consuming stu-
dent pilots for validating scoring criteria. To solve
this problem, we developed a platform that lets cre-
ators test criteria using synthetic data and provides
step-by-step guidance.

1.1 Explain Your Thinking (EYT): A Modern
Conversation-Based Assessment System

Before describing our solution, we first describe
the EYT system itself. Understanding how EYT
uses criteria to both score responses and generate
follow-up questions reinforces why criteria quality
is so critical to CBA success.

Explain Your Thinking (EYT) is our implemen-
tation of modern CBA. Students first solve prob-
lems, then explain their reasoning in Al-guided
conversations. For example, when a student solves
1.5(2 — 4h) = 6h by dividing both sides by 1.5,
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Julia decides to start solving the equation by dividing both
sides by 1.5,

1.5(2 - 4h) = 6h

Show the equation that would result after Julia performs
this first step.

Figure 1: Screenshot of the Explain Your Thinking
conversation-based assessment item type. The student
first answers a math problem (left), and then has a con-
versation about the problem (right) which is designed
to assess their conceptual understanding.

we know whether or not they can execute the proce-
dure. But EYT goes deeper: can they explain why
division maintains equality? Do they understand
that division and multiplication are inverse opera-
tions? The system uses scoring criteria to evaluate
these conceptual understandings and generate ap-
propriate follow-up questions.

Each assessment activity starts with a math prob-
lem, the student’s answer, and criteria defining com-
plete understanding. The platform operates through
three integrated functions that enable assessment.
First, it recognizes varied expressions of concepts,
allowing students to explain their thinking in their
own words. Second, it generates probing questions
that explore understanding without revealing an-
swers. Third, it maintains assessment validity by
avoiding teaching during the evaluation process.

Importantly, EYT’s effectiveness depends on a
criteria-driven cascade. At each turn, an Al Scorer
evaluates the conversation history to determine
which criteria the student has satisfied. These eval-
uations then flow to a Response Generator, which
receives a list of unsatisfied criteria and generates
targeted follow-up questions to probe those specific
gaps. When criteria are vague or missing, this cas-
cade breaks down: the Al Scorer misclassifies re-
sponses, passing incorrect information downstream,
and the Response Generator asks about the wrong
concepts, leading to unproductive conversations.

Students experience a natural conversation flow.
They explain their approach and receive targeted
follow-ups that probe gaps without teaching. The
conversation continues until students demonstrate
understanding or reach a four-turn limit.



2 Criteria Development Platform (CDP)

Given that poor criteria can derail EYT’s assess-
ment cascade and compromise validity, we needed
a way to ensure criteria quality before deploy-
ment. Our Criteria Development Platform (CDP)
addresses this need by enabling content creators to
test and refine Al scoring criteria using synthetic
student responses, eliminating the months-long pi-
lot cycles traditionally required for validation.

CDP operates through an iterative workflow
where creators write scoring criteria, generate syn-
thetic responses that test edge cases, evaluate Al
Scorer performance against these responses, and
refine their criteria based on the results.
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Figure 2: The Criteria Development Platform’s iterative
workflow. Content creators write scoring criteria, gen-
erate synthetic responses, test performance, and refine
their criteria based on results.

CDP addresses both core challenges of criteria
development. First, it reduces validation time from
months to days by eliminating the need for multiple
rounds of student pilots. Creators can test dozens
of iterations in hours or days rather than weeks
or months. Second, it provides guided support
that makes reliable assessment creation accessible
without specialized expertise. The platform auto-
matically tracks versions, computes performance
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metrics, and provides targets and actionable feed-
back to guide criteria development.

To evaluate CDP’s effectiveness, we analyzed
68 development cycles from six content creators
developing 17 math assessment items. Our analysis
addresses three key research questions:

1. Engagement: Do content creators effectively

engage in iterative refinement when using

CDP?

Improvement: When creators iterate, do their

scoring criteria demonstrate measurable per-

formance gains?

3. Achievement: What proportion of items ulti-
mately meet established reliability standards?

The following sections detail CDP’s design and
demonstrate its effectiveness through empirical
analysis of these development cycles.

2.1 How CDP works

Creators follow four steps (Figure 2) to create scor-
ing criteria. They select an item and then iterate
through: writing criteria, generating data, and test-
ing performance until meeting standards. Through-
out this cycle, the tool preserves all data and met-
rics, allowing creators to track improvements and
learn from each iteration. This four-step process
addresses the challenges of time and expertise: syn-
thetic data allows rapid iteration, while metric gen-
eration and feedback provide scaffolding for cre-
ators.

2.1.1 Step 1: Selecting the item

Content creators start by selecting an item for
which to develop criteria.

2.1.2 Step 2: Writing scoring criteria

Next, creators write up to seven criteria that de-
fine a complete response. For instance, an item
about solving equations might include criteria like
“identifies the inverse operation needed” and “‘ex-
plains why division undoes multiplication.” The
platform tracks all versions of criteria, allowing
creators to try different approaches and revert to
previous versions as needed.

2.1.3 Step 3: Generating test data

Creators need synthetic data to evaluate their cri-
teria without real students. The platform guides
creators in developing balanced datasets of 150
simulated responses per test, with 50 responses
each from correct, partially correct, and incorrect



categories. Each response includes the student’s
initial answer, their conversational explanation, and
a human-assigned ground truth label (correct, par-
tially correct, or incorrect) indicating the response’s
category. Content creators must carefully assign
these ground truth labels when developing the syn-
thetic dataset, as they serve as the authoritative ref-
erence for evaluating the Al Scorer’s performance.
This balanced distribution across the three cate-
gories ensures comprehensive testing of the criteria.
The sample size of 150 was determined through
simulation-based power analysis, achieving >80%
Bayesian posterior probability that MCC > 0.8
when the true MCC is at least 0.84. This provides
strong statistical evidence for identifying scorers
that meet the performance threshold.

Creators generate these responses through a com-
bination of manual writing and Al assistance. To
ensure quality and authenticity, we instructed cre-
ators to manually write at least 10-15 example re-
sponses for each correctness category, capturing re-
alistic student thinking patterns. (Note that for scor-
ing purposes, the Al Scorer uses a binary classifica-
tion approach and treats partially correct responses
as incorrect. However, including partially correct
responses in the dataset serves a critical purpose:
they enhance diversity by capturing edge cases and
boundary conditions where students demonstrate
some but not all required understanding. This helps
creators test whether their criteria can distinguish
between complete and incomplete responses, iden-
tifying potential ambiguities before deployment.)

When using the Al generator, the platform
prompts a language model such as GPT-4.1 with
these manually-created examples, information
about the item, and the criteria. The model gener-
ates unique, plausible student responses matching
the specified category. It receives instructions to
vary both reasoning patterns and writing style. This
ensures responses remain meaningfully different
from the provided examples. Creators must ver-
ify all Al-generated responses and correct ground
truth labels if necessary before adding them to their
dataset.

This approach combines human expertise with
Al’s ability to generate variations at scale. Human
creators identify realistic student thinking patterns.
Al generates diverse examples based on these pat-
terns. Human oversight ensures classification accu-
racy throughout. We also encouraged creators to
include edge cases in test data, such as correct rea-
soning with unusual terminology. Testing against
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these challenging cases helps creators identify and
fix ambiguities in their criteria before real students
encounter them.

The system helps ensure response diversity
through similarity checking. When generating syn-
thetic responses, the platform uses semantic em-
beddings to compare each new response against
all other responses within the same correctness cat-
egory, flagging pairs that exceed 85% similarity.
For mathematical problems, the similarity checker
includes additional detection for responses that dif-
fer only in numerical values, as these may have
high semantic similarity despite representing funda-
mentally different solutions. This prevents dataset
contamination from near-duplicate responses that
would artificially inflate performance metrics.

2.1.4 Step 4: Testing and refining

With criteria and test data ready, creators run the
Al Scorer and see how well it performs with the
current criteria. The platform calculates perfor-
mance metrics by comparing the Al Scorer’s pre-
dictions against the human-assigned ground truth
labels from the synthetic dataset. Metrics like ac-
curacy and false positive rates reveal how well the
Al Scorer aligns with human judgment, helping
creators identify problems with their criteria def-
initions. Additionally, the tool provides the Al
Scorer’s reasoning for each evaluation, showing
where criteria might be unclear or ambiguous (Fig-
ure 3). This transparency addresses the expertise
challenge by making the Al Scorer’s evaluation
process interpretable to non-experts.

3 Research

To evaluate CDP’s effectiveness in enabling pre-
pilot optimization, we conducted an empirical anal-
ysis of platform usage data. This analysis directly
addresses the three research questions posed in
our Aims: examining creator engagement patterns,
measuring performance improvements, and deter-
mining achievement rates.

3.1 Methods
3.1.1 Dataset

Six content creators (curriculum specialists and as-
sessment designers) independently developed 17
mathematics items over three months. Each devel-
opment cycle followed the same workflow: writ-
ing scoring criteria, generating synthetic responses,
and evaluating Al Scorer performance. Items cov-
ered grades 6-12 mathematics, addressing algebra,



Criteria Development Platform (CDP)

< Start Over / Reset All

Develop Response Set Run Al Scorer

Results

‘Show Results Tips v

Metric Plots. ~

False Negative Rate (FVR)
10 10 10 & (FRR)

Matthews Cor. Coeff. (MCC)

False Positive Rate (FPR)

Response-Level Results

‘Show Response-Level Tips.

eyt response.

ground_truth

Viewing rows 1through 3 of 27

Figure 3: The Criteria Development Platform’s Al
Scorer interface displaying performance metrics (MCC,
FPR, FNR) and response-level results with the AI’s scor-
ing reasoning for each evaluation.

geometry, and ratio topics aligned with Common
Core State Standards.They generated 68 develop-
ment cycles. When content creators tested the same
criteria version multiple times during development,
we included only the final run for each version in
our analysis. This resulted in 61 distinct criteria ver-
sions with 10,200 synthetic response evaluations.
We analyzed two distinct item groups. FEight
items (47%) underwent iterative refinement
through multiple criteria revisions. Nine items
(53%) achieved strong performance without crite-
ria changes, maintaining consistent criteria across
runs. This division lets us examine both the refine-
ment process and cases of immediate success.

3.1.2 Performance Metrics

We evaluated Al Scorer performance using four
metrics that measure agreement between Al-
generated scores and ground truth labels (expert
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human scoring):

Matthew’s Correlation Coefficient (MCC)
serves as our primary metric for evaluating scoring
reliability, considering all classification outcomes.
Values range from -1 to +1, with > 0.80 threshold.
MCC balances imbalanced datasets.

Three additional metrics provide comprehensive
evaluation alongside our primary MCC metric:

Cohen’s kappa (x¢) quantifies agreement be-
yond what random chance would produce, with >
0.81 indicating substantial reliability (per Landis
and Koch (1977)).

False Positive Rate (FPR) tracks a critical fail-
ure mode: marking incorrect responses as correct,
which terminate conversations prematurely. Our
threshold of < 0.10 ensures the Al does not often
terminate conversations prematurely.

Accuracy: proportion correct.

3.1.3 Statistical Analysis

We compared first versus last criteria versions
across refined items (n=8) using bootstrap methods
with 10,000 iterations. Bootstrap provides robust p-
values without requiring distributional assumptions
that may not hold for our metrics. For non-refined
items (n=9), we report performance metrics for the
single iteration only. We used one-tailed tests for
all metrics: expecting increases for MCC, k¢, and
accuracy, and expecting a decrease for FPR.

3.1.4 Results

RQ1: Creator Engagement in Iterative Refine-
ment Creators used iteration effectively. Items
underwent a median of 3 versions (mean 5.2 ver-
sions per item), with 58.8% of items being revised
at least once (10 of 17 items). Among all 17 items,
8 (47%) had meaningful criteria version changes
that we analyze as “refined items,” while 9 (53%)
maintained consistent criteria across runs (“non-
refined items”). This iteration pattern suggests
creators found a productive balance between re-
finement and effort: enough iteration to improve
performance without excessive revision cycles.

The platform enabled rapid development. Items
were developed over a median of 1 day (range: 1-4
days), addressing the time bottleneck.

Criteria became more detailed through iteration,
with a median increase of 5 words from first to
last version (60 to 65 words, representing an 8.3%
increase). The number of individual criteria also
increased modestly from an average of 1.9 to 2.2.



RQ2: Performance Improvements Through It-
eration For the 8 items that underwent criteria
refinement (47% of the dataset), comparing first
versus last criteria versions revealed statistically
significant improvements across key performance
metrics (Table 1). Our primary metric, MCC, im-
proved from 0.659 to 0.863 (p < 0.001), represent-
ing a +0.203 improvement in scoring reliability.
This improvement means refined items moved from
moderate to strong reliability. x¢ also improved
significantly, from 0.620 to 0.860 (p < 0.001), a
gain of +0.240. According to Landis and Koch
(1977), this represents improvement from substan-
tial agreement (0.61-0.80) to almost perfect agree-
ment (> 0.81).

False positive rates decreased from 0.148 to
0.087 (-0.060, p = 0.163). While not statistically
significant in aggregate, individual items showed
varied patterns. Some items achieved large FPR
reductions (one item improved by 0.420). Others
experienced FPR increases while creators prior-
itized our primary MCC metric (another item’s
FPR increased from 0.020 to 0.140 while its MCC
improved by 0.323). Overall accuracy improved
significantly from 0.818 to 0.938 (p < 0.001), repre-
senting a +0.119 improvement. Notably, 100% of
refined items showed improvements in both MCC
and k¢, demonstrating that the iterative refinement
process consistently led to better scoring reliability.

For example, item A-CED.A.3 asks students to
interpret inequality solutions in real-world contexts.
Through iteration, creators refined the criteria for
greater precision. The refined criteria specified that
students must explicitly state why a whole number
is needed for the real-world scenario and explicitly
explain why rounding down is necessary to satisfy
the inequality. These refinements, which instructed
the AI Scorer not to accept implied reasoning, im-
proved the Al Scorer’s MCC from 0.554 to 0.971
(Figure 4; see Appendix A for complete criteria
text).

RQ3: Achievement of Reliability Standards
With iterative refinement, 100% of items achieved
our primary reliability standard (MCC > 0.80),
compared to only 58.8% based on first-attempt
performance. This 100% success rate shows how
CDP’s guided refinement process makes reliable
assessment development accessible to creators re-
gardless of their psychometric expertise. This im-
provement suggests that CDP rescued 7 items that
would have required abandonment or costly pilot-
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Figure 4: Item A-CED.A.3 scoring reliability across 10
iterations. Matthews Correlation Coefficient improved
from 0.554 to 0.971 (95% confidence intervals shown),
demonstrating how iterative refinement strengthened the
scoring criteria.

based revision. When considering both MCC and
our secondary FPR threshold (< 0.10), 76% of
items (13 of 17) met both standards after CDP re-
finement.

The items demonstrated two development pat-
terns. Nine items (53%) achieved strong perfor-
mance immediately, meeting the MCC threshold
of 0.80 without criteria changes. These items main-
tained consistent criteria across all runs. The re-
maining 8 items (47%) underwent iterative refine-
ment. Of these refined items, only 1 (12.5%) ini-
tially met the MCC threshold but was still refined
(possibly to improve other metrics or address cre-
ator concerns). Through CDP’s iterative process,
all 8 refined items achieved MCC > 0.80, with a
final mean MCC of 0.863.

All 8 refined items achieved the MCC threshold,
but FPR outcomes varied. Five of 8 items (62.5%)
met the FPR < 0.10 threshold after refinement.
This reflects the challenge of optimizing multiple
metrics simultaneously. Creators sometimes pri-
oritize specific metrics based on their assessment
goals.

These results validate CDP’s solution to the twin
challenges of time and expertise: all items achieved
reliability standards (expertise) within days rather
than months (time).

4 Limitations

Three limitations shape the interpretation of these
results.

First, synthetic responses cannot capture all the
ways real students think. Students use unexpected



Table 1: First vs. Last Criteria Version Performance Comparison for Refined Items (n=8)

Metric First Run [95% CI]  Last Run [95% CI] Change p-value Items Improved
MCC 0.659 [0.589-0.734] 0.863 [0.833-0.900] +0.203 <0.001%*** 8 (100%)
KC 0.620 [0.533-0.711] 0.860 [0.830-0.898] +0.240 <0.001%**%* 8 (100%)
FPR 0.148 [0.033-0.288] 0.087 [0.045-0.130] -0.060 0.163 3 (37.5%)
Accuracy 0.818 [0.769-0.867] 0.938 [0.924-0.954] +0.119 <0.001*** 8 (100%)

Note: *** p < 0.001; Bootstrap tests with 10,000 iterations, one-tailed

terminology, creative analogies, and unique error
patterns that synthetic generation misses. Future
work must validate with real student data.

Second, we validated CDP with mathematics
items and GPT-40. While the approach should
generalize to other domains using the same EYT
format, criteria optimized for GPT-40’s scoring ten-
dencies might not transfer directly to other LLMs.

Third, CDP optimizes scoring reliability but
doesn’t evaluate conversation quality. Criteria both
evaluate and trigger follow-ups. We measured scor-
ing, not dialogue quality. Future work should ex-
amine whether improvements in scoring reliability
correlate with better conversation flow and more
effective probing of student understanding.

These limitations point to clear next steps: vali-
dating with real student data, testing beyond math
and GPT-40, and measuring conversation quality.

5 Conclusions

In order to create effective conversation-based as-
sessments, we need effective criteria for scoring
them. These criteria are traditionally difficult and
time-consuming to develop. The Criteria Develop-
ment Platform addresses this challenge through pre-
pilot optimization with synthetic data. Our analysis
of 68 development cycles across 17 mathematics
items demonstrates CDP’s impact: success rates
improved from 59% to 100%, rescuing 7 items
from abandonment or costly pilot revision. The
eight items that underwent refinement showed sub-
stantial gains, with MCC improving from 0.659
to 0.863. CDP solves both traditional CBA de-
velopment challenges: reducing timelines from
months to days (median 1 day) while enabling non-
technical experts to achieve reliable results through
guided refinement.

These results have broader implications for ed-
ucational technology. Pre-pilot optimization with
synthetic data provides an effective approach when
authentic data is expensive or unavailable. The plat-
form’s transparency shows creators exactly why
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scoring succeeds or fails, transforming develop-
ment from intuition to evidence. By making reli-
able assessment development accessible to educa-
tors without specialized expertise, tools like CDP
enable more practitioners to create LLM-based as-
sessments that measure deep understanding.

6 Appendix A: Example Criteria Changes

This appendix documents the criteria refinement
process for Item A-CED.A.3, which improved from
MCC = 0.554 to0 0.971.

Students must explain two things: why decimal
solutions need whole number rounding, and why
rounding down (not up) satisfies the constraint.

6.1 First Criteria Version (MCC = 0.554)

The initial criteria were:

* Criterion 1: Student recognizes that the an-
swer has to be a whole number of rides in
order to make sense in the real world.

Criterion 2: Student acknowledges that
rounding the decimal answer down to the
lower whole number is necessary because
rounding up to the higher whole number
makes the inequality that defines the number
of credits no longer true.

6.2 Final Criteria Version (MCC = 0.971)

Testing revealed the Al accepted implied reasoning
when explicit statements were needed. Revised:

* Criterion 1: Student must explicitly state rea-
soning for rounding to a whole number that
includes making sense in the real-world (for
example, “it does not make real-world sense
for a quantity of rides to be a fraction or deci-
mal”). It is not correct for a student to imply
reasoning or to only say that they rounded
down.



* Criterion 2: Student acknowledges that
rounding the decimal answer down to the
lower whole number is necessary to satisfy
the inequality. Student must explicitly refer
to the inequality or explain why they round
down in the context of the problem (example:
the most number of rides without going over
in credits). It is not correct for a student to
imply reasoning.
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