@inproceedings{burleigh-etal-2025-beyond,
title = "Beyond the Hint: Using Self-Critique to Constrain {LLM} Feedback in Conversation-Based Assessment",
author = "Burleigh, Tyler and
Han, Jenny and
Dicerbo, Kristen",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Coordinated Session Papers",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-sessions.9/",
pages = "79--85",
ISBN = "979-8-218-84230-7",
abstract = "Large Language Models in Conversation-Based Assessment tend to provide inappropriate hints that compromise validity. We demonstrate that self-critique {--} a simple prompt engineering technique {--} effectively constrains this behavior.Through two studies using synthetic conversations and real-world high school math pilot data, self-critique reduced inappropriate hints by 90.7{\%} and 24-75{\%} respectively. Human experts validated ground truth labels while LLM judges enabled scale. This immediately deployable solution addresses the critical tension in intermediate-stakes assessment: maintaining student engagement while ensuring fair comparisons. Our findings show prompt engineering can meaningfully safeguard assessment integrity without model fine-tuning."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="burleigh-etal-2025-beyond">
<titleInfo>
<title>Beyond the Hint: Using Self-Critique to Constrain LLM Feedback in Conversation-Based Assessment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tyler</namePart>
<namePart type="family">Burleigh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jenny</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kristen</namePart>
<namePart type="family">Dicerbo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Coordinated Session Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84230-7</identifier>
</relatedItem>
<abstract>Large Language Models in Conversation-Based Assessment tend to provide inappropriate hints that compromise validity. We demonstrate that self-critique – a simple prompt engineering technique – effectively constrains this behavior.Through two studies using synthetic conversations and real-world high school math pilot data, self-critique reduced inappropriate hints by 90.7% and 24-75% respectively. Human experts validated ground truth labels while LLM judges enabled scale. This immediately deployable solution addresses the critical tension in intermediate-stakes assessment: maintaining student engagement while ensuring fair comparisons. Our findings show prompt engineering can meaningfully safeguard assessment integrity without model fine-tuning.</abstract>
<identifier type="citekey">burleigh-etal-2025-beyond</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-sessions.9/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>79</start>
<end>85</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Beyond the Hint: Using Self-Critique to Constrain LLM Feedback in Conversation-Based Assessment
%A Burleigh, Tyler
%A Han, Jenny
%A Dicerbo, Kristen
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Coordinated Session Papers
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84230-7
%F burleigh-etal-2025-beyond
%X Large Language Models in Conversation-Based Assessment tend to provide inappropriate hints that compromise validity. We demonstrate that self-critique – a simple prompt engineering technique – effectively constrains this behavior.Through two studies using synthetic conversations and real-world high school math pilot data, self-critique reduced inappropriate hints by 90.7% and 24-75% respectively. Human experts validated ground truth labels while LLM judges enabled scale. This immediately deployable solution addresses the critical tension in intermediate-stakes assessment: maintaining student engagement while ensuring fair comparisons. Our findings show prompt engineering can meaningfully safeguard assessment integrity without model fine-tuning.
%U https://aclanthology.org/2025.aimecon-sessions.9/
%P 79-85
Markdown (Informal)
[Beyond the Hint: Using Self-Critique to Constrain LLM Feedback in Conversation-Based Assessment](https://aclanthology.org/2025.aimecon-sessions.9/) (Burleigh et al., AIME-Con 2025)
ACL