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Preface

Introduction

The inaugural NCME-sponsored Artificial Intelligence in Measurement and Education Conference (AIME-
Con) brought together an interdisciplinary community of experts working at the intersection of artificial
intelligence (AI), educational measurement, assessment, natural language processing, learning analyt-
ics, and technological development. As AI continues to transform education and assessment practices,
this conference provided a critical platform for fostering cross-disciplinary dialogue, sharing cutting-
edge research, and exploring the technical, ethical, and practical implications of AI-driven innovations in
measurement and education. By bringing together experts from varied domains, the conference fostered
a rich exchange of knowledge to enhance the collective understanding of AI’s impact on educational
measurement and evaluation.

Conference Theme - Innovation and Evidence: Shaping the Future of AI in Educational
Measurement

The NCME-Sponsored AIME-Con focused on how rigorous measurement standards and innovative AI
applications can work together to transform education. With sessions spanning summative large-scale
assessment, formative classroom assessment, automated feedback, and informal learning tools, this con-
ference fostered both the advancement and evaluation of AI technologies that are effective, reliable, and
fair.

The National Council on Measurement in Education

The National Council on Measurement in Education is a community of measurement scientists and prac-
titioners who work together to advance theory and applications of educational measurement to benefit
society. A professional organization for individuals involved in assessment, evaluation, testing, and other
aspects of educational measurement, our members are involved in the construction and use of standard-
ized tests; new forms of assessment, including performance-based assessment; program design; and pro-
gram evaluation. Learn more about NCME, including our goals and our leadership, at www.ncme.org.
We are grateful to the NCME.

NCME Special Interest Group on Artificial Intelligence in Measurement and Education

The AIME SIGIMIE seeks to advance the theoretical and applied research into AI of educational mea-
surement by bringing together data scientists, psychometricians, education researchers, and other inter-
ested stakeholders. The SIGIMIE will discuss current practices in using Generative AI, approaches to
evaluate their precision/accuracy, and areas where more foundational research is required into the way
we test and measure educational outcomes. This group seeks to create a strong professional identity and
intellectual home for those interested in the use of AI in many areas, including automated scoring, item
evaluation, validity studies, formative feedback, and generative AI for automated item generation.

ix

https://ncme.org
http://www.ncme.org
https://www.ncme-aime.org/


Proposal Requirements and Review Process for Coordinated Paper Sessions

AIME-Con invited submissions of coordinated paper sessions, which brought together 4–5 papers on a
common theme within a 90-minute session. Each proposal included both session-level information (title,
abstract, keywords, chair/moderator, and discussant where applicable) and paper-level details (title, short
abstract, topic of interest, and either a 1,000-word structured summary or a six-page paper). All contrib-
utors were identified at submission, as the review process was not blind.

Submissions were evaluated by members of the review committee using a rubric that evaluated the fol-
lowing dimensions:

• Relevance and community impact: pertinence to the AI in measurement and education commu-
nity, and potential contribution to current discussions and challenges in the field

• Significance and value: scholarly merit or practical importance of the work, and potential impact
on theory, practice, or policy

• Methodological rigor: coherence and appropriateness of the proposed methods, techniques, and
approaches; and soundness of the overall research design

• Quality of expected outcomes: whether the proposed analysis and interpretation methods are
appropriate, and the potential contribution to knowledge in the field

• Feasibility and timeline: the realistic likelihood that the proposed work can be completed by the
conference date

For the purposes of this conference, “AI” was defined broadly to include rule-based methods, machine
learning, natural language processing, and generative AI/large language models. Reviewers provided
constructive feedback and overall recommendations to ensure that accepted sessions reflected both schol-
arly merit and practical value to the AI in measurement and education community.

x
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When Does Active Learning Actually Help?
Empirical Insights with Transformer-based Automated Scoring

Justin O. Barber Michael P. Hemenway Edward W. Wolfe
Pearson Education

{justin.barber, michael.hemenway, ed.wolfe}@pearson.com

Abstract

Developing automated essay scoring (AES)
systems typically demands extensive human
annotation, incurring significant costs and
requiring considerable time. Active learn-
ing (AL) methods aim to alleviate this chal-
lenge by strategically selecting the most in-
formative essays for scoring, thereby poten-
tially reducing annotation requirements with-
out compromising model accuracy. This study
systematically evaluates four prominent AL
strategies—uncertainty sampling, BatchBALD,
BADGE, and a novel GenAI-based uncertainty
approach—against a random sampling base-
line, using DeBERTa-based regression models
across multiple assessment prompts exhibiting
varying degrees of human scorer agreement.
Contrary to initial expectations, we found that
AL methods provided modest but meaningful
improvements only for prompts characterized
by poor scorer reliability (<60% agreement per
score point). Notably, extensive hyperparam-
eter optimization alone substantially reduced
the annotation budget required to achieve near-
optimal scoring performance, even with ran-
dom sampling. Our findings underscore that
while targeted AL methods can be beneficial
in contexts of low scorer reliability, rigorous
hyperparameter tuning remains a foundational
and highly effective strategy for minimizing
annotation costs in AES system development.

1 Introduction

Automated Essay Scoring (AES) systems have
become integral to educational assessments by
providing efficient, reliable, and scalable evalua-
tion of student writing. State-of-the-art AES ap-
proaches typically utilize medium- to large-size pre-
trained transformer-based language models such
as BERT (Devlin et al., 2019), ELECTRA (Clark
et al., 2020), and DeBERTa (He et al., 2021), fine-
tuned on datasets of human-scored essays to pro-
duce scoring models aligned closely with human

judgment. The development of robust AES mod-
els, however, usually requires extensive annotation
efforts—often involving thousands of essays per
prompt—posing significant practical limitations in
terms of cost, time, and resources.

Active Learning (AL) mitigates these annotation
burdens by scoring only the most informative es-
says. Although AL is well studied in NLP (Zhang
et al., 2023; Li et al., 2024), few works test multiple
strategies in AES or examine how scorer agreement
moderates AL gains (Firoozi et al., 2023; Hellman
et al., 2019). We compare four AL methods with a
random sampling baseline across prompts of differ-
ing reliability.

Addressing this critical gap, our study evalu-
ates four prominent AL strategies—uncertainty
sampling, BatchBALD (Bayesian Active Learn-
ing by Disagreement), BADGE (Batch Active
Learning by Diverse Gradient Embeddings), and
a novel GenAI-based uncertainty sampling ap-
proach—across multiple writing and reading as-
sessment prompts. These AL methods are bench-
marked against random sampling as a baseline, ex-
amining their efficacy at annotation budgets rang-
ing from 32 to 1,024 essays.

1.1 Research Questions

This study specifically investigates three research
questions:

1. Which AL strategies yield the highest scoring
agreement (measured via Quadratic Weighted
Kappa [QWK]) with the minimal number of
human-scored training examples, particularly
across varying degrees of human inter-rater
agreement?

2. Can a novel GenAI-guided AL approach effec-
tively identify especially challenging-to-score
essays, thereby enhancing the efficiency and
quality of AES model training?
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3. To what extent does comprehensive hyperpa-
rameter optimization alone (even with random
sampling) significantly reduce the number of
training essays required to achieve acceptable
scoring accuracy across various prompts?

1.2 Contributions
Our contributions are:

• A four-way comparison of AL strategies ver-
sus a random baseline on prompts spanning
different human scorer agreement;

• A novel GenAI sampler for small budgets;

• Evidence that hyperparameter tuning alone
rivals AL when scorer reliability is moder-
ate–high;

• Practical guidance for where AL is (and is not)
worth the cost.

These findings hold significant implications for
educational assessment organizations aiming to de-
velop AES systems more efficiently. By under-
standing the nuanced contexts in which AL meth-
ods excel and the powerful impact of systematic
hyperparameter tuning, stakeholders can better al-
locate annotation resources, enabling broader and
more cost-effective application of automated scor-
ing systems across diverse educational contexts.

2 Related Work

2.1 Active Learning in NLP
Active Learning (AL) reduces annotation costs
by selecting the most informative unlabeled sam-
ples for labeling, enhancing model performance
with fewer annotations (Settles, 2009; Zhang et al.,
2023; Li et al., 2024). In NLP, prominent AL strate-
gies include uncertainty-based, Bayesian, diversity-
based, and hybrid approaches, which we adapt for
Automated Essay Scoring (AES).

2.1.1 Uncertainty Sampling
Uncertainty-based sampling selects samples where
models exhibit the highest uncertainty. Lewis and
Gale (1994) introduced entropy-based selection,
while Gal et al. (2017) popularized Monte Carlo
dropout to estimate uncertainty in deep learning
models. Margin-based methods, recently high-
lighted by Doucet et al. (2024), select samples
with minimal differences between top class proba-
bilities and have frequently outperformed random
sampling in NLP tasks.

2.1.2 Bayesian Active Learning
Bayesian Active Learning (BAL) focuses explicitly
on maximizing information gain regarding model
parameters (Siddhant and Lipton, 2018). Bayesian
Active Learning by Disagreement (BALD) se-
lects samples based on uncertainty across posterior
predictions (Houlsby et al., 2011). BatchBALD
(Kirsch et al., 2019) extends this to batch selection,
reducing redundancy by jointly evaluating batch
informativeness at increased computational cost.

2.1.3 Diversity-Based and Hybrid Sampling
Diversity-based methods select samples that rep-
resent diverse regions of input space, ensuring ro-
bust generalization. Hybrid strategies like BADGE
(Ash et al., 2020) combine uncertainty and diver-
sity by clustering gradient embeddings to identify
diverse yet informative samples, demonstrating
strong performance in various classification tasks.

2.1.4 LLM-Guided Active Learning
Emerging approaches integrate Large Language
Models (LLMs) into AL for nuanced semantic eval-
uation of samples. Methods such as ActiveLLM
(Bayer and Reuter, 2024), ActivePrune (Azeemi
et al., 2024), SelectLLM (Parkar et al., 2024), and
ranking-based approaches (Jeong et al., 2025) have
shown promise in identifying linguistically com-
plex or ambiguous samples relevant for AES.

2.2 Active Learning for Automated Scoring

Research explicitly addressing AL in automated
scoring contexts remains sparse. Horbach and
Palmer (2016) compared AL strategies on short-
answer scoring, noting significant variability across
prompts. Hellman et al. (2019) demonstrated batch-
mode AL effectiveness in instructor-driven con-
texts. Firoozi et al. (2023) highlighted uncertainty
sampling’s efficiency in AES, although their work
focused exclusively on shallow models without ex-
ploring transformer-based methods or comprehen-
sive comparisons.

2.2.1 Our Study in Context
Existing AES-focused AL studies have not system-
atically evaluated how scorer reliability impacts
AL strategy efficacy nor have they fully explored
the independent impact of extensive hyperparam-
eter optimization. Our study addresses these gaps
by rigorously comparing multiple AL strategies,
explicitly considering varying scorer reliability lev-
els, and demonstrating the substantial efficiency
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gains achievable through hyperparameter optimiza-
tion alone. These insights inform best practices for
practical AES deployment.

3 Methods

3.1 Problem Formulation
Given an unlabeled pool U and budget B, we run
four AL rounds. Each round (i) trains on current
labels, (ii) selects ⌊B/4⌋ essays via an acquisi-
tion function, (iii) obtains scores, and (iv) updates
the model. A final training pass with tuned hyper-
parameters follows. Performance is reported on a
held-out validation set.

3.2 Model Architecture
We fine-tune DeBERTaV3-base (He et al., 2021) as
a regression model by adding a single linear head
on the [CLS] embedding and optimizing Mean-
Squared-Error loss weighted by inverse score fre-
quency. Essays are tokenized with the DeBER-
TaV2 tokenizer (512-token limit) and trained using
AdamW with linear warm-up and gradient clip-
ping.

3.3 Active Learning Strategies
We evaluate four AL strategies:

Uncertainty Sampling: Selects essays with
highest predictive entropy based on Gaussian-
derived probability distributions from regression
outputs.

BatchBALD (Kirsch et al., 2019): Maximizes
batch mutual information using Monte Carlo
dropout, first filtering the unlabeled pool by predic-
tive entropy to enhance computational efficiency.

BADGE (Ash et al., 2020): Combines uncer-
tainty and diversity by clustering gradient embed-
dings derived from a temporary classification head
on the model encoder.

GenAI-Uncertainty Sampling (novel ap-
proach): Uses large language models (LLMs) to
identify challenging essays (rated 1–5 on scoring
difficulty). Essays rated highly challenging (5) are
prioritized, selecting diverse examples within diffi-
culty strata using k-means clustering.

3.4 Multi-Round Active Learning Framework
Our AL approach includes:

• Initial seed of 16 essays.

• Four AL rounds (one for GenAI), evenly di-
viding annotation budgets.

• Each round selects essays for scoring, expands
the labeled set, and retrains the model.

3.5 Hyperparameter Optimization

Given its significant impact, we rigorously opti-
mize hyperparameters using Optuna (Akiba et al.,
2019):

Search Space:

• Learning rate: [1e-5 to 2e-5]

• Weight decay: [1e-3 to 1e-1]

• Batch size: [4, 8]

Optimization Approach:

1. Discovery Phase: Perform 40-trial hyperpa-
rameter optimization using random sampling
at each annotation budget.

2. Evaluation Phase: Evaluate the top 16 dis-
covered hyperparameter configurations across
all AL strategies, limiting computationally in-
tensive strategies (BatchBALD, BADGE) to
budgets <= 384.

Final models train for up to 30 epochs with early
stopping (patience=5) based on validation loss.

4 Experiments

4.1 Data Sources

Operational corpus. Our experiments utilize op-
erational student response data from a large-scale
summative K–12 assessment administered across
multiple U.S. states. The dataset comprises both
short constructed-response reading items and full-
length essay prompts, capturing diverse aspects of
student writing performance.

Prompt Selection Criteria. To establish a bal-
anced and robust evaluation framework, prompts
were selected based on sufficient availability of
double-scored responses. This resulted in a set of
eight suitable prompts: five reading items and three
writing prompts.

Reading Tasks. The reading task subset consists
of three Grade-8 items (R-8A, R-8B, R-8C) and
two Grade-10 items (R-10A, R-10B). Reading re-
sponses were holistically scored on a three-point
ordinal scale (0–2) or a five-point ordinal scale
(0-4), each assessing a single construct.
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Task Grade Genre / Trait Scale N

R-8A 8 Reading 0–2 5,305
R-8B 8 Reading 0–4 4,575
R-8C 8 Reading 0–2 3,911
R-10A 10 Reading 0–2 5,931
R-10B 10 Reading 0–4 4,987
W-5 5 Argumentative, Content 0–3 11,088
W-8 8 Informative, Content 0–3 10,754
W-11 11 Narrative, Content 0–3 10,416

Table 1: Descriptive statistics for the experimental corpus.

Writing Tasks. The writing tasks cover Grades 5
through 11, balanced across genres: W-5 (argumen-
tative), W-8 (informative/explanatory), and W-11
(narrative). Although each essay includes multiple
trait scores, we focus specifically on the Content
trait, given its strong alignment with textual evi-
dence and minimal confounding by surface-level
mechanical features. Content scores range from 0
to 3.

Sample Sizes. Usable responses per task range
from 3,911 to 11,088. Table 1 summarizes detailed
counts.

Train–Validation Protocol. For each
prompt–trait pair, we hold out a stratified
sample of 500 responses as a validation set,
preserving the marginal score distribution. This
validation set is used exclusively for model check-
point selection and hyperparameter optimization.
Consequently, although it remains distinct from
the training data used directly for gradient updates,
it is not strictly unseen. This methodological
choice may slightly overestimate absolute model
performance but does not affect our comparative
analysis of active learning strategies.

4.2 Evaluation Metrics

Quadratic Weighted Kappa (QWK): Our pri-
mary evaluation criterion measures the degree of
agreement between model predictions and human
raters and accounts explicitly for varying degrees
of scoring discrepancy. We calculate QWK using
Cohen’s quadratic weighted kappa implementation
from scikit-learn.

Metrics are calculated after round-
ing and clipping predictions: ŷ =
clip(round(fθ(x)), ymin, ymax), where ymin

and ymax represent score boundaries.

Model selection during training employs early
stopping (patience=5) based on validation loss,
with the best-performing model checkpoint saved
according to QWK scores. Hyperparameter opti-
mization also prioritizes QWK.

4.3 Implementation Details
Models are trained in PyTorch with Hugging Face
Transformers on NVIDIA A10 GPUs. We use
AdamW with 10% warm-up, gradient clipping
(1.0), mixed precision, and smoothed inverse-
frequency class weights (70% empirical frequency
+ 30% uniform distribution). Hyperparameter
searches run in parallel round-robin across GPUs.
For efficiency we drop BatchBALD and BADGE
when budgets exceed 384 essays and subsample
500–2,560 essays for GenAI.

Strategy-specific details:

• BatchBALD: 10 Monte Carlo dropout passes
with initial entropy-based filtering (top 10%,
minimum 2,000 essays).

• BADGE: Temporary classification head de-
rived from the regression model to compute
gradient embeddings.

All experiments utilize fixed random seeds for re-
producibility across NumPy, PyTorch, and strategy-
specific operations.
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Sample Size Random Uncertainty BatchBALD GenAI BADGE

32 0.79 0.79 0.79 0.75 0.78
64 0.81 0.80 0.78 0.77 0.77
96 0.81 0.81 0.78 0.81 0.80
128 0.80 0.81 0.79 0.80 0.81
192 0.82 0.80 0.80 0.78 0.82
256 0.83 0.82 0.80 0.82 0.81
384 0.83 0.82 0.81 0.80 0.82
1024 0.84 – – – –

Table 2: QWK results for prompts with good scorer agreement. Bold indicates the highest score(s) per row.

Sample Size Random Uncertainty BatchBALD GenAI BADGE

32 0.77 0.70 0.74 0.75 0.73
64 0.79 0.73 0.77 0.71 0.77
96 0.79 0.76 0.75 0.76 0.75
128 0.80 0.76 0.78 0.70 0.78
192 0.81 0.75 0.77 0.78 0.76
256 0.82 0.78 0.79 0.79 0.78
384 0.81 0.76 0.80 0.79 0.80
1024 0.82 – – – –

Table 3: QWK results for prompts with acceptable scorer agreement. Bold indicates the highest score(s) per row.

Sample Size Random Uncertainty BatchBALD GenAI BADGE

32 0.69 0.67 0.66 0.70 0.65
64 0.67 0.71 0.69 0.73 0.69
96 0.71 0.66 0.70 0.72 0.71
128 0.71 0.70 0.71 0.72 0.73
192 0.76 0.71 0.75 0.73 0.73
256 0.73 0.71 0.74 0.73 0.74
384 0.75 0.74 0.75 0.74 0.75
1024 0.77 – – – –

Table 4: QWK results for prompts with poor scorer agreement. Bold indicates the highest score(s) per row. Dashes
indicate unavailable or omitted results.

5 Results

5.1 Performance of Active Learning
Strategies by Scoring Quality

Tables 2, 3, and 4 present the Quadratic Weighted
Kappa (QWK) performance of Active Learning
(AL) strategies across three contexts of scorer re-
liability: good, acceptable, and poor. These tables
explicitly compare random sampling against four
AL methods (Uncertainty, BatchBALD, GenAI,
and BADGE).

Table 2 highlights the scenario of good scorer
agreement (approximately 80% agreement). Here,
AL methods exhibit little advantage over random
sampling. Even at small annotation budgets (e.g.,
n = 32 or 64), random sampling matches or sur-
passes AL approaches. For example, at n = 256,
random sampling (QWK=0.83), uncertainty sam-
pling (0.82), and GenAI (0.82) demonstrate similar
effectiveness, but no AL method exceeds random

sampling substantially.
Table 3 shows analogous results for accept-

able scorer agreement contexts (about 60% agree-
ment). Again, random sampling typically achieves
a slightly higher or equal QWK compared to AL
strategies across most sample sizes, though the
GenAI method achieves competitive performance
at several points. Notably, at n = 256 annotations,
random sampling still yields the top performance
(QWK=0.82), followed closely by BatchBALD,
GenAI, and BADGE strategies, each achieving
scores of at least 0.78.

In contrast, for prompts with poor scorer agree-
ment (<60%), AL methods show clearer advan-
tages over random sampling (Table 4). Partic-
ularly at lower annotation budgets, uncertainty-
based strategies, including the GenAI and BADGE
methods, consistently outperform random selection.
For instance, at n = 64, the GenAI method (0.73)
significantly surpasses random sampling (0.67).
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Training Sample Size QWK (Random Sampling)

32 0.77
64 0.78
96 0.78
128 0.80
192 0.81
256 0.82
384 0.82
1024 0.82

Table 5: Impact of 40-trial hyperparameter optimization
on QWK using random sampling across sample sizes
for all prompts.

Similarly, uncertainty-based AL strategies continue
to show small but consistent advantages at larger
annotation sizes (e.g., n = 128 through n = 384),
reflecting their capacity to effectively select in-
formative and potentially challenging essays for
model training.

Finally, in table 5 we explicitly examine how
extensive hyperparameter optimization alone influ-
ences AES performance (Table 5). With careful
tuning, random sampling swiftly achieves strong
performance and approaches saturation quickly
(QWK=0.81 at n = 192 annotations), demonstrat-
ing the significant impact of optimization with-
out specialized AL. Indeed, this tuning reduces
required annotation counts substantially, effectively
narrowing the advantage that sophisticated AL
methods could achieve in many practical scoring
scenarios.

6 Discussion

6.1 Effectiveness of Active Learning for AES
Our findings indicate that active learning (AL)
methods provide modest yet meaningful benefits
specifically for prompts characterized by low scorer
agreement (<60% agreement per score point). In
these challenging scoring contexts, uncertainty-
based methods, including BatchBALD and our
novel GenAI-based approach, consistently yielded
slight improvements over random sampling at
smaller annotation budgets. This aligns with the
intuition that uncertain, borderline scoring cases
are particularly informative for model calibration,
and extends prior findings by Firoozi et al. (2023),
emphasizing AL’s specific utility in challenging
scoring scenarios.

However, contrary to initial expectations, AL
methods provided no substantial advantage over
random sampling in contexts with moderate to high
scorer reliability (approximately 60–80% agree-

ment). This lack of improvement can largely be
attributed to our extensive hyperparameter opti-
mization process, which significantly boosted the
performance of random sampling, leaving limited
room for AL methods to offer additional benefits.

Additionally, our GenAI-based approach demon-
strated encouraging results in identifying challeng-
ing essays early in the annotation process, high-
lighting the potential of leveraging large language
models to enhance targeted sampling. Although the
overall improvement was modest, the interpretabil-
ity and targeted nature of the GenAI sampling sug-
gest potential future avenues for improving essay
scoring models, especially in highly ambiguous
scoring contexts.

6.2 Impact of Hyperparameter Optimization
A critical secondary finding of our study is the
pronounced effectiveness of extensive hyperparam-
eter optimization—even when employing random
sampling. Our rigorous hyperparameter tuning ap-
proach (40 trials using Optuna) substantially re-
duced the annotation budget required to achieve
robust model performance. This suggests that, in
many practical AES contexts, careful model opti-
mization can significantly improve annotation effi-
ciency, often exceeding the marginal gains offered
by more complex sampling strategies.

6.3 Practical Implications
The findings reported here offer important insights
for the practical development and operational man-
agement of AES systems:

• When to use active learning (AL): Our find-
ings suggest that AL methods demonstrate
the strongest benefits in low-reliability scor-
ing contexts. When scoring reliability is low
and essays are challenging to rate, AL tech-
niques—such as uncertainty-based sampling
and GenAI methods—systematically identify
the most informative instances, thus effec-
tively improving model quality and calibra-
tion.

• Tune first, apply AL second: Extensive
hyperparameter optimization alone produces
highly competitive AES models, especially
for scoring contexts with scorer reliability at
or above 60%. Model builders should, there-
fore, devote significant attention initially to
optimizing hyperparameters before turning to
AL methods.
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We thus propose the following operational frame-
work for AES implementations based on these in-
sights:

1. Begin with a modest-sized randomly sampled
initial set (e.g., 16–32 essays), ensuring suffi-
cient prompt coverage.

2. Immediately prioritize extensive hyperpa-
rameter optimization early in the model-
development process.

3. After initial tuning, selectively apply
uncertainty-based AL (particularly GenAI-
driven sampling) as annotation proceeds,
especially in cases of lower scoring reliability.

4. As more responses are collected, continuously
revisit and adjust hyperparameters, since opti-
mal settings may evolve with increasing data.

6.4 Limitations and Future Work
Our study offers valuable insights but has several
limitations indicating promising directions for fu-
ture research:

• Prompt and Context Diversity: Our analysis
was limited to eight prompts from a single as-
sessment context. Future work should explore
broader prompt variability, scoring traits, and
educational contexts.

• Human-in-the-loop Validation: Real-world
AL implementations involve iterative human
scoring. Future research should directly as-
sess AL’s practical implications within live
annotation workflows.

• Hyperparameter Exploration: This work
has highlighted the importance of hyperparam-
eter optimization in model performance. Fu-
ture experiments will consider an even wider
hyperparameter space and optimization tech-
niques that would be robust in operational con-
texts.

• Fairness Considerations: Further research
could investigate how AL and targeted sam-
pling methods, including GenAI, influence
scoring fairness and demographic represen-
tation, potentially integrating fairness-aware
constraints or regularizations.

• Semi-Supervised Approaches: Leveraging
unlabeled data via semi-supervised or self-
supervised learning methods (e.g., consistency

regularization, pseudo-labeling, contrastive
learning) may further enhance AES efficiency
and warrants exploration.

Overall, our results highlight both the nuanced
effectiveness of active learning methods under spe-
cific conditions and the crucial foundational role
of rigorous hyperparameter optimization. These
insights provide clear guidance for enhancing an-
notation efficiency and scoring reliability within
AES deployments.

7 Conclusion

This study highlights two key findings for auto-
mated essay scoring (AES): First, active learning
(AL) offers modest improvements over random
sampling primarily in low-reliability scoring con-
texts. In prompts with higher scorer agreement,
random sampling—when paired with wide hyper-
parameter sweeps—achieves near-optimal perfor-
mance, often matching or exceeding AL strategies.
Second, our novel GenAI-based sampling approach
shows promise in identifying challenging essays
early, but its benefits diminish as budgets increase.

These results suggest that rigorous hyperparam-
eter optimization may be more impactful than AL
in many AES scenarios. For practical deployment,
AL may still provide value in identifying difficult
examples and supporting scorer calibration in am-
biguous contexts. Future research should explore
how AL interacts with fairness, human-in-the-loop
scoring, and hybrid semi-supervised learning strate-
gies to further improve scoring efficiency and trans-
parency.
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Abstract
This study illustrates how incorporating
feedback-oriented annotations into the scoring
pipeline can enhance the accuracy of automated
essay scoring (AES). This approach is demon-
strated with the Persuasive Essays for Rating,
Selecting, and Understanding Argumentative
and Discourse Elements (PERSUADE) corpus.
We integrate two types of feedback-driven an-
notations: those that identify spelling and gram-
matical errors, and those that highlight argu-
mentative components. To illustrate how this
method could be applied in real-world scenar-
ios, we employ two LLMs to generate annota-
tions – a generative language model used for
spell correction and an encoder-based token-
classifier trained to identify and mark argu-
mentative elements. By incorporating annota-
tions into the scoring process, we demonstrate
improvements in performance using encoder-
based large language models fine-tuned as clas-
sifiers.

1 Introduction

Automated Essay Scoring (AES) uses statistical
models to assign grades to essays that approximate
hand-scoring (Shermis and Hamner, 2013). Au-
tomated Writing Evaluation (AWE) is the provi-
sion of automated feedback designed to help stu-
dents iteratively improve their essays (Huawei and
Aryadoust, 2023). Initial attempts at AES and
AWE were based on Bag-of-Words (BoW) mod-
els that combine frequency-based and hand-crafted
features (Attali and Burstein, 2006; Page, 2003).
Well-designed features can serve two purposes: to
improve scoring accuracy and provide feedback to
students to improve their essays. These features
tend to be global features, such as the number of
words, sentence length, or readability metrics, and
are not based on fine-grained semantics or the or-
ganizational structure of essays.

Many modern AES engines employ transformer-
based Large Language Models (LLM)s (Rodriguez

et al., 2019), which offer improved accuracy over
bag-of-words models. However, this comes at the
expense of reduced interpretability due to implicit
feature definition. Some researchers have sought
to combine LLM-derived features with traditional
hand-crafted features to enhance accuracy and pro-
vide some level of interpretability (Uto and Uchida,
2020). LLMs also offer the ability to provide se-
mantically rich feedback, such as key phrases from
explainable AI (Boulanger and Kumar, 2020), an-
notation schemas for automated writing evaluation
systems (Crossley et al., 2022; Lottridge et al.,
2024), and the generation of detailed feedback
through LLM prompting techniques (Lee et al.,
2024). This study considers how these semanti-
cally rich features, designed primarily for provid-
ing feedback, can also enhance scoring accuracy.

We demonstrate our approach using the Persua-
sive Essays for Rating, Selecting, and Understand-
ing Argumentative and Discourse Elements (PER-
SUADE) corpus, which is a dataset of essays in
which the argumentative components of the essays
were annotated (Crossley et al., 2022). This dataset
also contains scores assigned against an openly
available holistic rubric 1 and demographic data,
which allows us to test any AES system with re-
spect to operational standards, including the addi-
tion of potential bias (Williamson et al., 2012).

The two classes of features we consider are de-
rived from Grammatical Error Correction (GEC)
and Computational Argumentation. The goal of
GEC is to provide a mapping from a sentence that
may or may not contain errors in language, to a ver-
sion with the same meaning with fewer language
errors (Martynov et al., 2023), while computational
argumentation seeks to isolate and analyze the set
of argumentative components of an essay (Stab
and Gurevych, 2014a). For these features to be
incorporated into an AES pipeline, we leverage

1https://github.com/scrosseye/persuade_corpus_2.0
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the ability of language models to accurately an-
notate argumentative components (Ormerod et al.,
2023) and correct spelling and grammatical errors
(Rothe et al., 2021). These spelling and grammati-
cal corrections can then be annotated and classified
to provide locally defined information on conven-
tions (Korre and Pavlopoulos, 2020). Once these
annotations have been derived, we incorporate the
annotations using Extensible Markup Language
(XML) for easy parsing, which facilitates natural
integration into an AWE system based on essays
encoded in HTML.

We must also be cognizant that increased au-
tomation can exacerbate biases, especially for En-
glish Language Learners (Ormerod, 2022a). For
this reason, we also examine whether this pipeline
leads to greater bias by examining the standardized
mean difference for the relevant subgroups.

In §2, we describe our methods, including the
data used, the models, and the approach. The per-
formance of the annotation models and the scoring
models are presented in §3. We will discuss the
findings and suggest future directions in §4.

2 Method

2.1 Data
The PERSUADE corpus is an openly available
dataset of 25,996 argumentative essays between
grades 6 and 12 on a range of 15 different topics
(Crossley et al., 2022). The essays are responses to
prompts that are either dependent on source mate-
rial, or independent of source material. The set has
been divided into a training set and a test set by the
original authors. An outline of the composition of
these two sets is presented in Table 1.

2.1.1 Annotations
A key characteristic of the corpus that makes it
useful from the standpoint of computational argu-
mentation is the annotations. The argumentative
clauses of each essay were identified and classified
into one of seven classes:

1. Lead (L): An introduction that begins with a
statistic, a quotation, a description, or some
other device to grab the reader’s attention and
point toward the thesis.

2. Position (P): An opinion or conclusion on the
main question

3. Claim (C1): A claim that supports the posi-
tion

Avg.
Grade Train Test Total Len.

6 688 684 1372 294.6
8 5614 4015 9629 374.9
9 1831 235 2066 426.6
10 4654 3620 8274 407.6
11 1863 1220 3083 610.9
12 243 161 404 469.0
Unk. 701 467 1168 452.5

Total 15594 10402 25996 418.1

Table 1: The grade level and length statistics for the
training and testing splits for the PERSUADE corpus,
and the counts of essays that are responses to prompts
that are dependent (Dep.) on source material and inde-
pendent (Ind..) of source material.

4. Counterclaim (C2): A claim that refutes an-
other claim or gives an opposing reason to the
position

5. Rebuttal (R): A claim that refutes a counter-
claim

6. Evidence (E): Ideas or examples that support
claims, counterclaims, rebuttals, or the posi-
tion

7. Concluding Statement (C3): A concluding
statement that restates the position and claims

There are an average of 11.0 annotated compo-
nents in each essay. Some descriptive statistics on
the distribution of applied labels can be found in
Table 2. Among the labels, the most frequently
applied labels are Claims and Evidence and the
least frequently applied labels are Counterclaims
and Rebuttals. In accordance with state standards,
the development of a counter-argument in persua-
sive essay writing is developed at grades eight and
beyond, hence, Counterclaims and Rebuttals are
rarely applied at the sixth-grade level.
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6 8 9 10 11 12

L 4.3 4.5 4.7 5.9 6.0 5.0
P 9.8 9.0 9.1 9.9 7.0 8.3
C1 27.2 27.7 27.6 29.8 31.2 34.3
C2 2.1 2.8 5.2 2.5 5.3 5.0
R 1.5 2.2 3.7 1.7 4.3 2.0
E 27.3 25.7 26.8 28.7 23.4 27.5
C3 8.0 7.5 7.6 8.7 6.9 7.5

Table 2: Some descriptive statistics regarding the distri-
bution of annotations with respect to the various grade
levels.

We did not use the effectiveness scores for the
discourse elements in this study. This was a con-
scious choice due to the fairly low agreement be-
tween the effectiveness scores assigned by human
raters (κ = 0.316). Similar attempts at judging the
quality of arguments have also yielded low agree-
ment rates (Gretz et al., 2019; Toledo et al., 2019).

2.1.2 Scores

Each essay was graded against a standardized SAT
holistic essay scoring rubric, which was slightly
modified for the source-based essays 2. Based on
the rubric, a high-scoring essay (5-6) demonstrates
mastery through effective development of a clear
point of view, strong critical thinking with appro-
priate supporting evidence, well-organized struc-
ture with coherent progression of ideas, skillful
language use with varied vocabulary and sentence
structure, and minimal grammatical errors. In con-
trast, a lower-scoring essay (1-3) exhibits signifi-
cant weaknesses: vague or limited viewpoint, weak
critical thinking with insufficient evidence, poor
organization resulting in disjointed presentation,
limited vocabulary with incorrect word choices,
frequent sentence structure problems, and numer-
ous grammatical errors that interfere with meaning.

The score distribution is fairly regular, with the
highest and lowest scores being the rarest. The full
score distribution can be found in Table 3. The re-
ported inter-rated reliability, as reported in (Cross-
ley et al., 2022), is given by κ = 0.745 (see (6)).

2https://www.kaggle.com/datasets/davidspencer/persuade-
rubric-holistic-essay-scoring

Score 1 2 3 4 5 6

% 4.0 21.9 32.2 25.9 12.7 3.4

Table 3: The score distribution for the PERSUADE
dataset.

The key differentiators in the rubric between
high and low scoring essays are the clarity of
thought, quality of supporting evidence, organiza-
tional coherence, and technical proficiency in lan-
guage use. The premise behind the approach is that
organizational coherence and technical proficiency
in language are both made clearer by highlighting
the argumentative components and conventions-
based errors. Provided our pipeline for annotating
essays is sufficiently accurate, these annotations
should help the engine align scores with the rubric.

2.1.3 Augmented Data

The input into the scoring model was augmented
to use the annotation information using Extensi-
ble Markup Language (XML). We have an XML
tag per argumentative component type. To anno-
tate conventions errors, we used the ERRANT tool
(Bryant et al., 2017). The ERRANT tool classi-
fies errors into 25 different main types, with many
of these categories appearing with three differ-
ent subtypes: "R" for replace, "M" for missing,
and "U" for Unnecessary. For example, one cate-
gory, "PUNCT", refers to a punctuation error. We
can either replace, remove, or add punctuation to
a sentence to make it correct, corresponding to
"R:PUNCT", "U:PUNCT", and "M:PUNCT", re-
spectively. We refer to (Bryant et al., 2017) for a
full explanation of the categories.

To simplify the categories for annotation pur-
poses, we divide all possible ERRANT annotations
into three labels: <Spelling >, <PunctOrth >,
and <Grammar >. The <Spelling > label is
applied to the subcategories of "SPELL", the
<PunctOrth > is applied to the subcategories of
"PUNCT" and "ORTH", while all other categories
are designated as having labels of <Grammar >.
This means that we have a total of 10 annotation la-
bels: 7 associated with argumentative components
and 3 for convention errors. An example of the in-
put into the model is shown in Figure 1. Since we
do not have human-annotated data, the augmented
data relies on the output from an annotation model
and a spell-correction model, both of which can
contribute to annotations that are less accurate.
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<Lead>There can be many <Spelling>
advanteges</Spelling> and <Spelling>
disadvanteges</Spelling> to having a
car but the <Spelling>advanteges
<Spelling> to not having a <Grammar>card
</Grammar> greatly outweighs having one.
</Lead>There can be many reasons why not
having a car is great but the main three
are <Claim>it reduces pollution reduces
stress</Claim> and <Claim>having less
cars reduces the <Spelling>noice
<Spelling> pollution in a city. </Claim>
Can you imagine a place with no cars?

Figure 1: An example of the model input using an ex-
cerpt of an annotated essay.

Demographics: The last detail of this dataset,
which makes it exceptionally well-suited to the
investigation of AES in an operational setting, is
the accompanying demographic information. This
allows us to investigate any additional potential
bias introduced in modeling. We measure bias
by the original operational standards defined by
Williamson et al. (Williamson et al., 2012). While
this standard is important for many reasons, there
have been numerous alternative approaches to bias
(Ormerod et al., 2022).

key Subgroup Train Test

WC White/Caucasian 7012 4559
HL Hispanic/Latino 3869 2691
BA Black/African 2975 1984

American
AP Asian/Pacific Islander 1072 671
Mix Two or more 598 424
Nat American Indian 68 73

Alaskan Native

ELL English Language 1330 914
Learner

DE Disadvantaged 5391 4252
Economically

ID Identified Disability 1516 1172

Table 4: The main subgroup populations in the train and
test set.

The population of various subgroups in the train
and test split, as presented in the data, have been
outlined in Table 4.

2.2 Modeling details
Since the advantages of the transformer were first
celebrated (Vaswani et al., 2017) and BERT was
trained (Devlin et al., 2018), many of the state-
of-the-art results can be attributed to transformer-
based LLMs (Wang et al., 2019). For this reason,
we restrict our attention to fine-tuned transformer-
based LLMs, whose architectures can be described
as encoder, decoder, or encoder-decoder models
(Vaswani et al., 2017). As a general rule, encoder
models excel in natural language inference tasks
(Devlin et al., 2018), decoder models excel in gen-
erative tasks (Radford et al., 2018), and encoder-
decoder models excel in translation, where the task
benefits from representation learning (Raffel et al.,
2020).

2.2.1 Annotation model
The task of annotations can be framed as a token-
classification task, where each token is classified
into one of eight possible labels, one for each possi-
ble argumentative component in addition to one ex-
tra label for unannotated regions. This task lends it-
self to an encoder-based model trained as a masked
language model like BERT (Devlin et al., 2018).
Since BERT, arguably the best performing series
of models are Microsofts’ DeBERTa model series
(He et al., 2021). The problem with these models
is that many of the essays exceed the 512 token
limit after tokenization. For this reason, we turn to
a newly developed long context model known as
ModernBERT (Warner et al., 2024).

Aside from some differences in the choices of
normalization layers (Xiong et al., 2020), the use
of gated activation functions (Shazeer, 2020), and
more extensive pretaining, the biggest difference
in the architecture is the use of Rotational Posi-
tional Embeddings (RoPE) (Su et al., 2024). To
understand how RoPE works, in the original im-
plementation of attention, the output of attention
is given as a function of the key vectors, ki, query
vectors, qj , and value vectors, vl, given by

am,n =
exp(qTmkn/

√
d)∑

j exp(q
T
mkj/

√
d)

. (1)

where key, query, and value vectors are functions
of the embedding vectors at the first attention layer.
The standard construction is that these functions
be affine linear functions (linear with a bias term),
where the positional embedding is the addition of
token embeddings and some learnable positional
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embedding terms. Instead of adding a vector, we
define the query and key vectors using

qm = Rd
Θ,mWqxm, km = Rd

Θ,mWkxm
(2)

where Rd
Θ,m a block-diagonal matrix of 2-

dimensional rotation matrices, rϕ, given by

Rd
Θ,m = diag(rmθ1 , . . . , rmθd/2), (3)

rϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
, (4)

with θi = ϑ̃−2(i−1)/d. The term ϑ is called the
RoPE Theta. The key idea is that this transforma-
tion encodes positional information by rotating to-
ken embeddings in a particular manner that allows
the model to understand relative distances between
tokens rather than just absolute positions.

The ModernBERT model, like BERT, is trained
as a masked-language model with an encoder and
a token classification head. The structure of the
encoder includes multiple layers of self-attention
in which the attention layers alternate between ro-
tary embeddings with base ϑ = 1× 104 and ϑ =
1.6× 105. However, the training was done in two
phases. By adjusting the value of ϑ, researchers
developed a way to scale the context length of the
RoPE embedding (Fu et al., 2024), which has been
applied to many other models (AI@Meta, 2024).
Using this technique, the ModernBERT model was
pretrained on 1.7 trillion tokens with a context
length of 1024 with a ϑ = 10−4, which was ex-
tended to 8196 by additional training with altered
layers in which ϑ = 1.6× 105. In this manner, one
way of thinking of the change in ϑ values in the
encoder is that the attention mechanism alternates
between global and local attention.

It should be noted that many architectures have
attempted to circumvent the context limitation,
such as the Reformer (Kitaev et al., 2020), Long-
former (Beltagy et al., 2020), Transformer-XL (Dai
et al., 2019), and XLNet (Yang et al., 2019), to
name a few. Many of these solutions use some sort
of sliding context window and/or a recurrent adap-
tation of the transformer architecture. Extending
the context using rotary positional embeddings is
more computationally efficient and effective at scal-
ing to large context lengths, making ModernBERT
a more appropriate choice in this context.

The pretrained ModernBERT model was modi-
fied for annotation by adding a classification head
to the encoder. The annotator model possesses a

classification head with 9 output dimensions: 7
for argumentative component labels, 1 for unanno-
tated text, and 1 for padded variables (which can
be disregarded). The output represents log proba-
bilities for each label. This model was trained to
predict the annotations for each token in the train-
ing set using the cross-entropy loss function and
the Adam optimizer with a learning rate of 1e-6
over 10 epochs. We simplified the training by not
having a development set.

2.2.2 Spelling and Grammar
The most successful and accurate way to perform
GEC has been to utilize representation learning,
hence, we seek an encoder-decoder model, which
is a sequence-to-sequence model (Sutskever et al.,
2014). The premise behind this method is that we
are able to use the encoder to map sentences to
a vector space that encodes the semantic informa-
tion, while a decoder maps from the vector space
to grammatically correct text (Rothe et al., 2021).
This suggests we use a T5 model, pretrained as
a text-to-text transformer and fine-tuned to per-
form grammatical error correction (GEC) (Mar-
tynov et al., 2023). Once the correction is defined,
the original sentence and the correction are used as
input into the ERRANT tool to produce a classified
correction (Korre and Pavlopoulos, 2020).

2.2.3 Scoring Models
Given the model input includes both the essay
and any annotations, we require long-context mod-
els. While we have experimented with the use of
QLoRA-trained generative Models (Ormerod and
Kwako, 2024), to simplify the presentation, we use
the ModernBERT model for scoring in addition to
annotation. In this case, the scoring models were
constructed by appending a linear classification
head to the ModernBERT model with 6 targets,
one for each score point.

2.3 Evaluation

We have two models to evaluate: an annotation
model and a classification model. There are many
challenges to assessing annotations for argumen-
tative clauses. We need to carefully define what
it means for a particular clause to be identified
and correctly classified, given that certain iden-
tifications may not perfectly align with the pre-
dicted components. For holistic scoring, there are
many more well-defined and accepted standards
presented by Williamson et al. (Williamson et al.,

13



Essay

ModerBERT
Annotator

ModerBERT
Scorer

Argument
Annotated

Essay

Combined
Annotated

Essay

Error
Annotated

Essay

ERRANT

T5-GEC
Model

Figure 2: A diagram representing the scoring pipeline.

2012).

2.3.1 Annotator Evaluations

The standard described by the annotated argumen-
tative essay dataset (Stab and Gurevych, 2014a,b)
is reduced to a classification of IOB tags, where
the governing statistic is an F1 score. Our guiding
principle is the original rules for the competition3,
in which we use the ground truth and consider a
match if there is over 50% overlap between the two
identified components. Given a match using this
rule, matching the argumentative type is considered
a true positive (TP), unmatched components are
considered false negatives (FN), while predicted la-
bel mismatches are considered false positives (FP).
The final reported value is the F1 score, given by
the familiar formula

F1 =
2TP

2TP + FP + FN
. (5)

We can compare agreements for each label applied
based on the ground truth. In this way, for each type
of argumentative component type, we have a cor-
responding F1 score. In accordance with the rules
of the competition, the final F1 statistic of inter-
est is the macro average, given by the unweighted
average over all the classes.

3https://www.kaggle.com/c/feedback-prize-
2021/overview

2.3.2 Error Annotations
When it comes to annotating errors in the use of
language, since the errors in the essays were not
explicitly annotated by hand, we have no direct
way of evaluating the accuracy of any annotations.
We can only rely on the accuracy of the individ-
ual components. The T5 model we used has been
evaluated in (Martynov et al., 2023) with respect to
the JFLEG dataset (Napoles et al., 2017) and the
BEA60k dataset (Jayanthi et al., 2020). According
to those benchmarks, the accuracy of the model
used is comparable to ChatGPT and GPT-4.

2.3.3 Automated Scoring Evaluations
For the scoring model, we use the standards
for agreement specified by Williamson et al.
(Williamson et al., 2012). The first and primary
statistic used to describe agreement is Cohen’s
quadratic weighted kappa (QWK) (Cohen, 1960).
Given scores between 1 and N , we define the
weighted kappa statistic by the formula

κ = 1−
∑

wijOij∑
wijEij

(6)

where Oij is the number of observed instances
where the first rater assigns a score of i and the
second rater assigns a score of j, and Eij are the
expected number of instances that first rater assigns
a score of i and the second rater assigns a score
of j based purely on the random assignment of
scores given the two rater’s score distribution. This
becomes the QWK when we apply the quadratic
weighting:

wij =
(i− j)2

(N − 1)2
. (7)

The QWK takes values from −1 and 1, indicating
perfect disagreement and agreement, respectively.
It is often interpreted as the probability of agree-
ment beyond random chance. The second statistic
used is exact agreement, which is viewed as less
reliable since uneven score distributions can skew
it.

The last statistic used is the standardized mean
difference (SMD). If yt represents the true score
and yp represents the predicted score, then the
SMD is given by

SMD(yt, yp) =
yp − yt√

(σ(yp)2 + σ(yt)2)/2
. (8)

This statistic can be interpreted as a standardized
relative bias. A positive or negative value indi-
cates that the model is introducing some positive or
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negative bias in the modeling process, respectively.
Furthermore, when we restrict this calculation to
scores for a specific demographic, assuming that
demographic is sufficiently well-represented, the
SMD is considered a gauge of the bias associated
with the modeling for that subgroup.

3 Results

3.1 Annotation Accuracy

Using the 50% overlap rule, we present the number
of true positives, false positives, and false nega-
tives, and the resulting F1 score for each of the
component types, excluding unannotated. These
results are presented in Table 5.

TP FP FN F1

L 4332 270 95 0.960
P 6359 832 205 0.924
C1 20764 2057 1094 0.929
C2 1839 654 164 0.818
R 1443 495 106 0.827
E 18838 1653 1299 0.927
C3 5874 321 321 0.950

Table 5: The number of true positives (matched compo-
nents and labels), false positives (matched components,
unmatched labels), and false negatives (unmatched com-
ponents) between the true annotations and the predicted
annotations by component type.

These scores are exceptionally high, with the
lowest performance given by the annotator’s ability
to discern counterclaims and rebuttals. As an in-
dication of the annotated errors in language, the
pipeline highlighted 2795 spelling errors, 1401
grammatical errors, and 201 punctuation or orthog-
raphy errors. The pipeline used does not seem to
be uncovering as many errors as expected.

3.2 Scoring Accuracy

Given that the classification head is typically
randomly initialized, we were also interested in
whether these results were stable. We trained the
scorer 10 times and reported the average, minimum,
and maximum agreement levels for each agreement
statistic we listed above. These statistics can be
found in Table 6.

All the models performed well above the human
baseline. Out of the 10 separate trials, no model
trained on the full-text alone scored as accurately

as any of the models trained on the component an-
notated data or the data with both argumentative
components and language errors annotated. An
interesting observation is that the SMD, as calcu-
lated by (8), is only positive for models trained
on the combined annotations, and that the models
trained on component annotated text showed the
most controlled SMDs.

3.3 Potential bias
To investigate the possibility of potential bias, we
consider the SMD defined on subgroups. These
SMDs are presented in Table 7.

Key Orig. Comp. Error Comb.

Female 0.12 0.11 0.12 0.06

WC 0.09 0.11 0.08 0.15
HL -0.25 -0.25 -0.24 -0.19
BA -0.17 -0.16 -0.20 -0.17
AP 0.44 0.45 0.53 0.52
Nat -0.43 -0.41 -0.44 -0.21
Mix 0.08 0.07 0.12 0.01

ELL -0.59 -0.60 -0.62 -0.54
DE -0.36 -0.35 -0.37 -0.32
ID -0.51 -0.48 -0.49 -0.42

Table 7: The bias in the various subgroups as measured
by SMD for the particular subgroup.

While the resulting bias was higher than ex-
pected, a cursory look seems to suggest that the
use of combined annotations is mitigating some of
the biases rather than exacerbating them.

This work is one of a number of works that high-
light the growing need to address the bias intro-
duced by automation, especially for ELL students
(Ormerod et al., 2022). This suggests we need to
apply bias mitigation, which could be of the form
of a regression-based system with adjusted cut-off
points (Ormerod, 2022b), or some sort of reinforce-
ment learning mechanism.

4 Discussion

The results of this study demonstrate that incor-
porating feedback-oriented annotations into auto-
mated essay scoring (AES) pipelines can signifi-
cantly improve scoring accuracy and provide mean-
ingful, interpretable insights for students. The work
of Uto and Uchida (2020) suggests this is also true
for traditional global features. What we propose
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QWK Exa SMD
Avg Min Max Avg Min Max Avg Min Max

Full Text Only 0.860 0.859 0.862 67.2 66.9 67.5 -0.023 -0.027 -0.018
Component Annotated 0.868 0.867 0.870 68.9 68.6 69.1 -0.013 -0.017 -0.009
Error Annotated 0.858 0.856 0.859 67.1 66.9 67.5 -0.025 -0.028 -0.022
Combined Annotations 0.866 0.867 0.870 68.4 68.0 68.9 0.021 0.016 0.025
Human Baseline 0.745

Table 6: The average QWK, Exa, and SMD results on the test set for over 10 trials of training the scoring model.

is a realignment of AES to incorporate AWE ele-
ments so that we can provide students with more
than just a score.

One of the most critical findings from this study
concerns the potential for introduced bias, particu-
larly among subgroups such as English Language
Learners (ELLs). Our SMD analysis revealed no-
table disparities across demographic groups, echo-
ing previous research on the disproportionate im-
pact of automated systems on linguistically diverse
populations. While the current pipeline demon-
strates strong overall performance, these disparities
underscore the importance of ongoing bias mitiga-
tion strategies. However, we know that SMDs can
be unreliable, especially for subgroups with smaller
populations. Future work should explore meth-
ods such as regression-based adjustments, fairness-
aware training techniques, or reinforcement learn-
ing approaches that explicitly account for subgroup
characteristics.
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Abstract 
Aligning test items to content standards is a critical 
step in test development to collect validity evidence 
based on content.  Item alignment has typically been 
conducted by human experts, but this judgmental 
process can be subjective and time-consuming. This 
study investigated the performance of fine-tuned small 
language models (SLMs) for automated item 
alignment using data from a large-scale standardized 
reading and writing test for college admissions. 
Different SLMs were trained for both domain and skill 
alignment. The model performance was evaluated 
using precision, recall, accuracy, weighted F1 score, 
and Cohen's kappa on two test sets. The impact of 
input data types and training sample sizes was also 
explored. Results showed that including more textual 
inputs led to better performance gains than increasing 
sample size. For comparison, classic suprvised 
machine learning classifiers were trained on 
multilingual-E5 embeddings. Fine-tuned SLMs 
consistently outperformed these models, particularly 
for fine-grained skill alignment. To better understand 
model classifications, semantic similarity analyses 
including cosine similarity, Kullback-Leibler 
divergence of embedding distributions, and two-
dimension projections of item embeddings revealed 
that certain skills in the two test datasets were 
semantically too close, providing evidence for the 
observed misclassification patterns. 
1. Introduction 

Item alignment is part of alignment defined 
as the consistency among assessments, content 
standards, and instructional practices (Smith & 
O’Day, 1990; Webb, 1997). The degree of item 
alignment to content standards is critical evidence 

for validity based on content. Item alignment is 
typically conducted manually by content experts. 
The process involves reviewing test items one by 
one and determining which content standards 
each item aims to measure. Experts rely on their 
subject-matter expertise and professional 
judgement to assess alignment. Thus, this 
approach has clear limitations. First, manual 
alignment is time-consuming and labor-intensive 
especially for large-scale assessments (Bier et al., 
2019; Ding et al., 2025; Zhou & Ostrow, 2022). 
Second, reliance on expert judgement introduces 
subjectivity (Camilli, 2024; Khan et al., 2021). 
Third, as test items are designed to measure more 
complex domains and skills, incorporating 
multiple skills, domains or hierarchical label 
structures makes manual methods increasingly 
insufficient (Li et al., 2024). 

To address these limitations, researchers 
started exploring using machine learning and 
natural language processing (NLP) techniques. 
These approaches aim to enhance consistency, 
reduce labor, and enable scalability in large-scale 
assessment (Qu et al., 2011). Broadly, automated 
item alignment methods can be classified into two 
categories: feature-based models and language 
model-based approaches. Feature-based methods 
can be further divided into two categories: 
linguistic feature-based models and embedding-
based models. 

Recently, advances in transformer-based 
language models have introduced new modeling 
approaches to automated item alignment. These 
include small language models (SLMs), such as 
BERT, RoBERTa, and DeBERTa, which are often 
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fine-tuned on labeled items to directly map item 
text to the content standards (e.g., Ding et al., 
2025; Shen et al., 2021; Tan & Kim, 2024). 
Another emerging trend involves large language 
models (LLMs), such as GPT-4, which use 
prompting or fine-tuning strategies to classify or 
generate labels without additional training (Li et 
al., 2024; Liu et al., 2025; Moore et al., 2024). 
2. Related Work 

Automated item alignment is typically 
formulated as a classification task, where the goal 
is to assign items to predefined content standards 
based on item text. Early studies relied on feature-
based models. In supervised or unsupervised 
classification tasks, test items were mapped to 
one or more content labels using classifiers such 
as support vector machines (SVM; Karlovcec et 
al., 2012; Yilmazel et al., 2007), Latent Dirichlet 
Allocation (LDA; Anderson et al., 2020), and 
XGBoost (Tian et al., 2022). For instance, 
Karlovcec et al. (2012) applied SVM and K-
nearest neighbor (KNN) to classify ASSISTments 
math items into 106 content labels, while Pardos 
and Dabu (2017) used skip-gram and bag-of-
words features for item alignment to 198 content 
labels. Extracted linguistic features included bag-
of-words, TF-IDF, and keyword overlaps, which 
did not well capture contextual or sequential 
information. 

With the rise of neural network models, 
convolutional neural networks (CNNs; Kim, 
2014) and recurrent neural networks (RNNs; 
Schuster & Paliwal, 1997) were adopted. 
BiLSTM, a type of RNN, was particularly 
effective for sequence modeling. Sun et al. (2018) 
showed that BiLSTM outperformed classic 
methods (e.g., SVM) in English question 
alignment with an F1 score of 0.562 vs. 0.447. 
More approaches employed embeddings 
extracted from Word2Vec (Mikolov et al., 2013), 
GloVe (Pennington et al., 2014), or contextual 
embeddings from models like BERT (Devlin et 
al., 2019). For example, Tian et al. (2022) used 
Word2Vec embeddings and keyphrase features 
with XGBoost to align high school math items, 

outperforming baseline models such as VSM, 
SVM, NN, and LSTM. 

SLMs such as BERT and RoBERTa have 
been applied in item alignment using fine-tuned 
methods. Shen et al. (2021) found that fine-tuned 
BERT outperformed both classic classifiers and 
BERT model without fine-tuning. Khan et al. 
(2021) developed the Catalog system to align 
items with the NGSS standards using BERT and 
GPT-based semantic similarity measures. Tan and 
Kim (2024) compared FastText+XGBoost, fine-
tuned BERT-base/large, RoBERTa-large, and 
GPT-3.5 with prompting, reporting that 
RoBERTa-large consistently performed best. 
Similarly, Ding et al. (2025) proposed a 
RoBERTa-based model, which outperformed 
BiLSTM, BiGRU, and BERT in math item 
alignment. 

LLMs like GPT-3.5 and GPT-4 have also 
been explored for item alignment via prompting. 
Wang et al. (2023) used GPT-4 to classify medical 
test items using zero- and few-shot prompts. Li et 
al. (2024) explored alignment as binary 
classification task, prompting LLMs with item 
text and candidate knowledge descriptions along 
with a self-reflection step that allow the model to 
re-evaluate and revise its initial prediction. Their 
results showed that GPT-4 performed best, 
achieving over 90% accuracy.  Moore et al. 
(2024) used GPT-4 to directly generate 
knowledge components, simulating expert 
annotation and even constructing hierarchical 
ontologies.  

In summary, feature-based models extract 
linguistic features or use embeddings as features 
but often lack task adaptation. Fine-tuned SLMs, 
though less explored, offer an efficient middle 
ground between classic machine learning models 
and costly LLMs, with less privacy concern and 
better scalability for large-scale assessment 
contexts. 

To address gaps in the literature on 
automated item alignment in large-scale 
educational assessment, this study investigates 
how SLMs can be fine-tuned for item content 
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alignment in large-scale reading and writing 
assessments. Specifically, this study addresses the 
following research questions: 
1. How do sample size and input data type affect 
the item alignment accuracy? 
2. How do different SLMs perform in aligning 
test items to skill and domain categories? 
3. Where do misclassifications occur? 
3. Methods 
3.1 Data 
This study used 1270 items from the SAT 
Reading and Writing (RW) section, with 80% for 
training and 20% for testing. Additionally, 1052 
items from the PSAT 8/9 RW section were used 
as an external test set to evaluate fine-tuned 
models’ generalizability. Each item includeed a 
prompt, a question, four answer options, the 
correct answer or key, and a rationale explaining 
both correct and incorrect answers. Some items 
also contain graphs or tables, which were 
converted into text descriptions and LaTeX 
respectively. Each item measures one of the 10 
skills nested under 4 content domains including 
Standard English Conventions, Information and 
Ideas, Expression of Ideas, and Craft and 
Structure. Skill labels include Boundaries, Form, 
Structure and Sense, Command of Evidence, 
Inferences, Central Ideas and Details, 
Transitions, Rhetorical Synthesis, Words in 
Context, Text Structure and Purpose, and Cross-
Text Connections. 
3.2 Sample Size and Input Data 

To investigate the impact of sample size and 
input data on item alignment accuracy, the study 
experimented with different sample sizes and 
input data in the training dataset. BERT-base was 
first used for such exploration. Specifically, this 
study first sampled 500, 750, and 1000 items from 
the full 1270 dataset. Each subset was further split 
into training and test datasets using a ratio of 80% 
vs 20%. Their training datasets contained 400, 
600, and 800 items respectively. The models’ 
performance was evaluated on test sets. Nine 
input data types were experimented as listed 
below: 

1. Prompt only 
2. Prompt+table+figure 
3. Prompt+table+figure+options 
4. Prompt+table+figure+options+key 
5. Prompt+table+figure+options+key+rationale 
6. Prompt+table+figure+question  
7. Prompt+table+figure+question+options 
8. Prompt+table+figure+question+options+key 
9. Prompt+table+figure+question+options+key 
+rationale 
3.3 Models 

To answer the second question about SLMs 
performance in item alignment, several SLMs 
were fine-tuned. This study explored both SLM-
based modeling approaches and embedding-
based classic supervised machine learning 
models. The 12 fine-tuned SLMs include BERT-
base, BERT-large (Devlin et al., 2019), ALBERT-
base (Lan et al., 2019), DistilBERT-base (Sanh et 
al., 2019), All-DistilRoBERTa (Liu et al., 2019; 
Sanh et al., 2019), ELECTRA-small, ELECTRA-
base (Clark et al., 2020), RoBERTa-base, 
RoBERTa-large (Liu et al., 2019), DeBERTa-
base (He et al., 2020), DeBERTa-large (He et al., 
2021), and ConvBERT (Jiang et al., 2020). 
For comparison, embeddings from multilingual-
E5-large-instruct model were extracted using the 
CLS token and used to train supervised machine 
learning models including logistic regression, 
SVM, Naive Bayes, Random Forest, Gradient 
Boosting, XGBoost, LightGBM, MLP, and 
KNN. 
3.4 Model Fine-Tuning 

Prior to setting up the training configuration, 
this study conducted a series of exploratory 
experiments to evaluate the effects of different 
hyperparameter settings. Specifically, this study 
compared multiple learning rates (1e-5, 2e-5, and 
3e-5), warm-up ratio (0 and 0.1), learning rate 
scheduler (linear and cosine), and checkpoints 
(epoch-wise and step-wise). Based on model 
performance with different settings, the following 
configuration was selected for all models. That is, 
models were trained with 15 epochs using the 
AdamW optimizer, a learning rate of 2e-5, a batch 
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size of 8, and a linear learning rate scheduler with 
a warmup ratio of 0.1. Each SLM was fine-tuned 
separately for the domain and skill alignment. 
Item input texts were tokenized using the 
tokenizer of each SLM and truncated to a 
maximum length of 512 tokens. The model 
performance was evaluated in terms of accuracy, 
recall, precision, weighted F1 score, and Cohen’s 
kappa coefficient on both the SAT test dataset and 
the PSAT items. 
3.5 Exploration for Misclassification  

To understand the underlying causes of 
model misclassification, this study used a range 
of embedding-based analytical techniques. First, 
this study calculated all-pairwise cosine 
similarity between the selected skill groups with 
high rates of observed misclassification to 
quantify their semantic proximity in the 
embedding space. Second, To visualize the 
structure of the embeddings, this study applied 
three common dimensionality reduction 
techniques, including principal component 
analysis (PCA), t-distributed stochastic neighbor 
embedding (t-SNE), and isometric mapping 
(ISOMAP), to project the item embeddings from 
the best performing models into a two 
dimensional space for the clustering patterns. 
Third, KL divergence was calculated between 
skill-specific embedding distributions. Lower KL 
scores suggest semantically similarity. 
4. Results 
4.1 Impact of Sample Size and Input Data  
This study examined how input data and sample 
size affected item alignment accuracy using the 
BERT-base model. As shown in Table A.1 and 
A.2 in appendix, input data had a more substantial 
impact than sample size on both skill and domain 
alignment performance. Across all sample sizes, 
models trained with minimal inputs of 
"prompt_only" consistently yielded the lowest 
performance, while including more item 
components such as options, keys, rationales, and 
question improved model performance. For 
instance, in the skill alignment task with 400 
training samples, weighted F1 score increased 

from 0.664 with “prompt_only” to 0.919 with all 
input data. However, the accuracy increase was 
not monotonic along with adding more input data. 
For example, when 400 items were used for 
training, adding the rationale led to decreased 
weighted F1 from 0.981 to 0.935. 

It is worthy of note, adding question resulted 
in a sharp jump in alignment accuracy. For 
example, when 400 items were used for training,  
weighted F1 score for skill alignment increased 
from 0.664 with "prompt_only" to 0.893  with 
"prompt_table_figure_qtext". This dramatic 
increase was due to that many items in the same 
domain such as "Standard English Conventions" 
shared nearly identical question templates like 
"Which choice completes the text so that it 
conforms to the conventions of Standard 
English?" These question templates were likely to 
act as shortcut features, allowing models to 
memorize superficial patterns rather than learn 
the semantic relationship between content and 
skill or domain labels. To mitigate this issue, all 
questions was removed from the input data.  

In contrast, increasing the training sample 
size from 400 to 800 yielded modest 
improvement, particularly when compared with 
the increase achieved through adding input data. 
For example, for skill alignment with 
“prompt_only,” weighted F1 score improved 
from 0.664 for a sample size of 400 to 0.787 for a 
sample size of 600, whereas the same level of 
performance increase could be surpassed by 
adding more input data even with small sample 
sizes. A similar pattern was observed for domain 
alignment even though weighted F1 score was 
0.919 with a sample size of 400 and 
“prompt_only” but F1 score increased to 0.927 
with a sample size of 600 and all input data. These 
findings suggested that though larger training 
sample size increased accuracy, the more input 
data led to larger improvement in alignment 
accuracy more effectively. 
4.2 The Impact of Hyper-Parameters for 
Fine-Tuning SLMs 

To evaluate the effect of fine-tuning settings, 
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a full factorial experiment was conducted using 
BERT-base with different combinations of 
learning rate (1e-5, 2e-5, 5e-5), warm-up ratio 
(0.0, 0.1), learning rate scheduler (linear, cosine), 
and checkpoint strategy (epoch-wise, step-wise). 
The results showed that BERT-base model 
maintained strong performance across all hyper-
parameter combinations. Weighted F1 scores, 
accuracy, and Cohen’s kappa remained above 
0.98 in nearly all cases, indicating a high degree 
of robustness to hyper-parameter choices.  
4.3 Model Performance Comparison 

Tables A.3 and A.4 in Appendix compared 
model performance on the SAT test set for skill 
and domain alignment. Across all metrics, fine-
tuned SLMs significantly outperformed classical 
embedding-based classifiers. For skill alignment, 
ConvBERT and RoBERTa-large achieved perfect 
scores on all metrics, and even the worst 
performing ALBERT-base still performed well 
with weighted F1 of 0.943. Feature-based 
classifiers yielded lower performance, with 
weighted F1 scores ranging from 0.513 to 0.829. 
Among them, MLP showed the best performance. 
Domain alignment appeared to be an easier task, 
with most SLMs achieving nearly perfect results. 
Several models, including RoBERTa-large, 
ConvBERT, and DeBERTa-base, achieved 
perfect scores on all metrics. Feature-based 
classifiers also performed reasonably well, with 
weighted F1 scores generally above 0.84, 
indicating domain alignment task was easier. 

The generalizability of fine-tuned SLMs was 
further tested on the PSAT dataset (Tables A.5 and 
A.6). While model performance dropped slightly 
compared to SAT test data, most models still 
performed well. For skill alignment, ELECTRA-
base and RoBERTa-large remained the best 
performance with weighted F1 scores larger than 
0.99, and DeBERTa-base and ALBERT-base 
performed well too with F1 score larger than 0.95. 
For domain alignment, DeBERTa-base 
performed best with all metrics having a value of 
0.997. RoBERTa-base, RoBERTa-large also 
performed well with all metrics of 0.994. These 

findings suggest that models trained on SAT 
items can be generalized to PSAT item alignment 
when the same content framework are followed. 
4.4 Exploration of Misclassification 

Though the overall accuracy of aligning 
PSAT items was high using the model trained on 
SAT items, some skill-specific item alignment 
displayed high misclassification rate. Table A.7 
presents F1 scores for skills on PSAT items. 
Several models, including BERT-base, BERT-
large, ConvBERT, All-DistilRoBERTa, 
ELECTRA-small, RoBERTa-base, DeBERTa-
large, and DistilBERT-base exhibited evident 
decrease in F1 scores on Skill 4 for Inferences and 
Skill 5 for Central Ideas and Details. Items for 
assessing these two Skills were often 
misclassified into Skill 8 for Words in Context. 

To investigate misclassification, this study 
computed pairwise cosine similarities between 
iembeddings of items assessing Skills 4, 5, and 8 
in SAT and PSAT. Results revealed high semantic 
similarity between Skill 4 and 8 with mean cosine 
similarity of 0.827 for SAT and  0.828 for PSAT 
and between Skill 5 and 8 with mean cosine 
similarity of 0.825 for SAT and 0.823 for PSAT. 

Further, this study visualized the item-level 
embeddings using dimensionality reduction 
techniques, including PCA, t-SNE, and ISOMAP. 
The two-dimension projected embeddings for 
Skills 4 and 8, as well as Skills 5 and 8, showed 
considerable overlap across six plots. The four 
skill clusters occupied overlapping regions in the 
latent space, with no clear visual boundaries 
between them, indicating that the items shared 
highly similar semantic characteristics. 

In addition, KL divergence was used to 
assess how PSAT Skills 4 and 5 align with each 
SAT skill in the embedding space. The results 
showed that SAT Skill 8 consistently exhibited 
low KL divergence (17.986 and 25.491) with the 
two PSAT skills, indicating the high semantic 
similarity. These results provide empirical 
evidence showing the semantic similarity 
between PSAT Skills 4/5 items and Skill 8 
respectively where misclassification occurred. 
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5. Discussion and Conclusion 
This study fine-tuned SLMs for automated 

item alignment in large-scale reading and writing 
assessments. Using SAT and PSAT data, items 
were aligned to both domains and skills, with 
skills nested within domains. The results 
demonstrated that fine-tuned SLMs substantially 
outperformed embedding-based classic machine 
learning models. Fine-tuned SLMs achieved high 
performance across all metrics, particularly in 
domain alignment. Even the weakest model, 
ALBERT-base, yielded weighted F1 score of 
0.943. In contrast, embedding-based models 
trained on SLM yielded F1 scores ranging from 
0.513 to 0.829, highlighting the superiority of 
end-to-end fine-tuning of SLMs. 

More input data consistently outperformed 
the models trained with fewer input data. 
Increasing the sample size alone yielded 
relatively moderate improvements in model 
performance, especially when the input data were 
limited. However, the benefit of more input data 
was not monotonically increasing. With a sample 
size of 500, adding the rationale to the input data 
alongside the prompt, tables, figures, question, 
options, and key led to decreased performance. 
As sample size increased, this negative effect 
disappeared, suggesting an interaction between 
input data and sample size. 

ELECTRA-base, RoBERTa-large, and 
DeBERTa-base demonstrated good 
generalizability on PSAT item alignment. 
Nevertheless, items measuring Inferences as well 
as Central Ideas and Details were frequently 
misclassified as Words in Context. Cosine 
Similarity and KL divergence analysis confirmed 
high overlapping in the embedding space across 
these skills, while two dimension projections 
using PCA, t-SNE, and ISOMAP further 
illustrated indistinct category boundaries. 

Despite the promising results of SLMs in 
item content alignment demonstrated, this study 
has some limitations. First, items were all single-
coded items. In some item content alignment, 
items may be double, triple, even multiple coded. 

Future research can explore more complex multi-
coded item content alignment. Second, LLMs 
such as GPT-4 have shown promise in recent 
studies, they were not included in this study due 
to cost, transparency, and test security concerns. 
Future work may examine prompt-based LLMs 
alongside fine-tuned SLMs to assess their relative 
strengths in large-scale educational assessment 
programs. 

In summary, this study evaluated multiple 
SLMs for automated item alignment to content 
standards. The investigation of the impact of 
sample size and input data types provided 
empirical evidence about these design factors in 
training SLMs for automated item alignment. The 
analyses related to misclassification errors help 
future studies to conduct quality control of any 
low performing cases. Though the current study 
used SAT and PSAT Reading and Writing items, 
the methods used for developing models for 
automated item alignment can be readily applied 
to state assessment programs when item 
alignment to content standards is needed. 
 
References 

Anderson, D., Rowley, B., Stegenga, S., Irvin, P. S., & 
Rosenberg, J. M. (2020). Evaluating content‐related 
validity evidence using a text‐based machine learning 
procedure. Educational Measurement: Issues and 
Practice, 39(4), 53-64. 

Bhola, D. S., Impara, J. C., & Buckendahl, C. W. (2003). 
Aligning tests with states' content standards: Methods 
and issues. Educational Measurement: Issues and 
Practice, 22(3), 21–29. 

Bier, N., Moore, S., & Van Velsen, M. (2019, March). 
Instrumenting courseware and leveraging data with the 
Open Learning Initiative (OLI). In Proceedings of the 
9th International Conference on Learning Analytics & 
Knowledge (LAK19) 

Butterfuss, R., & Doran, H. (2025). An application of text 
embeddings to support alignment of educational 
content standards. Educational Measurement: Issues 
and Practice, 44(1), 73–83. 

Camilli, G. (2024). An NLP crosswalk between the 
Common Core State Standards and NAEP item 

24



 

specifications. arXiv preprint arXiv:2405.17284. 
Christopherson, S. C., & Webb, N. L. (2020). Alignment 

Analysis of Two Forms of the SAT with the Arizona 
Academic Standards for English Language Arts 
Grades 11–12, Algebra 1, and Geometry. Wisconsin 
Center for Education Products and Services. 

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. 
(2020). Electra: Pre-training text encoders as 
discriminators rather than generators. arXiv preprint 
arXiv:2003.10555. 

Cui, Y., Che, W., Liu, T., Qin, B., Wang, S., & Hu, G. 
(2020). Revisiting pre-trained models for Chinese 
natural language processing. In T. Cohn, Y. He, & Y. 
Liu (Eds.), Findings of the Association for 
Computational Linguistics: EMNLP 2020 (pp. 657–
668). Association for Computational Linguistics. 
https://doi.org/10.18653/v1/2020.findings-emnlp.58 

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. 
(2019). BERT: Pre-training of deep bidirectional 
transformers for language understanding. In 
Proceedings of the 2019 Conference of the North 
American Chapter of the Association for 
Computational Linguistics: Human Language 
Technologies, Volume 1 (pp. 4171–4186). 

Ding, Z., Wang, X., Wu, Y., Cao, G., & Chen, L. (2025). 
Tagging knowledge concepts for math problems based 
on multi-label text classification. Expert Systems with 
Applications, 267, 126232. 

Dodge, J., Ilharco, G., Schwartz, R., Farhadi, A., 
Hajishirzi, H., & Smith, N. (2020). Fine-tuning 
pretrained language models: Weight initializations, 
data orders, and early stopping. arXiv preprint 
arXiv:2002.06305. 

Embretson, S. E., & Reise, S. P. (2000). Item response 
theory for psychologists. Psychology Press. 

He, P., Gao, J., & Chen, W. (2021). Debertav3: Improving 
deberta using electra-style pre-training with gradient-
disentangled embedding sharing. arXiv preprint 
arXiv:2111.09543. 

He, P., Liu, X., Gao, J., & Chen, W. (2020). Deberta: 
Decoding-enhanced bert with disentangled attention. 
arXiv preprint arXiv:2006.03654. 

Herman, J. L., Webb, N. M., & Zuniga, S. (2003). 
Alignment and college admissions: The match of 
expectations, assessments, and educator perspectives. 

Center for the Study of Evaluation, CRESST, UCLA. 
Huang, T., Hu, S., Yang, H., Geng, J., Liu, S., Zhang, H., 

& Yang, Z. (2023). PQSCT: Pseudo-Siamese BERT 
for concept tagging with both questions and solutions. 
IEEE Transactions on Learning Technologies, 16(5), 
831–846. https://doi.org/10.1109/TLT.2023.3275707 

Nemeth, Y., Michaels, H., Wiley, C., & Chen, J. (2016). 
Delaware system of student assessment and Maine 
comprehensive assessment system: SAT alignment to 
the Common Core State Standards. Human Resources 
Research Organization. 

Jiang, Z. H., Yu, W., Zhou, D., Chen, Y., Feng, J., & Yan, 
S. (2020). Convbert: Improving bert with span-based 
dynamic convolution. Advances in Neural Information 
Processing Systems, 33, 12837-12848. 

Kane, M. (2006). Content-Related Validity Evidence in 
Test Development. In S. M. Downing & T. M. 
Haladyna (Eds.), Handbook of test development (pp. 
131–153). Lawrence Erlbaum Associates. 

Karlovčec, M., Córdova-Sánchez, M., & Pardos, Z. A. 
(2012). Knowledge component suggestion for 
untagged content in an intelligent tutoring system. In 
S. A. Cerri, W. J. Clancey, G. Papadourakis, & K. 
Panourgia (Eds.), Intelligent tutoring systems: 11th 
International Conference, ITS 2012, Chania, Crete, 
Greece, June 14–18, 2012. Proceedings (Lecture 
Notes in Computer Science, Vol. 7315, pp. 195–200). 
Springer. https://doi.org/10.1007/978-3-642-30950-
2_25 

Khan, S., Rosaler, J., Hamer, J., & Almeida, T. (2021). 
Catalog: An educational content tagging system. In 
Proceedings of the 14th International Conference on 
Educational Data Mining (EDM 2021). International 
Educational Data Mining Society. 

Kim, Y. (2014). Convolutional neural networks for 
sentence classification. In A. Moschitti, B. Pang, & W. 
Daelemans (Eds.), In Proceedings of the 2014 
Conference on Empirical Methods in Natural 
Language Processing (EMNLP) (pp. 1746–1751). 
Association for Computational Linguistics. 
https://doi.org/10.3115/v1/D14-1181 

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., 
& Soricut, R. (2019). Albert: A lite bert for self-
supervised learning of language representations. arXiv 
preprint arXiv:1909.11942. 

25



 

Li, H., Xu, T., Tang, J., & Wen, Q. (2024). Automate 
knowledge concept tagging on math questions with 
LLMs. arXiv preprint arXiv:2403.17281. 

Lima, P. S. N., Ambrosio, A. P., Felix, I., Brancher, J. D., 
& de Carvalho, D. T. (2018). Content analysis of 
student assessment exams. In 2018 IEEE Frontiers in 
Education Conference (FIE) (pp. 1–9). IEEE. 
https://doi.org/10.1109/FIE.2018.8659169 

Liu, N., Sonkar, S., Basu Mallick, D., Baraniuk, R., & 
Chen, Z. (2025). Atomic learning objectives and 
LLMs labeling: A high-resolution approach for 
physics education. In Proceedings of the 15th 
International Learning Analytics and Knowledge 
Conference (LAK ’25) (pp. 620–630). Association for 
Computing Machinery. 
https://doi.org/10.1145/3706468.3706550 

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... 
& Stoyanov, V. (2019). Roberta: A robustly optimized 
bert pretraining approach. arXiv preprint 
arXiv:1907.11692. 

Martone, A., & Sireci, S. G. (2009). Evaluating alignment 
between curriculum, assessment, and instruction. 
Review of Educational Research, 79(4), 1332–1361. 

McCormick, C., & Geisinger, K. F. (2017). Alignment 
Study Full Report. Buros Center for Testing. 

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). 
Efficient estimation of word representations in vector 
space. arXiv preprint arXiv:1301.3781. 

Moore, S., Schmucker, R., Mitchell, T., & Stamper, J. 
(2024). Automated generation and tagging of 
knowledge components from multiple-choice 
questions. In Proceedings of the Eleventh ACM 
Conference on Learning @ Scale (L@S '24) (pp. 122–
133). Association for Computing Machinery. 
https://doi.org/10.1145/3657604.3662030 

Mosbach, M., Andriushchenko, M., & Klakow, D. (2020). 
On the stability of fine-tuning bert: Misconceptions, 
explanations, and strong baselines. arXiv preprint 
arXiv:2006.04884. 

Muennighoff, N., Tazi, N., Magne, L., & Reimers, N. 
(2022). MTEB: Massive text embedding benchmark. 
arXiv preprint arXiv:2210.07316. 

Nemeth, Y., Michaels, H., Wiley, C., & Chen, J. (2016). 
Delaware System of Student Assessment and Maine 
Comprehensive Assessment System: SAT alignment 

to the Common Core State Standards – Final Report. 
Human Resources Research Organization. 

Ozyurt, Y., Feuerriegel, S., & Sachan, M. (2025). 
Automated knowledge concept annotation and 
question representation learning for knowledge tracing. 
arXiv Preprint, arXiv:2410.01727. 
https://doi.org/10.48550/arXiv.2410.01727 

Pardos, Z. A., & Dadu, A. (2017). Imputing KCs with 
representations of problem content and context. In 
Proceedings of the 25th Conference on User Modeling, 
Adaptation and Personalization (UMAP '17) (pp. 148–
155). Association for Computing Machinery. 
https://doi.org/10.1145/3079628.3079689 

Pennington, J., Socher, R., & Manning, C. D. (2014). 
GloVe: Global vectors for word representation. In 
Proceedings of the 2014 Conference on Empirical 
Methods in Natural Language Processing (EMNLP) 
(pp. 1532–1543). 

Peters, S., Zhang, N., Jiao, H., Li, M., Zhou, T., Lissitz, 
R., Fu, Y., & Xu, Q. (2025). Text-based approaches to 
item difficulty modeling in high-stakes assessments: A 
systematic review (MARC Research Report). 
University of Maryland. 

Qu, B., Cong, G., Li, C., Sun, A., & Chen, H. (2012). An 
evaluation of classification models for question topic 
categorization. Journal of the American Society for 
Information Science and Technology, 63(5), 889-903. 

Ramesh, R., Sasikumar, M., & Iyer, S. (2016). A software 
tool to measure the alignment of assessment 
instrument with a set of learning objectives of a course. 
In 2016 IEEE 16th International Conference on 
Advanced Learning Technologies (ICALT) (pp. 64–
68). IEEE. https://doi.org/10.1109/ICALT.2016.10 

Reimers, N., & Gurevych, I. (2021). all-distilroberta-v1 
[Computer software]. Hugging Face. 
https://huggingface.co/sentence-transformers/all-
distilroberta-v1 

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). 
DistilBERT, a distilled version of BERT: smaller, 
faster, cheaper and lighter. arXiv preprint 
arXiv:1910.01108. 

Schuster, M., & Paliwal, K. K. (1997). Bidirectional 
recurrent neural networks. IEEE Transactions on 
Signal Processing, 45(11), 2673–2681. 

Sebastiani, F. (2002). Machine learning in automated text 

26



 

categorization. ACM computing surveys (CSUR), 
34(1), 1-47. 

Shen, J. T., Yamashita, M., Prihar, E., Heffernan, N., Wu, 
X., McGrew, S., & Lee, D. (2021). Classifying math 
knowledge components via task-adaptive pre-trained 
BERT. In Artificial Intelligence in Education: 22nd 
International Conference, AIED 2021, Utrecht, The 
Netherlands, June 14–18, 2021, Proceedings, Part I 22 
(pp. 408-419). Springer International Publishing. 

Smith, M. S., & O’Day, J. (1990). Systemic school reform. 
Journal of Education Policy, 5(5), 233–267. 
https://doi.org/10.1080/02680939008549074 

Sparck Jones, K. (1972). A statistical interpretation of 
term specificity and its application in retrieval. Journal 
of documentation, 28(1), 11-21. 

Sun, B., Zhu, Y., Xiao, Y., Xiao, R., & Wei, Y. (2018). 
Automatic question tagging with deep neural networks. 
IEEE Transactions on Learning Technologies, 12(1), 
29-43. 

Tan, C. S., & Kim, J. J. (2024). Automated Math Word 
Problem Knowledge Component Labeling and 
Recommendation. In International Conference in 
Methodologies and intelligent Systems for 
Techhnology Enhanced Learning (pp. 338-348). Cham: 
Springer Nature Switzerland. 

Tian, Z., Flanagan, B., Dai, Y., & Ogata, H. (2022). 
Automated matching of exercises with knowledge 
components. In 30th International Conference on 
Computers in Education Conference Proceedings (pp. 
24-32). 

Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R., 
& Wei, F. (2024). Multilingual e5 text embeddings: A 
technical report. arXiv preprint arXiv:2402.05672. 

Wang, T., Stelter, K., Floyd, J., O'Neill, T., Hendrix, N., 
Bazemore, A., Rode, K., & Newton, W. (2023). 
Blueprinting the future: Automatic item categorization 
using hierarchical zero-shot and few-shot classifiers. 
arXiv. https://arxiv.org/abs/2312.03561 

Webb, N. L. (1997). Criteria for alignment of 
expectations and assessments in mathematics and 
science education. Research Monograph No. 6. 

Yilmazel, O., Balasubramanian, N., Harwell, S. C., Bailey, 
J., Diekema, A. R., & Liddy, E. D. (2007). Text 
categorization for aligning educational standards. In 
2007 40th Annual Hawaii International Conference on 
System Sciences (HICSS'07) (p. 73). IEEE. 
https://doi.org/10.1109/HICSS.2007.517 

Yu, R., Das, S., Gurajada, S., Varshney, K., Raghavan, H., 
& Lastra-Anadon, C. (2021). A research framework 
for understanding education-occupation alignment 
with NLP techniques. In A. Field, S. Prabhumoye, M. 
Sap, Z. Jin, J. Zhao, & C. Brockett (Eds.), Proceedings 
of the 1st Workshop on NLP for Positive Impact (pp. 
100–106). Association for Computational Linguistics. 
https://doi.org/10.18653/v1/2021.nlp4posimpact-1.11 

Zhang, N., Jiao, H., Yadav, C., & Lissitz, R. (2025). 
Aligning SAT math to state math content standards: A 
systematic review (Technical report). Maryland 
Assessment Research Center, University of Maryland. 

Zhou, Z., & Ostrow, K. S. (2022). Transformer-based 
automated content-standards alignment: A pilot study. 
In G. Meiselwitz (Ed.), HCI International 2022 – Late 
Breaking Papers: Interaction in New Media, Learning 
and Games (Vol. 13517, pp. 525–542). Springer. 
https://doi.org/10.1007/978-3-031-22131-6_39  

27



 

Appendix 
Table A.1 
Performance of BERT-base Models across Sample Sizes and Input Data for Skill Alignment 

Sample 
Sizes 

Input Conditions Accuracy Precision Recall 
Weighted 

F1 
Cohen’s 
Kappa 

400 

prompt_only 0.700 0.690 0.700 0.664 0.662 
prompt_table_figure 0.810 0.813 0.810 0.801 0.786 
prompt_table_figure_options 0.900 0.904 0.900 0.897 0.886 
prompt_table_figure_options_key 0.880 0.886 0.880 0.876 0.864 
prompt_table_figure_options_key_rationale 0.920 0.926 0.920 0.919 0.909 
prompt_table_figure_qtext 0.890 0.915 0.890 0.893 0.876 
prompt_table_figure_qtext_options 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options_key 0.980 0.984 0.980 0.981 0.977 
prompt_table_figure_qtext_options_key_rationale 0.940 0.970 0.940 0.935 0.932 

600 

prompt_only 0.787 0.796 0.787 0.787 0.760 
prompt_table_figure 0.767 0.795 0.767 0.754 0.738 
prompt_table_figure_options 0.880 0.876 0.880 0.871 0.865 
prompt_table_figure_options_key 0.900 0.911 0.900 0.898 0.887 
prompt_table_figure_options_key_rationale 0.933 0.948 0.933 0.932 0.925 
prompt_table_figure_qtext 0.947 0.948 0.947 0.947 0.940 
prompt_table_figure_qtext_options 0.993 0.994 0.993 0.993 0.992 
prompt_table_figure_qtext_options_key 0.980 0.980 0.980 0.980 0.977 
prompt_table_figure_qtext_options_key_rationale 0.980 0.982 0.980 0.980 0.977 

800 

prompt_only 0.800 0.817 0.800 0.798 0.777 
prompt_table_figure 0.815 0.812 0.815 0.811 0.793 
prompt_table_figure_options 0.865 0.887 0.865 0.871 0.849 
prompt_table_figure_options_key 0.890 0.915 0.890 0.896 0.877 
prompt_table_figure_options_key_rationale 0.850 0.883 0.850 0.855 0.832 
prompt_table_figure_qtext 0.950 0.950 0.950 0.950 0.944 
prompt_table_figure_qtext_options 0.990 0.990 0.990 0.990 0.989 
prompt_table_figure_qtext_options_key 0.995 0.995 0.995 0.995 0.994 
prompt_table_figure_qtext_options_key_rationale 0.995 0.995 0.995 0.995 0.994 

 
Table A.2 
Performance of BERT-base Models across Sample Sizes and Input Data for Domain Alignment 

Sample 
Sizes 

Input Conditions Accuracy Precision Recall 
Weighted 

F1 
Cohen’s 
Kappa 

400 
prompt_only 0.920 0.929 0.920 0.919 0.891 
prompt_table_figure 0.930 0.931 0.930 0.930 0.905 
prompt_table_figure_options 0.960 0.963 0.960 0.960 0.945 
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prompt_table_figure_options_key 0.970 0.973 0.970 0.970 0.959 
prompt_table_figure_options_key_rationale 0.990 0.990 0.990 0.990 0.986 
prompt_table_figure_qtext 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options 0.970 0.973 0.970 0.970 0.959 
prompt_table_figure_qtext_options_key 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options_key_rationale 0.980 0.981 0.980 0.980 0.973 

600 

prompt_only 0.900 0.900 0.900 0.900 0.866 
prompt_table_figure 0.900 0.902 0.900 0.899 0.866 
prompt_table_figure_options 0.953 0.958 0.953 0.954 0.937 
prompt_table_figure_options_key 0.953 0.960 0.953 0.954 0.937 
prompt_table_figure_options_key_rationale 0.927 0.934 0.927 0.927 0.902 
prompt_table_figure_qtext 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options_key 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options_key_rationale 0.987 0.987 0.987 0.987 0.982 

800 

prompt_only 0.885 0.888 0.885 0.885 0.846 
prompt_table_figure 0.900 0.901 0.900 0.900 0.866 
prompt_table_figure_options 0.965 0.966 0.965 0.965 0.953 
prompt_table_figure_options_key 0.960 0.962 0.960 0.960 0.947 
prompt_table_figure_options_key_rationale 0.940 0.947 0.940 0.941 0.920 
prompt_table_figure_qtext 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options_key 1.000 1.000 1.000 1.000 1.000 
prompt_table_figure_qtext_options_key_rationale 0.990 0.990 0.990 0.990 0.987 
 
Table A.3 
Model Performance on SAT Skill Alignment 

Model Precision Recall Accuracy Weighted F1 Cohen’s Kappa 
BERT-base 0.996 0.996 0.996 0.996 0.996 
BERT-large 0.989 0.988 0.988 0.988 0.987 
ALBERT-base 0.949 0.945 0.945 0.943 0.938 
ConvBERT 1.000 1.000 1.000 1.000 1.000 
All-DistilRoBERTa 0.985 0.984 0.984 0.984 0.982 
ELECTRA-base 0.992 0.992 0.992 0.992 0.991 
ELECTRA-small 0.974 0.969 0.969 0.966 0.965 
RoBERTa-base 0.996 0.996 0.996 0.996 0.996 
RoBERTa-large 1.000 1.000 1.000 1.000 1.000 
DeBERTa-base 0.985 0.984 0.984 0.984 0.982 
DeBERTa-large 0.996 0.996 0.996 0.996 0.996 
DistilBERT-base 0.992 0.992 0.992 0.992 0.991 
Logistic Regression 0.538 0.646 0.646 0.563 0.593 
SVM 0.642 0.701 0.701 0.643 0.658 
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Naive Bayes 0.764 0.744 0.744 0.749 0.713 
Random Forest 0.591 0.610 0.571 0.513 0.554 
Gradient Boosting 0.575 0.583 0.594 0.573 0.526 
XGBoost 0.618 0.610 0.610 0.597 0.560 
LightGBM 0.652 0.665 0.665 0.643 0.621 
MLP 0.816 0.823 0.835 0.829 0.800 
KNN 0.524 0.535 0.535 0.513 0.476 

 
Table A.4 
Model Performance on SAT Domain Alignment 

Model Precision Recall Accuracy Weighted F1 Cohen’s Kappa 
BERT-base 0.996 0.996 0.996 0.996 0.995 
BERT-large 0.996 0.996 0.996 0.996 0.995 

ALBERT-base 0.967 0.965 0.965 0.965 0.952 
ConvBERT 1.000 1.000 1.000 1.000 1.000 

All-DistilRoBERTa 0.996 0.996 0.965 0.965 0.995 
ELECTRA-base 0.996 0.996 0.996 0.996 0.995 
ELECTRA-small 0.980 0.980 0.980 0.980 0.973 
RoBERTa-base 1.000 1.000 1.000 1.000 1.000 
RoBERTa-large 1.000 1.000 1.000 1.000 1.000 
DeBERTa-base 1.000 1.000 1.000 1.000 1.000 
DeBERTa-large 0.996 0.996 0.996 0.996 0.995 
DistilBERT-base 0.992 0.992 0.992 0.992 0.989 

Logistic Regression 0.879 0.878 0.878 0.878 0.834 
SVM 0.901 0.894 0.894 0.894 0.857 

Naive Bayes 0.839 0.827 0.827 0.827 0.767 
Random Forest 0.812 0.807 0.783 0.781 0.735 

Gradient Boosting 0.852 0.850 0.846 0.846 0.796 
XGBoost 0.829 0.823 0.823 0.824 0.760 

LightGBM 0.848 0.846 0.846 0.847 0.792 
MLP 0.923 0.921 0.921 0.921 0.893 
KNN 0.727 0.724 0.724 0.719 0.627 

 
Table A.5 
Model Performance on PSAT Skill Alignment 

Model Precision Recall Accuracy Weighted F1 Cohen’s Kappa 
BERT-base 0.935 0.894 0.894 0.878 0.879 
BERT-large 0.906 0.827 0.827 0.797 0.802 
ALBERT-base 0.969 0.961 0.961 0.961 0.956 
ConvBERT 0.902 0.887 0.887 0.870 0.871 
All-DistilRoBERTa 0.931 0.907 0.907 0.887 0.895 
ELECTRA-base 0.993 0.993 0.993 0.993 0.993 
ELECTRA-small 0.744 0.760 0.760 0.722 0.728 
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RoBERTa-base 0.959 0.942 0.942 0.929 0.935 
RoBERTa-large 0.994 0.994 0.994 0.994 0.994 
DeBERTa-base 0.978 0.976 0.976 0.976 0.973 
DeBERTa-large 0.927 0.894 0.894 0.868 0.879 
DistilBERT-base 0.940 0.920 0.920 0.910 0.910 
Logistic Regression 0.708 0.723 0.723 0.653 0.682 
SVM 0.861 0.804 0.804 0.763 0.776 
Naive Bayes 0.862 0.853 0.853 0.855 0.834 
Random Forest 0.938 0.933 0.920 0.919 0.924 
Gradient Boosting 0.881 0.879 0.883 0.882 0.864 
XGBoost 0.917 0.914 0.914 0.914 0.903 
LightGBM 0.938 0.937 0.937 0.936 0.929 
MLP 0.963 0.963 0.961 0.961 0.958 
KNN 0.695 0.695 0.695 0.687 0.655 

 
Table A.6 
Model Performance on PSAT Domain Alignment 

Model Precision Recall Accuracy Weighted F1 Cohen’s Kappa 
BERT-base 0.947 0.934 0.934 0.934 0.912 
BERT-large 0.986 0.985 0.985 0.985 0.980 
ALBERT-base 0.892 0.820 0.820 0.803 0.762 
ConvBERT 0.971 0.967 0.967 0.967 0.956 
All-DistilRoBERTa 0.986 0.986 0.986 0.986 0.981 
ELECTRA-base 0.928 0.904 0.904 0.902 0.872 
ELECTRA-small 0.949 0.937 0.937 0.937 0.916 
RoBERTa-base 0.994 0.994 0.994 0.994 0.992 
RoBERTa-large 0.994 0.994 0.994 0.994 0.992 
DeBERTa-base 0.997 0.997 0.997 0.997 0.996 
DeBERTa-large 0.988 0.988 0.988 0.988 0.983 
DistilBERT-base 0.940 0.926 0.926 0.925 0.901 
Logistic Regression 0.899 0.898 0.898 0.899 0.864 
SVM 0.934 0.933 0.933 0.933 0.911 
Naive Bayes 0.860 0.857 0.857 0.857 0.810 
Random Forest 0.959 0.959 0.953 0.953 0.945 
Gradient Boosting 0.959 0.959 0.958 0.958 0.945 
XGBoost 0.968 0.968 0.968 0.968 0.957 
LightGBM 0.969 0.969 0.969 0.969 0.958 
MLP 0.964 0.964 0.963 0.963 0.952 
KNN 0.799 0.798 0.798 0.796 0.730 

 
Table A.7 
Skill Level Performance of Fine-Tuned Small Language Models for PSAT 

Model Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6 Skill 7 Skill 8 Skill 9 Skill 10 
BERT-base 0.996 0.992 0.997 0.692 0.250 0.991 1.000 0.737 0.924 0.986 
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BERT-large 0.992 0.992 0.981 0.200 0.075 1.000 0.996 0.630 0.672 1.000 
ALBERT-base 0.988 0.976 0.968 0.824 0.797 0.995 1.000 0.993 0.981 1.000 
ConvBERT 0.992 0.996 0.972 0.150 0.678 1.000 1.000 0.741 0.900 1.000 
All-DistilRoBERTa 0.992 0.992 0.963 0.108 0.683 0.926 1.000 0.937 0.917 0.986 
ELECTRA-base 0.988 0.992 0.997 1.000 0.974 1.000 1.000 0.993 0.987 1.000 
ELECTRA-small 0.988 0.988 0.672 0.000 0.000 1.000 1.000 0.619 0.653 0.839 
RoBERTa-base 0.992 0.992 0.955 0.333 0.774 1.000 1.000 0.997 0.993 1.000 
RoBERTa-large 0.996 0.996 0.991 0.986 0.974 1.000 1.000 0.997 1.000 1.000 
DeBERTa-base 0.996 0.996 0.984 0.867 0.900 0.995 1.000 0.984 0.980 1.000 
DeBERTa-large 0.992 0.984 1.000 0.056 0.798 0.995 1.000 0.800 0.695 1.000 
DistilBERT-base 0.996 0.996 0.991 0.824 0.424 0.995 0.996 0.904 0.746 1.000 

Note. Skill 1 = Boundaries; Skill 2 = Form, Structure, and Sense; Skill 3 = Command of Evidence; 
Skill 4 = Inferences; Skill 5 = Central Ideas and Details; Skill 6 = Transitions; Skill 7 = Rhetorical 
Synthesis; Skill 8 = Words in Context; Skill 9 = Text Structure and Purpose; Skill 10 = Cross-Text 
Connections. 
 
Figure A.1 
PCA Projection of Embeddings for Skill 4 (Inferences) vs. Skill 8 (Words in Context) for SAT and PSAT 
Items 
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Figure A.2 
t-SNE Projection of Embeddings for Skill 4 (Inferences) vs. Skill 8 (Words in Context) for SAT and PSAT 
Items 

 

 
Figure A.3 
ISOMAP Projection of Embeddings for Skill 4 (Inferences) vs. Skill 8 (Words in Context) for SAT and 
PSAT Items 
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Figure A.4 
PCA Projection of Embeddings for Skill 5 (Central Ideas and Details) vs. Skill 8(Words in Context) for 
SAT and PSAT Items 

 

 
Figure A.5 
t-SNE Projection of Embeddings for Skill 5 (Central Ideas and Details) vs. Skill 8 (Words in Context) 
for SAT and PSAT Items 
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Figure A.6 
ISOMAP Projection of Embeddings for Skill 5 (Central Ideas and Details) vs. Skill 8 (Words in Context) 
for SAT and PSAT Items 

 
 
Table A.8 
KL Divergence betweeen PSAT Skill 4 and Each SAT Skill 
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From To KL divergence 
PSAT skill 4 SAT skill 1 32.927 
PSAT skill 4 SAT skill 2 38.059 
PSAT skill 4 SAT skill 4 42.588 
PSAT skill 4 SAT skill 4 44.503 
PSAT skill 4 SAT skill 5 40.996 
PSAT skill 4 SAT skill 6 13.610 
 PSAT skill 4 SAT skill 7 26.869 
PSAT skill 4 SAT skill 8 17.986 
PSAT skill 4 SAT skill 9 44.342 
PSAT skill 4 SAT skill 10 74.312 

 
Table A.9 
KL Divergence betweeen PSAT Skill 5 and Each SAT Skill 

From To KL divergence 
PSAT skill 5 SAT skill 1 44.096 
PSAT skill 5 SAT skill 2 48.358 
PSAT skill 5 SAT skill 3 48.800 
PSAT skill 5 SAT skill 4 65.873 
PSAT skill 5 SAT skill 5 41.134 
PSAT skill 5 SAT skill 6 44.554 
PSAT skill 5 SAT skill 7 40.371 
PSAT skill 5 SAT skill 8 25.491 
PSAT skill 5 SAT skill 9 43.649 
PSAT skill 5 SAT skill 10 83.533 
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Abstract 

Item difficulty plays a crucial role in evaluating item 
quality, test form assembly, and interpretation of 
scores in large-scale assessments. Traditional 
approaches to estimate item difficulty rely on item 
response data collected in field testing, which can be 
time-consuming and costly. To overcome these 
challenges, text-based approaches leveraging machine 
learning and natural language processing, have 
emerged as promising alternatives. This paper reviews 
and synthesizes 37 articles on automated item 
difficulty prediction in large-scale assessments. Each 
study is synthesized in terms of the dataset, difficulty 
parameter, subject domain, item type, number of 
items, training and test data split, input, features, 
model, evaluation criteria, and model performance 
outcomes. Overall, text-based models achieved 
moderate to high predictive performance, highlighting 
the potential of text-based item difficulty modeling to 
enhance the current practices of item quality 
evaluation. 

1 Introduction 

Large-scale assessments are often used to make 
high-stakes decisions such as grade promotion, 
professional certification, or college admission, so 
they must adhere to professional standards for test 
development to ensure validity, reliability, and 
fairness (AERA, APA, & NCME, 2014). The most 
common approach for estimating item difficulty 
has conventionally been conducted through field-
testing, where newly created items are embedded 
in an operational test form. These items are used to 
collect item response data to estimate item 
parameters (e.g., difficulty) using classical test 
theory (CTT) or item response theory (IRT) and 
they are not used for scoring (Benedetto, 2023). 
Despite its ability to yield accurate item difficulty 
estimates, this approach has been criticized for 
being time-consuming and costly (AlKhuzaey et 

al., 2024; Hsu et al., 2018). Another approach for 
estimating item difficulty has been through expert 
ratings, though this is seldom used in developing 
large-scale assessments due to its subjective nature. 

To address these limitations, text-based 
approaches for item difficulty prediction have 
offered a fast, objective, and scalable alternative. 
The timeline of these approaches followed a few 
noticeable trends. In the early stages, the literature 
was dominated by feature-based approaches that 
relied on manually defined variables that are 
hypothesized to influence item difficulty (e.g., 
Loukina et al., 2016; Perkins et al., 1995). Later, 
studies started to include word embeddings, which 
are numeric vectors representing the semantic 
relationships among words (e.g., Hsu et al., 2018). 
With the development of deep learning, 
embeddings were also extracted from deep neural 
networks, considering how words and phrases 
interact within the context of the text (e.g., Xue et 
al., 2020). Most recently, since 2020, transformer-
based models, including small language models 
(SLMs) and large language models (LLMs), have 
been utilized, capturing nuanced semantic and 
contextual relationship (e.g., Li et al., 2025; Tack et 
al., 2024). These models have the potential to 
improve model predictive performance, but it 
comes at the cost of interpretability. 

The goal of the present review is to highlight the 
recent developments in the use of machine learning 
and language-model based approaches for item 
difficulty prediction, with a focus on large-scale 
assessments. Several research questions guide our 
investigation: (1) What text-based methods, 
especially advanced language model-based 
approaches, were applied to predict item difficulty? 
(2) What domains and item types were most 
frequently investigated? (3) Which text-based 
features were most frequently investigated in 
classic machine learning models? (4) Which 
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evaluation criteria were used to assess model 
performance? (5) What was the distribution of 
evaluation outcomes? What does this reveal about 
the typical range and variability in item difficulty 
prediction modeling performance? 

2 Related Work 

The exploration of text-based approaches to model 
item difficulty has been ongoing for decades and a 
few studies have synthesized the research findings 
in a systematic way. Ferrara et al. (2022) conducted 
a domain-specific review that summarized 13 item 
difficulty modeling studies, focusing on high-
stakes reading comprehension exams. This review 
found that statistical models such as ordinary least 
squares regression were utilized in every study and 
only two studies employed natural language 
processing (NLP) techniques. These findings 
highlight the emerging but still limited text-based 
methods for item difficulty estimation. 

More recent reviews included articles that 
employed advanced models, which rapidly 
emerged from the mid-2010s (e.g., AlKhuzaey et 
al., 2024; Benedetto et al., 2023). Benedetto et al. 
(2023) conducted a narrative review of the 
literature and focused on approaches for question 
difficulty estimation from text from 38 studies 
published between 2015-2021. They provided a 
structured taxonomy to organize the approaches 
and analyzed the most effective methods in 
different scenarios. Results showed that, in general, 
simple models leveraging linguistic features 
performed just as well as end-to-end neural 
networks for language assessments; but for other 
subject domains (e.g., math, science) end-to-end 
neural networks, especially transformers led to 
increased performance. Their findings also 
highlighted a shift from readability and word-
complexity features-based classic machine 
learning models to modern deep learning-based, 
NLP approaches. 

AlKhuzaey et al. (2024) conducted a systematic 
review of 55 item difficulty prediction articles that 
placed no constraint on time frame, resulting in 
coverage from the years 1995 to 2022. Compared 
to previous reviews, they extended the scope to 
include an in-depth analysis of the most frequently 
investigated content domains, difficulty 
parameters, model features, models, input, item 
types, evaluation metrics, and the number of 
publications produced over the years. The results 
highlighted that linguistic play a critical role in 

estimating item difficulty, syntactic features are 
frequently captured using NLP tools to count 
textual elements, and with the development of 
neural language models, semantic features were 
increasingly explored. 

Similarly, Luecht (2025) summarized years of 
item difficulty modeling research through 2022. 
The author explains that item difficulty modeling 
has evolved along two pathways: the strong theory 
pathway and the statistical control pathway. The 
strong theory pathway was most prevalent in the 
early years of item difficulty modeling research, 
and it is based on the idea that item design choices 
should be grounded in strong cognitive and 
learning theories. With the rise of machine learning 
and NLP-based text analytics, there has been a 
gradual shift to the statistical control pathway, that 
aims to identify variables that empirically explain 
item difficulty. Under this framework, the primary 
focus is improving model prediction performance, 
rather than aligning with cognitive theory. 

Though AlKuzaey et al. (2024) and Bendetto et 
al. (2023) provided an in-depth summary of 
automated item difficulty prediction methods, they 
share similar limitations. All included articles were 
published no later than 2022 and they did not focus 
on large-scale assessments. Additionally, 
AlKhuzaey et al. (2024) included articles that used 
expert ratings as ground truth difficulty, but this is 
not a valid approach for item difficulty estimation 
in large-scale assessments due to subjectivity and 
inconsistency. 

Given that language model-based approaches 
have vastly developed in the past three years (2023-
2025), an updated synthesis of the literature is 
warranted. Another unique contribution of our 
review is the reporting of model performance 
outcomes, including the distribution of values 
obtained across evaluation metrics. This can act as 
a useful reference for future research by providing 
reference points for evaluating model performance. 

3 Methods 

We conducted a comprehensive literature search 
for articles published through May 2025 across 
multiple databased, including Google, Google 
Scholar, IEEE Xplore, ArXiv, Scopus, Springer, 
and ERIC. Additional searches were performed on 
the websites of the National Council on 
Measurement in Education (NCME) and a relevant 
competition platform (i.e., the NBME Item 
Difficulty Prediction Competition) to locate papers 
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submitted by participants. A Boolean search 
strategy was employed using keyword 
combinations in full text: (item OR question) AND 
difficulty AND (AI prediction OR prediction using 
machine learning OR automatic prediction OR 
modeling). 

After an initial screening based on titles, 93 
articles were identified. Next, 17 articles were 
excluded after reviewing the abstract and keywords 
for relevance, resulting in 76 articles. The full text 
of these articles was screened and 52 articles were 
excluded based on one or more of the following 
reasons: (1) the assessment was not large-scale, (2) 
the study focused on text complexity or readability 
rather than item difficulty, (3) the study did not 
focus on automated prediction based on item text 
(4) the article was a review, or (5) the item 
difficulty parameter was not obtained from item 
responses from human test-takers. A total of 24 
articles remained for in-depth analysis.  

Later, a forward hand-search was conducted to 
ensure that all related articles have been 
comprehensively included. For each included 
eligible article, we found all subsequent articles 
that cited it and conducted another round of 
screening. In this procedure, 19 additional articles 
were found, and after screening following the same 
exclusion criteria listed above, 13 articles were 
included in the review. In total, 37 articles were 
coded and analyzed for this review, consisting of 
conference papers (n = 20), journal articles (n = 7), 
research reports (n = 3), pre-prints (n = 5), and 
master’s or doctoral theses (n = 2).  

Since there could be more than one dataset or 
difficulty parameter analyzed in one paper, we treat 
these as separate studies. Consequently, 46 studies 
resulted from the 37 articles. To differentiate the 
number of articles from the number of studies, we 
used n  for the number of articles and k  for the 
number of studies, hereafter. 

For each study we record the article information 
including title, authors, and publication year; 
dataset name, difficulty parameter, subject domain, 
item type, number of items, train and test dataset 
split, engineered features, models, evaluation 
criteria, and model performance. Descriptive 
analyses were performed, and results were reported 
using count-based aggregation and percentages. 
Model performance outcomes for each evaluation 
criterion with sufficient data across studies were 
summarized using descriptive statistics including 

minimum, maximum, median, mean, and standard 
deviation. 

4 Results 

4.1 Publication Year 

Automated item difficulty prediction has come in 
two waves: one in the mid 1990s, and another 
beginning in the early 2010s. The resurgence is 
likely related to the peak of automated question 
generation research and the rise of computerized 
adaptive testing around 2014 to 2018 (AlKhuzaey 
et al., 2024; Kurdi et al., 2021), since item difficulty 
modeling is essential to evaluate the quality of 
newly created items. Ever since then research on 
this topic has been on the rise, with a large spike in 
2024 due to the Building Educational Applications 
(BEA) shared task on automated item difficulty 
prediction and response time that launched in June 
2024.  

4.2 Item Difficulty Parameter 

When the item difficulty parameter is a continuous 
parameter, item difficulty prediction is framed as a 
regression problem. In contrast, when it is defined 
using categorical levels (e.g., easy, medium, hard), 
it becomes a classification task (e.g., Hsu et al., 
2018). In the context of large-scale exams, it was 
found that most item difficulty studies predicted a 
continuous value, which is consistent with the 
common practice of representing item difficulty in 
terms of either p-values or IRT b-parameters. 
Specifically, the most frequently reported methods 
were IRT b-parameter (k=14, 30.43%), 
transformed p-value (k=11, 23.91%), and 
traditional p-value (k=9, 19.57%). Other 
approaches including categorical difficulty levels 
(k=5, 10.87%), error rate (k=4, 8.70%), and Delta 
(k=3, 6.52%), were less common. 

4.3 Subject Domain 

Test subject domains included language 
proficiency (k = 23, 50.00%), medicine (k = 15, 
32.61%), math (k = 4, 8.70%), science (k = 2, 
4.35%), analytical reasoning (k = 1, 2.17%), and 
social studies (k = 1, 2.17%). Language proficiency 
and medicine dominate the literature likely due to 
that the high volume of large-scale exams in these 
domains made the data publicly available. 
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4.4 Item Type 

Counting each item type once per study, a total of 
60 item types were identified across the reviewed 
materials because several articles examined 
multiple item types within the same study. Multiple 
choice (MC) items accounted for the largest share, 
appearing 38 times (63.33%), followed by fill-in-
the-blank reported eight times (13.33%), 
constructed-response items reported four times 
(6.67%), and matching items reported twice 
(3.33%). Each of the following item types were 
only reported once: complete-the-forms, notes, 
table, flowchart, or summary, complete-the-table, 
label the diagram, plan, or map, true/false, 
classifying, and sorting (3.33% each). 

4.5 Number of Items 

There was a wide range (348 to 106,210) in the 
number of items that were used across studies, 
showing great variability in dataset size. Most 
studies (k=17) used datasets between 500 and 
2,000 items, largely because 11 studies used the 
data from the BEA shared task with 667 items. 
Only two studies used a very large dataset with 
more than 30,000 items (i.e., RACE++ (106,210) 
used in Benedetto, 2023; IFLYTEK (30,817) used 
in Huang et al., 2017)1. 

4.6 Training and Test Dataset Split 

To develop different models for item difficulty 
prediction, a dataset is often divided into training, 
validation, and test datasets. The training set is used 
to learn patterns and relationships in the data, 
validation is used to fine-tune the model, and test is 
used to evaluate model performance on unseen 
data. Not all studies reported the percentage of data 
used for validation, so for consistency, training and 
validation percentages were combined for studies 
with three splits. We also note that several studies 
experimented with multiple train and test dataset 
splits (Benedetto, 2023; Bulut et al., 2024; Huang 
et al., 2017). 
     A wide variety of train/test data splits were 
observed. Reported as percentages they include: 
40/60, 50/50, 60/40, 70/30, 75/25, 80/20, 83/17, 
84/16, 85/15, 90/10, 93/7, and 95/5. The most 
common dataset split was 70% for training and 
30% for testing, reported 14 times (28.00%), 

 
1 RACE++ is a large-scale reading comprehension dataset; 
IFLYTEK refers to a language dataset from iFlytek, a 
Chinese technology company. 

followed by 80/20 reported six times (12.00%), and 
50/50, 90/10, and 95/5 reported three times each 
(6.00%, each). The remaining train and test data 
split combinations only appeared in two studies or 
less, and nine studies (18.00%) did not report this 
information. 

4.7 Input 

The input used to train the model refers exclusively 
to the original, unprocessed components of the item 
(i.e., item stem (lead-in and/or questions), correct 
answer, distractors, figures or reading passages 
when applicable). Again, some studies 
experimented with multiple combinations, and 
each was counted once per study, for a total count 
of 62. The most common combination of item 
components used as input was item stem, correct 
answer, and options, reported 19 times (30.65%) 
followed by item stem only reported nine times 
(14.52%), and item stem and correct answer 
reported six times (9.68%).  
     Some articles from the language proficiency 
tests included reading passages in the input; item 
stem, reading passage, correct answer and options 
was reported nine times (14.52%), and item stem 
and reading passage was reported seven times 
(11.29%). In general, utilizing all item components 
appears to be the most frequently used input text 
source for item difficulty modeling in the reviewed 
studies. 

4.8 Features 

A total count of 131 feature groups were found in 
46 studies, which are generally categorized as 
hand-crafted features or embeddings. This can be 
further classified into five broad categories: hand-
crafted linguistic features, features related to item 
metadata, LLM generated features, static 
embeddings, and contextualized embeddings. 

The first category of hand-crafted features are 
linguistic features (79 counts, 60.31%), and they 
consist of lexical features (e.g., number of words, 
length of words), syntactic features (e.g., sentence 
count, use of conjunctions), morphological features 
(e.g., word stems, lemmas), semantic features (e.g., 
semantic similarity between item stem and 
options), readability indices (e.g., Flesch Reading 
Ease, Gunning FOG Index), and content specific 
features (e.g., number of text-based numerical 
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values for math). The second set of hand-crafted 
features include item metadata features (21 counts, 
16.03%) including cognitive complexity, content 
standards, expert ratings, and item characteristics 
(e.g., number of choices for MC items). The third 
type of hand-crafted features are reasoning and 
thinking level features generated from LLMs (5 
counts, 3.82%). Some examples of this type 
include first-token probability, choice-order 
sensitivity, and justification length.  

As for embedding features, there are two 
categories: static embeddings and contextualized 
embeddings. Static embeddings (8 counts, 6.11%) 
include count-based model embeddings (e.g., 
Glove), and predictive model embeddings (e.g., 
word2vec). Contextual embeddings (18 counts, 
13.74%) include deep learning-based embeddings 
(e.g., ELMo), word-level SLM embeddings (e.g., 
BERT-base, DistilBERT, MPNet), sentence-level 
SLM embeddings from sentence-BERT and 
Longformer, and embeddings extracted from 
LLMs. 

4.9 Models 

Among all reviewed studies, a total of 61 models 
have been explored 160 times, as it was common 
for studies to compare multiple models. The 
models were classified into three categories: 
classical machine learning models (94 counts, 
58.75%), neural network based deep learning 
models (20 counts, 12.50%), and transformer-
based language models (46 counts, 28.75%). 
Among the transformer models, 39 counts 
(84.78%) were SLMs and 7 (15.22%) were LLMs. 
For a full list of models included in the review see 
Appendix A. 

Classical machine learning models typically rely 
on engineered features and are built on either 
statistical assumptions or algorithmic decision 
rules. They can be further classified as follows: 
linear and penalized regression models, decision 
tree-based models, probabilistic models, ensemble 
learning methods, kernel and distance-based 
models, and simple neural network-based models.  

Neural network-based deep learning models use 
multiple layers that mimic the functioning of 
human neurons to learn complex, non-linear 
representations from data. In this review, we define 
this category as including only neural network 
models with more than one hidden layer and that 
are not based on attention mechanisms. These 
models consisted of basic neural network 

architectures, convolutional neural networks, bi-
directional long short-term memory, and 
embeddings from language models (ELMo). 

Transformer-based language models represent a 
specialized subset of deep learning in which the 
transformer architecture, characterized by self-
attention mechanisms, is employed. The self-
attention mechanism contextualizes each word in 
the text by considering its relationship with all 
other words, regardless of position or distance. This 
category contains both SLMs and LLMs, where we 
defined SLM as language models containing less 
than 1 billion parameters. SLMs consisted of BERT 
and its variants, long-sequence transformers, T5, 
and GPT-2. LLMs consisted of the models in the 
families of GPT, Llama, Mistral-7B, Gemma-7B, 
Qwen-2, Yi-34b, and Phi3, though Claude and 
Gemini families could be utilized as well. 

We note several trends about the use of models 
through the years. Classical machine learning 
techniques have retained momentum due to their 
transparency, interpretability, efficiency, and 
robustness with small sample sizes. Neural 
network based deep learning models have been 
intermittently used beginning in 1995 and gaining 
moderate traction in 2019 to 2020. During this 
time, the use of neural-network-based deep 
learning models was approximately equal to the 
use of classical machine learning models. 
However, there has been a decline in the use of 
neural network based deep learning models that 
coincides with the rise of transformer-based 
models around 2020. Since then, classical machine 
learning models are still used, while transformer-
based models have been used for both predicting 
item difficulty and generating embeddings as 
features. 

4.10 Evaluation Criteria 

Model performance was assessed using 23 unique 
evaluation criteria and their application depended 
on whether item difficulty prediction was a 
regression or classification task. In this review 43 
studies were regression tasks and 3 were 
classification tasks. With regards to the regression 
tasks, the most common evaluation criteria were 
root mean square error (RMSE) (k=28, 31.82%), 
Pearson product moment correlation (k=17, 
19.32%), and 𝑅! (k=13, 14.77%), mean absolute 
error (k=8, 9.09%), and mean square error (k=5, 
5.68%). For classification tasks, exact accuracy 
was used for each study (k=3, 37.50%), and 
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adjacent accuracy was used when there were more 
than three difficulty levels (k=2, 25.00%). F1-
score, recall, and precision were used once 
(12.50% each). 

4.11 Model Performance 

Appendix B presents a table that summarizes the 
best-performing value for each evaluation criteria 
used in the reviewed studies. Evaluation criteria 
that were used twice were summarized with the 
minimum and maximum values. It is important to 
note that although the table summarizes the 
outcomes from most commonly used evaluation 
criteria, values are not directly comparable across 
studies due to different subject domains and item 
difficulty parameters without a common scale. 
Instead, it should be used to provide a sense of what 
constitutes a “typical result” based on the range and 
distribution of values obtained in the literature. 
     For the most commonly used evaluation metric 
in regression tasks, RMSE, the summary was made 
for p-value, transformed p-value, and Rasch model 
b-parameter. The RMSE for studies using p-value 
ranged from 0.165 to 0.268 (N=6, M=0.216, 
SD=0.035), while RMSE for studies using 
transformed p-values ranged from 0.253 to 0.308 
(N=10, M=0.291, SD=0.018). RMSE for studies 
using the Rasch model b parameter ranged from 
0.354 to 1.295 (N=8, M = 0.740, SD = 0.297). The 
RMSE based on other difficulty parameters (i.e., 
3PL, Delta, categorical levels), only contained one 
value for each, therefore a meaningful summary 
could not be produced.  
     The pattern persisted for other regression 
evaluation metrics. The Pearson correlation ranged 
from 0.040 to 0.870 (N=17, M=0.545, SD=0.225). 
𝑅!  values ranged from 0.208 to 0.788 (N=13, 
M=0.478, SD=0.200). 
     Similarly, the range for classification evaluation 
metrics also varied greatly across studies. Exact 
accuracy ranges from 0.325 to 0.806 (N=3, 
M=0.567, SD=0.241). However, the moderate to 
very high adjacent accuracy values (N = 2, 0.65 and 
0.982) indicate that even when the model’s 
prediction is not exactly correct, it is close, often 
just one category away from the true difficulty 
level. 

5 Discussion 

The aim of this review was to highlight and 
summarize trends in text-based item difficulty 
prediction research in the large-scale assessment 

setting, with a focus on advanced machine learning 
and language model-based approaches. A total of 
46 studies from 37 articles were synthesized and 
results showed high potential for automated 
prediction of item difficulty parameters. 
     Our review makes several contributions to 
large-scale educational assessments. We provide 
large-scale educational assessment programs with 
foundational information that can be used to guide 
the implementation of automated approaches for 
item difficulty in the test development process. We 
provide practical insights into the optimal input and 
prompting strategies such as including all item 
components in the input and using a larger portion 
of the data for training leads to increased model 
performance. Our review can also be used as 
guidance for model and feature selection, outlining 
critical considerations for methodological choices. 
Overall, automated item difficulty modeling can be 
used to reduce the time and cost of traditional field 
testing to evaluate item quality. 
     Additionally, this review presents major 
contributions to the field of machine learning. 
Unlike previous reviews that have only synthesized 
the literature through 2022, the present review 
captures the significant growth of research in the 
past three years, as well as how methodological 
approaches have evolved since the 1990s. Another 
unique contribution of our review is the numerical 
distribution of model performance outcomes across 
all studies. The distribution of outcomes acts as a 
reference point that future researchers can use to set 
realistic expectations and to contextualize their 
model performance results. 
     Nonetheless, our review has a few limitations 
including the potential bias due to the 
overrepresentation of papers from the BEA shared 
task, lack of diversity in certain aspects of the 
datasets (e.g., item type, content domain), 
unexplained variability in model performance, and 
limited reporting of observed range of the IRT b-
parameter. The latter complicates interpretation of 
scale-dependent evaluation metrics that were 
summarized in the model performance section. 
Future studies should prioritize dataset diversity, 
transparent reporting of methodology, and 
approaches that balance interpretability with the 
capabilities of state-of-the-art language models. 
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Appendix A. List of Models Included in the Review. 
Classical Machine Learning Models: 

1. Linear and Penalized Regression Models: Ordinary Least Square Regression, Principal Components  
Regression, Partial Least Squares Regression, Elastic Net Regression, Lasso Regression,  
Ridge Regression/Ridge (L2) Penalized Regression, Linear Logistic Test Model (LLTM) 

2. Decision Tree-Based Models: Classification and Regression Trees (CART), Classification Trees,  
Decision Tree Regression, Extra Trees, Random Forest, Regression Trees 

3. Probabilistic Models: Naive Bayes Classifier, Gaussian Processes, Probabilistic language model 
4. Ensemble Learning Models: AdaBoost, Cat-Boost, Gradient Boosting, Gradient Boosting Decision  

Trees, Light Gradient Boosting Machine, XGBoost, XGBoost-based SHAP Model 
5. Kernel and Distance-Based Models: k-Nearest Neighbors, Support Vector Machines 
6. Simple Neural Network Based Models: Adaptive Neuro-Fuzzy Inference System (ANFIS),  

One Neuron Network (with no hidden layer), Three-Layer Backpropagation Neural  
Network (with only one hidden layer) 
 
 

Neural Network Based Deep Learning Models: 
1. Basic Neural Network Architectures: Artificial Neural Network (ANN), Multilayer-Perceptron 

 (MLP), Dense Neural Network 
2. Convolutional Neural Networks (CNNs) and Variants: Convolutional Neural Network (CNN),  

Attention-based CNN (ACNN), Hierarchical Attention-Based CNN (HBCNN), Multi-Scale  
Attention CNN (MACNN), Temporal CNN (TCNN), Temporal Attention CNN (TACNN). 

3. Bidirectional Long Short-Term Memory (Bi-LSTM) 
 
Transformer-Based Language Models 
Small Language Models: 

1. BERT and its Variants: BERT, BERT-ClinicalQA, Clinical-BERT, BioClinicalBERT,  
Bio_ClinicalBERT_emrqa, Bio_ClinicalBERT_FTMT, Clinical-BigBird, BioMedBERT,  
PubMedBERT, DistilBERT, ConvBERT, DeBERTa, RoBERTa, Electra, BioMedElectra 

2. Long-Sequence Transformers: Longformer, Clinical-Longformer, Longformer-Base-4096, BigBird 
3. GPT-2 
4. T5 

Large Language Models: 
1. GPT Family: GPT-4, GPT-4o 
2. Llama-7B 
3. Mistral-7B 
4. Gemma-7B 
5. Phi 3
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Appendix B. Model Performance Summary. 

Evaluation Criterion Count Min Max Median Mean SD 
Regression Tasks       
RMSE       
     Based on p-value 6 .165 .268 .214 .216 .035 
     Based on transformed p-value 10 .253 .308 .297 .291 .018 
     Based on Rasch model 8 .354 1.295 .693 .740 .297 
MSE 5 .013 .521 .064 .203 .227 
MAE 7 .185 .58 .240 .307 .159 
Correlation       
     Pearson 17 .04 .87 .550 .545 .225 
     Spearman 4 .25 .790 .496 .508 .221 
R-Squared 13 .208 .788 .525 .478 .200 
Match 2 .757 .780 - - - 
Classification Tasks       
Accuracy       
     Exact 3 .325 .806 .569 .567 .241 
     Adjacent 2 .65 .982 - - - 
Note. For studies that reported multiple models or evaluation criteria, only the best-performing value 
for each evaluation criterion was included. Only evaluation criteria that provided enough information 
(k ≥ 2) for meaningful analysis were included. We also note that we report the same number of 
decimals that were presented in the articles. 
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Abstract

This study investigates methods for item dif-
ficulty modeling in large-scale assessments
using both small and large language models.
We introduce novel data augmentation strate-
gies, including on-the-fly augmentation and
distribution balancing, that surpass benchmark
performances, demonstrating their effective-
ness in mitigating data imbalance and improv-
ing model performance. Our results showed
that fine-tuned small language models such
as BERT and RoBERTa yielded lower root
mean squared error than the first-place win-
ning model in the BEA 2024 Shared Task com-
petition, whereas domain-specific models like
BioClinicalBERT and PubMedBERT did not
provide significant improvements due to distri-
butional gaps. Majority voting among small
language models enhanced prediction accu-
racy, reinforcing the benefits of ensemble learn-
ing. Large language models (LLMs), such as
GPT-4, exhibited strong generalization capa-
bilities but struggled with item difficulty pre-
diction, likely due to limited training data and
the absence of explicit difficulty-related con-
text. Chain-of-thought prompting and rationale
generation approaches were explored but did
not yield substantial improvements, suggesting
that additional training data or more sophisti-
cated reasoning techniques may be necessary.
Embedding-based methods, particularly using
NV-Embed-v2, showed promise but did not out-
perform our best augmentation strategies, indi-
cating that capturing nuanced difficulty-related
features remains a challenge.

1 Introduction

Standardized tests rely on a detailed analysis of
item attributes to ensure psychometric quality of
items and test forms. A key attribute is the dif-
ficulty level of each item, which is related to the
likelihood that an examinee will answer an item
correctly. By producing items across a wide diffi-
culty spectrum, it is expected the same measure-

ment precision can be achieved at different ability
levels. Moreover, while items that are more chal-
lenging typically result in longer response times,
the duration of responses can also shed light on
examinees’ engagement and cognitive strategies,
thereby enhancing the validity of the test outcomes.
In addition, having a comprehensive understanding
of item characteristics is critical for implementing
advanced testing methods such as automated item
generation, automated item selection in test form
assembly, computerized adaptive testing, and in-
dividualized assessments (Baylari and Montazer,
2009; Wauters et al., 2012; Kubiszyn and Borich,
2024)

Typically, estimation of item difficulty and the
response time required to answer items are derived
from item response data gathered during field test-
ing. However, field testing demands a large sample
of examinees, which in turn drives up test adminis-
tration costs (Bejar, 1983; Impara and Plake, 1998).
As a result, researchers have explored alternative
methods to predict item characteristics without re-
sorting to actual test administration. One strategy
involves soliciting difficulty estimates from domain
experts and professionals involved in test develop-
ment, yet this method has not consistently yielded
reliable or satisfactory results (Wauters et al., 2012;
Attali et al., 2014).

Another research avenue focuses on predicting
item attributes based solely on the textual content
of the items, including source passages, item stems,
and response options (Hsu et al., 2018; Yaneva
et al., 2019). This approach leverages text-mining
techniques to extract both superficial features (e.g.,
word counts) and more complex features (e.g., se-
mantic similarities between sentences), which are
then used in sophisticated statistical models for pre-
diction. In our study, we employed cutting-edge
language models (LMs) for the development of
predictive models aimed at estimating these item
characteristics. This paper provides a comprehen-
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Figure 1: The Item Difficulty Distributions of USMLE
Steps 1, 2, and 3 Training Datasets.

sive account of the methodologies implemented
and the results obtained from our best-performing
models for predicting item difficulty demonstrated
using an empirical dataset.

2 Methods

2.1 Datasets

Building on this line of research, this study used
data from the National Board of Medical Exam-
iners (NBME) initiated BEA 2024 Shared Task 1

to automate the prediction of item difficulty and
response time. The released dataset included 667
items that were previously used and have since
been retired from the United States Medical Li-
censing Examination® (USMLE®)—a series of
high-stakes exams 2 that inform medical licensure
decisions in the United States. These items, drawn
from USMLE Steps 1, 2 Clinical Knowledge (CK),
and 3, span a diverse range of topics relevant to
medical practice. During the BEA 2024 Shared
Task, participating research teams were challenged
to leverage NLP techniques using 466 items to de-
velop models to predict item difficulty.

Subsequently, the models developed from the
initial phase were applied to a second dataset con-
taining 201 items. This testing set shared the same
structural characteristics as the first, except that
the values for item difficulty and response time
were initially concealed. These values were dis-
closed only after the BEA 2024 submission dead-
line, thereby facilitating a fair evaluation of the
model’s performance in predicting outcomes.

1https://sig-edu.org/sharedtask/2024
2https://www.usmle.org/step-exams

Figure 1 presents the item difficulty distribu-
tions for Steps 1, 2, and 3 USMLE in the train-
ing data. The larger values indicate more difficult
items. The item difficulty for each Step exam is
not evenly distributed. The data imbalance issue
is severely critical for this task as the majority of
the data lies in the low-difficult range, and only a
small number of items is difficult items. This data
sparsity in some item difficulty ranges may cause
non-representation issues when the item difficulty
modeling is developed.

2.2 Models and Methods for Item Difficulty
Prediction

This study explored a variety of different methods
ranging (i) from small language models (SLM)
to large language models (LLMs); (ii) from
embedding-based methods to auto-regressive meth-
ods; and (iii) from finetune-based methods to
inference-only methods. In addition, LLMs with
different fine-tuning and prompting techniques
were explored. These explorations thoroughly cov-
ered the most widely accepted methods off the
shelf, which can serve as detailed guidance for
future endeavors to other datasets.

2.2.1 SLMs: BERT and its Variants
This study started experimentation with directly
fine-tuning small language models for difficulty
prediction. We treat this task as a regression task
that directly predicts the difficulty value for each
item. The models incorporated are mostly encoder-
only language models but also some models with
encoder-decoder structures, including BERT (De-
vlin et al., 2018), RoBERTa (Liu et al., 2019),
DistillBERT (Sanh et al., 2020),deBERTa (He
et al., 2021),ELECTRA (Clark et al., 2020), Con-
vBERT (Jiang et al., 2020), T5 (Raffel et al., 2023),
BioClinicalBERT (Alsentzer et al., 2019), and Pub-
MedBERT (Gu et al., 2021). These models intend
to set the baseline for comparison. Further, data
augmentation was implemented to enhance the pre-
diction accuracy.

2.2.2 Ensemble of SLMs with Majority Voting
Usually, ensemble models are expected to perform
better than single-base models. Thus, we explored
a commonly used majority voting method to gener-
ate more robust results from single SLMs. For the
regression task, we used majority voting, which is
the average predicted value from different models
that participate in the voting process. Compared
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with single-model predictions, majority voting is
expected to be more robust since the training pro-
cess is always affected by randomness, and the
voting may alleviate the effects of randomness.

2.2.3 SLMs with Data Augmentation
The NLPAug (Ma, 2019) package is utilized for
implementing data augmentation. Two types of
data augmentation strategies were explored in this
study. The two types of data augmentation strate-
gies include: (i) Augmentation on the fly, and (ii)
Augmentation with distribution balancing.
Augmentation-on-the-Fly

In this strategy, we randomly augment original
training samples every time it is sent to the model
for training. Under this circumstance, all the sam-
ples seen by the model are a random augmented
version of the original sample, which means the
model will not see any identical samples during the
epochs of training. This strategy is mostly widely
used in the machine learning community as it pre-
vents the model from overfitting to the samples.
Augmentation with Distribution Balancing

This strategy is more complicated as it is spe-
cially designed for this task. As shown in Figure
1, the data imbalance issue is severely critical for
this task. The majority of the data lies in the low-
difficult range, and only a small set of data has high
difficulties, e.g., above 0.8. Thus, this imbalance
issue causes most of the methods to fail for the
prediction, even for our Augmentation-on-the-Fly
strategy, as it does not change the frequencies of
each sample trained by the model.

Thus, to deal with this issue, we were motivated
to balance the sample sizes across the whole dis-
tribution, i.e., generate more data for the difficulty
levels with lower density and fix them during train-
ing. As a regression task, it is naturally difficult
to make the data more balanced as they are not
as discrete as classification tasks. So, in order to
solve it, we first separate all the data samples into
20 bins by fixed intervals and then merge the ad-
jacent bins such that there are at least 2 samples
in each bin. This preliminary process converts the
consecutive values into discrete bins. Then, we
randomly sample 1 instance from each bin to form
the validation set. The remaining instances form
the training set. This separation ensures that the
validation set is balanced enough for fair evaluation.
In the remaining bins of the training set, we then
randomly augment the existing training samples
into a predefined count, i.e., 8 in our experiment.

Under this circumstance, the sample counts across
all the bins, i.e., the whole distribution, become
largely balanced. Then, during training, we fix
these samples and do not do augmentation during
training. This strategy largely alleviates the dis-
tribution imbalance issue and prevents the model
from overfitting to high-frequent samples.
Ensemble of Two Data Augmentation Strategies

Both strategies have their own merits. Thus,
we further implement an ensemble strategy. For
each given instance, each of the above two mod-
els generates its own prediction, and then these
two predicted values are averaged to simulate the
ensemble of the two strategies.

2.2.4 SLMs with LLM Rationales
The training dataset contains only the questions, op-
tions, and answers; however, the goal of this study
is to predict the difficulties of these items. Thus,
there exists a critical gap between the input (item
text) and the target (item difficulty). If the input
does not contain any information regarding the dif-
ficulty, obviously, it will be difficult for SLMs to
predict the item’s difficulties.

Given the strong reasoning capabilities of LLMs
and the potential insights that the chain-of-thought
(CoT) prompting technique may provide in reason-
ing, we hypothesize that incorporating additional
rationales that specifically analyze the difficulty of
the given items will benefit SLMs in capturing the
representative key features in item difficulty mod-
eling. Thus, motivated by the success of CoT (Wei
et al., 2023), we employed GPT-4 (OpenAI et al.,
2024) to generate a detailed analysis of the item dif-
ficulties of different instances, which we refer to as
rationales. Then, we concatenate these rationales
with the original item text for training the SLMs.
The SLMs experimented with are BERT, T5, and
Longformer (Beltagy et al., 2020).

2.2.5 BERT with Step-Wise Data
Augmentation

Another critical issue of the existing training
dataset is its imbalanced nature across exams in
the three steps. As shown in Figure 1, the number
of step 1 exam items is larger than that for the step
2 and step 3 exam items. To solve this issue, a step-
wise data augmentation strategy was implemented
using the Python package: NLPAug(Ma, 2019) to
augment data in steps 2 and 3 exams for training
the BERT model as it was the best-performing base
model. Thus, the proposed step-wise data augmen-
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tation strategy yielded more augmented data points
for step 2 and step 3 exams, while fewer augmented
data points for step 1 exam. Further, this step-wise
data augmentation method was applied to augment
data for the BERT model augmented with the LLM
rationales already.

2.2.6 LLMs Finetuning and In-context
Learning

All the above methods are based on small language
models. In addition, we explored how LLMs per-
formed on this task. Finetuning on LLMs is typ-
ically the most commonly used technique when
we need LLMs to handle a new task. However,
most of the modern LLMs follow the decoder-
only structure, which predicts each token in an
auto-regressive manner. The modern decoder-only
LLMs are more capable of text generation rather
than regression tasks, especially when the task is
not previously learned during the pretraining phase.

The first category of method we explored was
the finetune-based method. Since we only have
hundreds of training samples, which is typically
not enough for LLMs, we select Phi3 (Abdin
et al., 2024) as our base LLM and utilize the full
finetuning and LoRA finetuning strategies (Hu
et al., 2021). In addition, In-context Learning
(ICL) (Brown et al., 2020) is another widely used
method for LLM prediction. ICL is less affected
by the sparsity of the training data. Thus, we also
explored using ICL. One of the biggest advantages
of ICL is that it does not require training, thus, it
can be used in any LLM, even for closed-source
LLMs like GPT-4.

2.2.7 LLMs Embeddings
Previous explorations on LLMs employed the
auto-regressive manner of decoder-only structures,
which might not be able to well capture the distri-
bution from training data. Typically, embeddings
are more effective for regression tasks. Thus, we
further explored using LLM embeddings for the
prediction, specifically, we utilized the most cur-
rent state-of-the-art embedding model NV-Embed-
v2 (Lee et al., 2024) as the encoder for item dif-
ficulty modeling. Further, we trained several ad-
ditional layers for the difficulty prediction. We
also explored combining the benefits of the auto-
regressive manner and the benefits of the embed-
ding method together by first generating rationales
that specifically analyze the difficulty of the given
items, then the SOTA embedding LLMs are utilized

to capture the overall distribution of the training
data.

2.3 Evaluation of Model Performances

This study used the root mean squared error
(RMSE) to evaluate the model performance. This is
the evaluation criterion used in the competition. To
use the results from the competition as a reference
to evaluate the performance of the models and the
methods we proposed in this study, we computed
RMSE for each model and method explored.

3 Results

3.1 SLMs: BERT, Its Variants, and the
Ensemble Models

The performance of the fine-tuned SLMs and the
ensemble models is summarized in Table 1. As
noted, BERT and Roberta have the top perfor-
mances, with BERT yielding the smallest RMSE.
Contrary to our expectation, utilizing BERT trained
with medical-related data (BioClinicalBERT and
PubMedBert) does not show an evident improve-
ment in model performance in predicting item dif-
ficulty, which might be caused by the class imbal-
ance in the potential distribution gaps. These two
models might have a better general understanding
of medical-related knowledge, but this knowledge
still has a gap in understanding and reasoning item
difficulty, which is a basic concept in the psycho-
metric analysis of test items.

The ensembled BERT with a Majority Voting
strategy (with RMSE of 0.2981) also exceeds the
first place on the leaderboard, showing the effective-
ness of this strategy. However, BioClinicalBERT
and PubMedBert do not benefit from the ensemble
strategy. It is reasonable that the performances of
these models are originally not good, and voting
by multiple not high-performing models may not
necessarily further increase the performance.

3.2 SLMs with Data Augmentation

Our best-performing model is BERT with an en-
semble of two types of data augmentation strategies.
Both data augmentation strategies (Augmentation-
on-the-fly and Augmentation with distribution bal-
ancing result in excellent performances that ex-
ceeded the first place (RMSE: 0.299) on the leader-
board. Augmentation-on-the-fly yielded RMSE of
0.2975 while augmentation with distribution bal-
ancing yields 0.2985 of RMSE, which also exceeds
the first place on the leaderboard. Further, the en-
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Table 1: Performances for Fine-Tuned SLMs: BERT
and its Variants and SLMs with Majority Voting

Model RMSE

BERT 0.2990
RoBERTa 0.2997
DistilBERT 0.3022
DeBERTa 0.3060
ELECTRA 0.3026
ConvBERT 0.3015
T5 0.3023
BioClinicalBERT 0.3043
PubMedBert 0.3067
BERT (Majority Voting) 0.2981
BioClinicalBERT (Majority Voting) 0.3052
PubMedBert (Majority Voting) 0.3086

Table 2: Performance of the BERT Models with Differ-
ent Data Augmentation Strategies and the Top Perform-
ing Models in the Leaderboard.

Rank Studied Methods/Team Name RMSE

Ours Ensemble of Two Strategies 0.2926
Ours Augmentation-on-the-Fly 0.2975
Ours Augmentation with Balancing 0.2985

1 electra 0.299
2 UPN-ICC (run1) 0.303
3 Roberta 0.304
4 RandomForest 0.305
5 ENSEMBLE 0.305
6 Predictions 0.305
7 FEAT 0.305
8 ROBERTA 0.306

semble of these two strategies further leads to an
extraordinary performance of 0.2926 in terms of
RMSE, which also exceeds the first place on the
leaderboard by a really large margin. The perfor-
mances are further compared in Table 2.

3.3 SLMs with LLM rationales

We used GPT-4 to generate detailed rationales for
the difficulties of the items. We concatenated the
generated rationales with the original item text for
training BERT, T5, and Longformer. The model
performances are summarized in Table 3. The mod-
els did not perform as effectively as expected. This
might be related to the sparsity of the training data
in each step exam. When the sample size of the
training data is relatively small for each step exam,

Table 3: Performances for SLMs with LLM Rationales

Model RMSE

BERT + GPT4 rationales 0.3029
T5 + GPT4 rationales 0.3047
Longformer + GPT4 rationales 0.3050

Table 4: Performances for SLMs with Step-wise Data
Augmentation

Model RMSE

BERT + Step 0.3009
BERT + GPT4 rationales + Step 0.3000

even the generated rationales may not be able to
capture the key item characteristics that distinguish
them in terms of item difficulty, though the sample
size for each step exam has been increased.

3.4 BERT with Step-Wise Data Augmentation

With the step-wise data augmentation strategy,
more synthetic data points were generated to in-
crease more item samples for step 2 and step 3
exams, while slightly more items for the step 1
exam. Step-wise data augmentation was applied to
both the BERT model and the BERT model with
rationals as data augmentation. The performances
of these two models are presented in Table 4. The
step-wise data augmentation did not improve the
performances of the BERT model, and the BERT
model with rationales as augmented data was not
better than the first-place model on the leaderboard,
both with a slightly larger RMSE of 0.3. This find-
ing indicated that the class imbalance issue in item
difficulty distribution is more severe than the class
imbalance across the exams in different steps.

3.5 LLMs Finetuning and In-context
Learning

We fine-tuned Phi3 as our base LLM and utilized
the full finetuning and LoRA finetuning methods.
Although the LoRA finetuning method is typically
useful for low-resource situations, the tremendous
distribution gap between the LLM itself and the
learning target causes the LLM to hardly learn any-
thing. On the other hand, when utilizing full fine-
tuning, the LLM is able to partially learn the distri-
bution of the learning target and thus predict item
difficulty in the testing dataset with a reasonable
value. However, the sparsity of the training samples
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Table 5: Performances for LLMs In-context Learning.

Model RMSE

Phi3 with full finetuning 0.3816
Phi3 with Lora finetuning 0.7632
GPT4 0.3556
GPT4 (ICL) 0.3553

Table 6: Performances for LLMs Embeddings

Model RMSE

NV-Embed-v2 0.3065
NV-Embed-v2 + GPT4 rationales 0.3023

largely affects its performance, yielding an RMSE
of 0.3816, the worst among the models explored in
this study except Phi3 with Lora finetuning.

The performances of GPT-4 for item difficulty
prediction, with or without using ICL are presented
in Table 5. The performances for GPT-4 and GPT-4
with ICL were both worse than the first place on the
leaderboard with RMSE larger than 0.355. These
results not only show that ICL is not effective on
this task but also indicate the difficulty of this task,
even the powerful GPT-4 can not yield promising
performance.

3.6 LLM Embeddings
As embeddings are effective for regression tasks,
we utilized the embedding model NV-Embed-v2 as
the encoder and trained several additional layers for
the difficulty prediction. Further, NV-Embed-v2
was enhanced by the rationales generated by GPT-
4. The model performances are summarized in
Table 6. The performances of these two approaches
did not beat the first place in the leaderboard with
RMSE larger than 0.302. Again, this indicates the
difficulty of this task due to the small sample size
of training data and the class imbalance issue when
item difficulty is represented on a continuous scale.

4 Discussion and Conclusion

In this study, we explored different language mod-
els as well as different data augmentation methods
for item difficulty modeling for large-scale stan-
dardized assessments, leveraging both SLMs and
LLMs. Our results demonstrated that the applica-
tion of data augmentation techniques, particularly
our proposed method combining both on-the-fly
data augmentation and distribution balancing data
augmentation, achieved a slightly lower RMSE of

0.2926. This performance surpasses the first-place
winning model in the BEA 2024 Shared Task com-
petition leaderboard (RMSE = 0.299), indicating
that our ensemble approach slightly outperforms all
other reported models on the leaderboard for this
dataset. This finding highlights the effectiveness
of data augmentation in improving model perfor-
mance and mitigating the challenges posed by data
imbalance sparsity in some regions of the item dif-
ficulty scale.

Our comparative analysis of different mod-
eling approaches revealed several key insights.
Firstly, while fine-tuning SLMs such as BERT and
RoBERTa yielded smaller RMSE, the introduc-
tion of domain-specific models such as BioClin-
icalBERT and PubMedBERT did not significantly
improve model performance, likely due to distribu-
tional gaps between medical literature and test item
difficulty prediction. Moreover, majority voting
among multiple models provided additional robust-
ness, further confirming the benefits of ensemble
learning techniques in regression tasks.

The integration of LLMs introduced additional
challenges. While models such as GPT-4 exhib-
ited strong generalization capabilities in other NLP
tasks, their performance in item difficulty predic-
tion was limited. This outcome suggests that the
scarcity of training data and the absence of explicit
difficulty-related context in the input might hin-
der the effectiveness of LLMs in this task. Our
attempts to bridge this gap using chain-of-thought
prompting and rationale generation did not yield
substantial improvements, likely due to insufficient
training data to fully capture the key item character-
istics along the item difficulty scale and ultimately
exploit the advantages of LLM-based reasoning.

Note that even though the difference between the
RMSE of our best-performing model, an ensem-
ble of BERT models with two data augmentation
strategies, and that of the first-place model in the
competition was only 0.0064, the impact of such a
difference might be meaningful for high-stakes test-
ing programs. In large-scale standardized assess-
ments for high-stakes decisions like the USMLE,
small numerical improvements in predictive met-
rics such as RMSE may translate into practically
meaningful impacts. More accurate item difficulty
predictions may lead to improved item selection,
test assembly, and better-informed decisions about
examinees. Future studies may explore the impact
of such slight improvement in item difficulty pre-
diction on improvements at the overall test level.
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Abstract 

In hybrid scoring systems, confidence 
thresholds determine which responses 
receive human review. This study 
evaluates a relative (within-batch) 
thresholding method against an absolute 
benchmark across ten items. Results show 
near-perfect agreement and modest 
distributional differences, supporting the 
relative method’s validity as a scalable, 
operationally viable approach for flagging 
low-confidence responses. 

1 Introduction 

In large-scale summative assessment programs, 
hybrid scoring systems that combine automated 
engines with human raters are commonly used to 
balance efficiency and accuracy. To preserve 
human scoring resources while maintaining 
scoring validity, these systems often rely on a 
measure of model confidence to identify which 
responses should be routed to human reviewers. 
For example, in Measurement Incorporated’s 
hybrid automated-human scoring system, each 
student response is first evaluated by a scoring 
engine that assigns both a rubric-based score and a 
continuous confidence value. This confidence 
value reflects how well the response aligns with 
patterns learned from previously human-scored 
examples. When confidence is high, the model’s 
score is accepted; when confidence is low, the 
response is routed to an expert human rater for 
review and final score assignment. The engine’s 
use of floating-point scores rather than discrete 
categories acknowledges that writing quality 
exists on a continuum. As such, low-confidence 
predictions often arise when a response falls 
between score points or exhibits features that are 
atypical relative to the model’s training data.  

In practice, we use a relative (within-
batch)ௗthresholding approach to determine which 

responses are flagged for human scoring. Because 
operational scoring occurs continuously over 
several weeks, responses are processed in discrete 
batches as tests are completed. The model 
evaluates scoring certainty within each batch and 
flags approximately 10% of responses reflecting 
the lowest confidence. This strategy enables 
consistent workload distribution for human raters, 
supports timely data delivery, and ensures 
manageable flow across the scoring window. By 
contrast, an absolute thresholding approach—
which would require evaluating confidence 
relative to the full population of responses—poses 
logistical challenges, in particular delayed score 
reporting.  

Although the relative approach offers clear 
operational advantages, it is not known how well 
it approximates the theoretical ideal of an absolute 
confidence threshold. The present study 
investigates the extent to which the relative 
(within-batch) thresholding approach provides a 
robust and valid method for identifying low-
confidence responses.   

The study addresses three research questions:  
RQ1: To what extent do the relative and 

absolute methods identify the same responses as 
low-confidence?   

RQ2: Do the responses flagged by the relative 
method exhibit similarly low confidence values 
compared to those flagged by the absolute 
method, in terms of their overall distribution?   

RQ3: Do the responses flagged by the relative 
method differ in median confidence values from 
those flagged by the absolute method?  

Through a series of statistical comparisons 
aligned with each research question, we examine 
the extent to which the relative method replicates 
the behavior and outcomes of an absolute 
thresholding approach. These analyses evaluate 
the overlap in flagged responses, the similarity in 
their confidence value distributions, and potential 
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differences in central tendency, providing a multi-
faceted assessment of the relative method’s 
robustness. 

2 Methods 

To address the study’s research questions, we 
conducted a series of statistical analyses across ten 
items, each designed to evaluate a distinct aspect 
of the alignment between the relative (within-
batch) thresholding method and an absolute 
confidence threshold.  

To evaluate the extent to which the relative and 
absolute methods identify the same responses as 
low-confidence (RQ1), we conducted McNemar’s 
tests to assess whether the proportion of 
discordant classifications—responses flagged by 
one method but not the other—differed 
significantly. To further quantify the degree of 
agreement, we calculated F1 scores and Cohen’s 
kappa for each item.  

To assess whether the relative method captures 
responses with similarly low confidence values as 
those flagged by the absolute method (RQ2), we 
conducted Kolmogorov–Smirnov (K-S) tests. 
These non-parametric tests compared the full 
distributions of raw confidence values for 
responses flagged by each method, providing a 
measure of distributional similarity without 
assuming a specific shape or variance structure.  

Finally, to examine whether the responses 
flagged by the relative method differ in central 
tendency from those flagged by the absolute 
method (RQ3), we performed Mann–Whitney U 
tests. These tests specifically assessed whether 
there were significant differences in the median 
confidence values between the two groups, 
offering a complementary perspective to the K-S 
analyses focused on overall distribution.  

Together, these methods provide a multi-
dimensional evaluation of the relative 
thresholding approach’s robustness and its 
alignment with the conceptual goals of 
confidence-based response flagging. 

3 Results 

3.1 RQ1 

McNemar’s tests were used to assess whether the 
relative and absolute methods differ in how they 
classify responses as low-confidence. For each 
item, a 2×2 contingency table was constructed, 
and the test evaluated whether the proportion of 

discordant cases—responses flagged by one 
method but not the other—was significantly 
asymmetric. As shown in Table 1, none of the 
McNemar tests reached statistical significance (all 
p-values > .95), indicating no evidence of 
systematic disagreement between the methods. 

To complement these significance tests, F1 
scores and Cohen’s kappa values were computed 

to quantify the degree of agreement. F1 scores 
ranged from 91.02% to 98.08%, reflecting a high 
degree of precision and recall across items. 
Cohen’s kappa values, which adjust for chance 
agreement, ranged from 0.901 to 0.979, 
consistently exceeding the commonly cited 
threshold (κ > 0.90) for near-perfect agreement 
(Landis & Koch, 1977). Item X02 showed the 
lowest observed agreement (F1 = 91.02%, κ = 
0.901), while item X03 showed the highest (F1 = 
98.08%, κ = 0.979). These findings indicate that 
despite using different thresholding strategies, the 
relative and absolute methods align closely in 
practice, identifying largely overlapping subsets 
of responses for human scoring. 

3.2 RQ2 

To examine whether the confidence value 
distributions of flagged responses differed 
between the relative and absolute methods, 
Kolmogorov–Smirnov (K-S) tests were conducted 
for each of the ten items. Table 2 displays the K-S 
test statistics, sample sizes, and p-values for each 
item. 

Statistically significant differences in the 
distributions were observed for eight of the ten 
items (p < .05), with K-S statistics ranging from 
0.0236 to 0.0898. For the remaining two items 
(X01 and X03), the tests were not statistically 

Item 
ID 

Grade N McNemar 
χ² 

p-value F1  
Score (%) 

Kappa 

X01 8 74050 0.003 0.956 97.8 0.976 

X02 4 71140 0.001 1.000 91.0 0.901 

X03 7 73928 0.003 0.953 98.1 0.979 

X04 8 73806 0.002 0.967 96.0 0.956 

X05 5 73422 0.003 0.957 97.6 0.974 

X06 3 70868 0.001 0.974 93.2 0.925 

X07 6 73764 0.002 0.966 96.3 0.959 

X08 6 73900 0.003 0.960 97.4 0.971 

X09 5 73322 0.001 0.974 93.2 0.924 

X10 7 73902 0.001 0.972 94.5 0.939 

Table 1:  Agreement between relative and 
absolute methods across items. 
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significant, indicating no detectable difference 
in confidence distributions between the two 
methods for those items. 

Although statistical significance was 
common, the magnitude of the observed 
differences—as indicated by the K-S 

statistics—was consistently small, with all 
values falling below 0.10. In the context of the 
Kolmogorov–Smirnov test, the KS statistic 
represents the maximum vertical distance 
between the empirical cumulative distribution 
functions of the two samples. A value below 
0.10 suggests that the most extreme divergence 
between the relative and absolute confidence 
distributions is less than 10% at any point along 
the confidence continuum. These values are often 
interpreted as indicating a negligible to small 
effect size, implying that while the distributions 
are not identical, the differences are modest and 
unlikely to meaningfully alter the classification of 
responses as low-confidence. 

To illustrate these patterns, Figure 1 displays 
histograms of confidence values for three 
representative items—one with no significant 
difference (X03), one with moderate divergence 
(X10), and one with the largest observed 
difference (X02). As shown, the distributions 
overlap substantially, with only minor shifts in the 
region of greatest density. These visualizations 
reinforce the conclusion that the relative method 
tends to flag responses from the same general 
region of the confidence distribution as the 
absolute method. While some divergence is 
detectable, the observed differences are limited 
and unlikely to compromise scoring validity. 

3.3 RQ3 

Table 3 presents the sample sizes, U statistics, p-
values, and corresponding estimates of the 
Common Language Effect Size (Vargha & 
Delaney, 2000; McGraw & Wong, 1992), denoted 
as 𝑃෠ଵ. 

P෡ଵ  represents the probability that a randomly 
selected response from one group (e.g., flagged by 
the absolute method) has a higher confidence 
value than a randomly selected response from the 
other group (e.g., flagged by the relative method). 
Under the null hypothesis of equal distributions, 
𝑃෠ଵ= 0.5, indicating no systematic difference in 
central tendency. Values modestly above or below 
0.5 suggest directional but generally small effects. 
Statistically significant differences in median 
confidence values were observed for six of the ten 
items, with p-values ranging from < .001 to .012. 
For the remaining four items (X01, X03, X05, and 
X08), results were not statistically significant, 
indicating no detectable difference in central 
tendency between the two groups of flagged 
responses. 

 
Figure 1: Histograms of confidence values: relative 
vs. absolute flagging. 

Item 
ID 

Grade N 
Flagged 

K-S 
Statistic 

p-value 

X01 8 7552 0.022 0.052 
X02 4 6796 0.090 < .001 
X03 7 7605 0.019 0.121 
X04 8 7360 0.040 < .001 
X05 5 7430 0.024 0.032 
X06 3 7106 0.068 < .001 
X07 6 7309 0.037 < .001 
X08 6 7484 0.026 0.012 
X09 5 7084 0.068 < .001 
X10 7 7449 0.055 < .001 

Table 2:  Kolmogorov–Smirnov test results 
comparing confidence distributions 
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The estimated 𝑃෠ଵ  values across all items 
ranged from 0.501 to 0.543. These values suggest 
that even when differences were statistically 

significant, the relative method only slightly 
increased the probability of flagging responses 
with higher confidence values compared to the 
absolute method. Importantly, all 𝑃෠ଵvalues were 
greater than 0.5, indicating a consistent directional 
trend across items. This pattern aligns with the 
design of the relative method, which evaluates 
responses within batches; as a result, it may 
include some responses that exceed a fixed global 
threshold but still represent the lower-confidence 
tail within that batch. 

Taken together, these findings reinforce the 
conclusion that the two methods target similar 
segments of the confidence distribution. While the 
relative method yields small, systematic shifts in 
central tendency compared to the absolute 
approach, these shifts are modest and consistent 
with its operational design. They do not 
undermine its ability to identify responses with 
genuinely low scoring confidence. 

4 Discussion 

This study evaluated the robustness of a relative 
(within-batch) thresholding method for identifying 
low-confidence responses by comparing it to an 
absolute thresholding approach across ten 
assessment items. The results indicate that 
although the two methods use different reference 
frames for determining confidence, they yield 
closely aligned outcomes in practice. McNemar’s 
tests showed no statistically significant differences 
in flagging decisions across any item, indicating 
that the two methods do not systematically 

disagree in their classifications. Agreement 
metrics further reinforced this pattern, with F1 
scores above 91% and Cohen’s kappa values 
consistently exceeding 0.90—benchmarks 
associated with near-perfect agreement. 
Kolmogorov–Smirnov tests revealed statistically 
significant differences in the distributions of 
confidence values for most items, but the 
observed effect sizes were small, suggesting only 
modest divergence in how the two methods 
segment the confidence continuum. Mann–
Whitney U tests found no significant difference in 
median confidence values for four items and only 
modest, consistently directional shifts for the 
others. In each case where a difference was 
detected, the relative method flagged responses 
with slightly higher confidence values than the 
absolute method—an expected outcome given its 
within-batch operational logic. These findings 
suggest that the relative method approximates the 
behavior of an absolute thresholding strategy not 
only in terms of response-level agreement but also 
in the distributional and central tendencies of 
flagged confidence values. The minor and 
systematic nature of these shifts underscores the 
method’s practical validity, even in the absence of 
global thresholds. 

One strength of the study is its multi-method 
evaluation strategy. By employing three distinct 
statistical tests—each aligned to a specific 
research question—the analysis provides a 
comprehensive and nuanced view of how the 
relative method compares to the absolute 
approach. This triangulation enhances the internal 
validity of the findings by ensuring that observed 
patterns are not artifacts of a single analytic lens. 
Prior research in assessment and machine scoring 
has emphasized the importance of using multiple 
indicators of agreement and reliability when 
evaluating human-machine alignment (e.g., 
Williamson, Xi, & Breyer, 2012). Extending this 
principle to thresholding methods strengthens the 
interpretive clarity of the current study. 

A related strength is the use of operational data 
across ten unique items, which increases the 
generalizability of findings within the context of a 
real-world scoring system. Rather than relying on 
a narrow test set or simulated data, this study 
reflects real-world scoring dynamics, where batch 
effects, prompt variability, and distributional shifts 
routinely occur. Literature in automated writing 
evaluation has frequently called for validation 

Item 
ID 

Grade N 
Flagged 

U Statistic p-value P෡ଵ 

X01 8 7552 28700007 0.493 0.503 

X02 4 6796 25070858 < .001 0.543 

X03 7 7605 28975153 0.833 0.501 

X04 8 7360 28008532 < .001 0.517 

X05 5 7430 27915699 0.231 0.506 

X06 3 7106 26815639 < .001 0.531 

X07 6 7309 27639771 < .001 0.517 

X08 6 7484 28466365 0.081 0.508 

X09 5 7084 26357199 < .001 0.525 

X10 7 7449 28402035 0.012 0.512 

Table 2:  Mann–Whitney U test results 
comparing median confidence values. 
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studies using authentic operational data (e.g., 
Bejar, 2011), and this study responds directly to 
that need.  

Despite these strengths, a notable limitation is 
that the study treats the absolute threshold as a 
benchmark without fully interrogating its own 
validity or optimality. While the absolute method 
offers a theoretically attractive ideal—especially 
under conditions of complete data availability—it 
is not immune to its own biases, such as those 
introduced by non-uniform response distributions 
or scoring model calibration. A more complete 
validation strategy might compare both methods 
not only to each other but also to an external 
criterion, such as expert judgment of borderline 
cases.  

Another area for future exploration involves 
the operational consequences of the observed 
differences. While McNemar’s tests found no 
systematic disagreement in flagging decisions, 
statistical significance was more common in the 
comparisons of flagged-response distributions and 
central tendencies. The practical impact of these 
differences remains unclear. For example, do 
differences in flagged responses influence rater 
workload, response turnaround time, or score 
stability at the aggregate level? Future studies 
could simulate or analyze batch-level scoring flow 
under different flagging schemes to evaluate the 
impact of relative versus absolute methods on 
scoring efficiency and quality control. In this way, 
we might move beyond verifying that the relative 
method is good enough and begin to explore 
whether it is, in some cases, better suited to the 
realities of large-scale assessment. 

In sum, the relative thresholding method 
performs robustly when compared to an absolute 
alternative, even though it makes decisions based 
only on within-batch information. It offers a 
stable, scalable solution that aligns well with 
theoretical expectations and empirical behavior of 
scoring confidence.  
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Abstract

Correct answers to math problems don’t re-
veal if students understand concepts or just
memorized procedures. Conversation-Based
Assessment (CBA) addresses this through AI
dialogue, but reliable scoring requires costly
pilots and specialized expertise. Our Criteria
Development Platform (CDP) enables pre-pilot
optimization using synthetic data, reducing de-
velopment from months to days. Testing 17
math items through 68 iterations, all achieved
our reliability threshold (MCC ≥ 0.80) after
refinement – up from 59% initially. Without re-
finement, 7 items would have remained below
this threshold. By making reliability valida-
tion accessible, CDP empowers educators to
develop assessments meeting automated scor-
ing standards.

1 Background

When students solve math problems correctly,
teachers face a critical challenge: they cannot tell
if students understand the concepts or just mem-
orized the steps. A student who correctly solves
1.5(2− 4h) = 6h might understand why division
maintains equality, or might simply execute a mem-
orized procedure. When students do not solve a
problem correctly, the only information available
is that they entered an incorrect answer. It is un-
knowable whether they had a partial or incomplete
understanding of the problem. Traditional tests
cannot provide evidence about students’ thought
process when answering questions, creating a gap
that affects teaching decisions and student support.

Conversation-Based Assessment (CBA) en-
ables the assessment of conceptual understand-
ing through adaptive dialogue (Yildirim-Erbasli
and Bulut, 2023). In CBA, students explain their
reasoning, similar to constructed response items
(Williamson et al., 2012). Unlike static written
responses, CBA adapts based on student answers
– asking follow-ups when needed and providing

appropriate feedback (Jackson et al., 2018). This
interaction provides evidence indicating whether
students grasp underlying concepts.

CBA technology has progressed from scripted
to generative systems. Early approaches required
authoring specific response-reply pairs (Zapata-
Rivera et al., 2015), essentially building complete
dialogue trees that anticipated every possible stu-
dent response. Later systems like Quizbot used
semantic matching to map student responses to pre-
written feedback (Ruan et al., 2019), but educators
still had to design and construct all potential con-
versation paths beforehand.

Large Language Models (LLMs) introduced in
2022 (OpenAI, 2024) marked a paradigm shift. In-
stead of pre-building dialogue trees, these newer
systems allow students to respond openly in their
own words, with the AI using NLP methods to
understand and categorize responses dynamically
(Bergerhoff et al., 2024). This eliminates the bur-
den of anticipating and scripting every possible
conversation branch, making CBA development
accessible to educators without the resources for
complex dialogue engineering.

Yet this freedom from pre-coding dialogue paths
creates a different challenge. When systems can
accept any student response rather than matching
against predetermined patterns, they must interpret
novel expressions of understanding in real-time.
While these models are capable of such evaluation,
without explicit guidance about what constitutes
conceptual mastery, their scoring decisions may
lack the consistency needed for reliable assessment.

Scoring criteria provide this needed guidance,
giving structure to open-ended evaluation. By ex-
plicitly defining what constitutes conceptual mas-
tery for each item, these criteria enable CBA sys-
tems to evaluate diverse student responses consis-
tently and generate appropriate follow-ups. Good
criteria help AI Scorers match human grader relia-
bility (Henkel et al., 2024), especially when subject
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matter experts write item-specific criteria rather
than generic prompts (Frohn et al., 2025).

Creating reliable scoring criteria requires meet-
ing established assessment standards, with AI and
human graders reaching similar conclusions. Edu-
cational assessment typically requires strong agree-
ment (e.g., κ ≥ 0.70) (Williamson et al., 2012;
Wood et al., 2021). These thresholds challenge tra-
ditional empirical validation because they require
extensive time and resources to reach (Williamson
et al., 2012). Developers draft criteria, pilot them
with real students, and compare AI scores to hu-
man ratings. Discrepancies trigger revision and
re-piloting. Most items require multiple cycles, tak-
ing months and requiring fresh student data each
time.

Even when time and resources are available, the
validation process requires specialized technical
knowledge that content authors often lack, such
as: dataset development (developing and labeling
balanced, diverse synthetic datasets), metric com-
putation (choosing and calculating coefficients),
iteration management (managing multiple criteria
refinements and their associated datasets), and in-
terpreting results (setting targets and identifying
which changes were meaningful). Without this
expertise, efforts may yield unreliable results.

These twin challenges – lengthy validation cy-
cles and specialized expertise requirements – create
a bottleneck in CBA development. Without tools to
test criteria before student pilots, developers must
choose between deploying potentially unreliable
assessments or investing months in iterative pilot
studies. At Khan Academy, these challenges drove
us to develop an alternative to time-consuming stu-
dent pilots for validating scoring criteria. To solve
this problem, we developed a platform that lets cre-
ators test criteria using synthetic data and provides
step-by-step guidance.

1.1 Explain Your Thinking (EYT): A Modern
Conversation-Based Assessment System

Before describing our solution, we first describe
the EYT system itself. Understanding how EYT
uses criteria to both score responses and generate
follow-up questions reinforces why criteria quality
is so critical to CBA success.

Explain Your Thinking (EYT) is our implemen-
tation of modern CBA. Students first solve prob-
lems, then explain their reasoning in AI-guided
conversations. For example, when a student solves
1.5(2 − 4h) = 6h by dividing both sides by 1.5,

Figure 1: Screenshot of the Explain Your Thinking
conversation-based assessment item type. The student
first answers a math problem (left), and then has a con-
versation about the problem (right) which is designed
to assess their conceptual understanding.

we know whether or not they can execute the proce-
dure. But EYT goes deeper: can they explain why
division maintains equality? Do they understand
that division and multiplication are inverse opera-
tions? The system uses scoring criteria to evaluate
these conceptual understandings and generate ap-
propriate follow-up questions.

Each assessment activity starts with a math prob-
lem, the student’s answer, and criteria defining com-
plete understanding. The platform operates through
three integrated functions that enable assessment.
First, it recognizes varied expressions of concepts,
allowing students to explain their thinking in their
own words. Second, it generates probing questions
that explore understanding without revealing an-
swers. Third, it maintains assessment validity by
avoiding teaching during the evaluation process.

Importantly, EYT’s effectiveness depends on a
criteria-driven cascade. At each turn, an AI Scorer
evaluates the conversation history to determine
which criteria the student has satisfied. These eval-
uations then flow to a Response Generator, which
receives a list of unsatisfied criteria and generates
targeted follow-up questions to probe those specific
gaps. When criteria are vague or missing, this cas-
cade breaks down: the AI Scorer misclassifies re-
sponses, passing incorrect information downstream,
and the Response Generator asks about the wrong
concepts, leading to unproductive conversations.

Students experience a natural conversation flow.
They explain their approach and receive targeted
follow-ups that probe gaps without teaching. The
conversation continues until students demonstrate
understanding or reach a four-turn limit.
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2 Criteria Development Platform (CDP)

Given that poor criteria can derail EYT’s assess-
ment cascade and compromise validity, we needed
a way to ensure criteria quality before deploy-
ment. Our Criteria Development Platform (CDP)
addresses this need by enabling content creators to
test and refine AI scoring criteria using synthetic
student responses, eliminating the months-long pi-
lot cycles traditionally required for validation.

CDP operates through an iterative workflow
where creators write scoring criteria, generate syn-
thetic responses that test edge cases, evaluate AI
Scorer performance against these responses, and
refine their criteria based on the results.

Figure 2: The Criteria Development Platform’s iterative
workflow. Content creators write scoring criteria, gen-
erate synthetic responses, test performance, and refine
their criteria based on results.

CDP addresses both core challenges of criteria
development. First, it reduces validation time from
months to days by eliminating the need for multiple
rounds of student pilots. Creators can test dozens
of iterations in hours or days rather than weeks
or months. Second, it provides guided support
that makes reliable assessment creation accessible
without specialized expertise. The platform auto-
matically tracks versions, computes performance

metrics, and provides targets and actionable feed-
back to guide criteria development.

To evaluate CDP’s effectiveness, we analyzed
68 development cycles from six content creators
developing 17 math assessment items. Our analysis
addresses three key research questions:

1. Engagement: Do content creators effectively
engage in iterative refinement when using
CDP?

2. Improvement: When creators iterate, do their
scoring criteria demonstrate measurable per-
formance gains?

3. Achievement: What proportion of items ulti-
mately meet established reliability standards?

The following sections detail CDP’s design and
demonstrate its effectiveness through empirical
analysis of these development cycles.

2.1 How CDP works

Creators follow four steps (Figure 2) to create scor-
ing criteria. They select an item and then iterate
through: writing criteria, generating data, and test-
ing performance until meeting standards. Through-
out this cycle, the tool preserves all data and met-
rics, allowing creators to track improvements and
learn from each iteration. This four-step process
addresses the challenges of time and expertise: syn-
thetic data allows rapid iteration, while metric gen-
eration and feedback provide scaffolding for cre-
ators.

2.1.1 Step 1: Selecting the item
Content creators start by selecting an item for
which to develop criteria.

2.1.2 Step 2: Writing scoring criteria
Next, creators write up to seven criteria that de-
fine a complete response. For instance, an item
about solving equations might include criteria like
“identifies the inverse operation needed” and “ex-
plains why division undoes multiplication.” The
platform tracks all versions of criteria, allowing
creators to try different approaches and revert to
previous versions as needed.

2.1.3 Step 3: Generating test data
Creators need synthetic data to evaluate their cri-
teria without real students. The platform guides
creators in developing balanced datasets of 150
simulated responses per test, with 50 responses
each from correct, partially correct, and incorrect
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categories. Each response includes the student’s
initial answer, their conversational explanation, and
a human-assigned ground truth label (correct, par-
tially correct, or incorrect) indicating the response’s
category. Content creators must carefully assign
these ground truth labels when developing the syn-
thetic dataset, as they serve as the authoritative ref-
erence for evaluating the AI Scorer’s performance.
This balanced distribution across the three cate-
gories ensures comprehensive testing of the criteria.
The sample size of 150 was determined through
simulation-based power analysis, achieving >80%
Bayesian posterior probability that MCC ≥ 0.8
when the true MCC is at least 0.84. This provides
strong statistical evidence for identifying scorers
that meet the performance threshold.

Creators generate these responses through a com-
bination of manual writing and AI assistance. To
ensure quality and authenticity, we instructed cre-
ators to manually write at least 10-15 example re-
sponses for each correctness category, capturing re-
alistic student thinking patterns. (Note that for scor-
ing purposes, the AI Scorer uses a binary classifica-
tion approach and treats partially correct responses
as incorrect. However, including partially correct
responses in the dataset serves a critical purpose:
they enhance diversity by capturing edge cases and
boundary conditions where students demonstrate
some but not all required understanding. This helps
creators test whether their criteria can distinguish
between complete and incomplete responses, iden-
tifying potential ambiguities before deployment.)

When using the AI generator, the platform
prompts a language model such as GPT-4.1 with
these manually-created examples, information
about the item, and the criteria. The model gener-
ates unique, plausible student responses matching
the specified category. It receives instructions to
vary both reasoning patterns and writing style. This
ensures responses remain meaningfully different
from the provided examples. Creators must ver-
ify all AI-generated responses and correct ground
truth labels if necessary before adding them to their
dataset.

This approach combines human expertise with
AI’s ability to generate variations at scale. Human
creators identify realistic student thinking patterns.
AI generates diverse examples based on these pat-
terns. Human oversight ensures classification accu-
racy throughout. We also encouraged creators to
include edge cases in test data, such as correct rea-
soning with unusual terminology. Testing against

these challenging cases helps creators identify and
fix ambiguities in their criteria before real students
encounter them.

The system helps ensure response diversity
through similarity checking. When generating syn-
thetic responses, the platform uses semantic em-
beddings to compare each new response against
all other responses within the same correctness cat-
egory, flagging pairs that exceed 85% similarity.
For mathematical problems, the similarity checker
includes additional detection for responses that dif-
fer only in numerical values, as these may have
high semantic similarity despite representing funda-
mentally different solutions. This prevents dataset
contamination from near-duplicate responses that
would artificially inflate performance metrics.

2.1.4 Step 4: Testing and refining
With criteria and test data ready, creators run the
AI Scorer and see how well it performs with the
current criteria. The platform calculates perfor-
mance metrics by comparing the AI Scorer’s pre-
dictions against the human-assigned ground truth
labels from the synthetic dataset. Metrics like ac-
curacy and false positive rates reveal how well the
AI Scorer aligns with human judgment, helping
creators identify problems with their criteria def-
initions. Additionally, the tool provides the AI
Scorer’s reasoning for each evaluation, showing
where criteria might be unclear or ambiguous (Fig-
ure 3). This transparency addresses the expertise
challenge by making the AI Scorer’s evaluation
process interpretable to non-experts.

3 Research

To evaluate CDP’s effectiveness in enabling pre-
pilot optimization, we conducted an empirical anal-
ysis of platform usage data. This analysis directly
addresses the three research questions posed in
our Aims: examining creator engagement patterns,
measuring performance improvements, and deter-
mining achievement rates.

3.1 Methods
3.1.1 Dataset
Six content creators (curriculum specialists and as-
sessment designers) independently developed 17
mathematics items over three months. Each devel-
opment cycle followed the same workflow: writ-
ing scoring criteria, generating synthetic responses,
and evaluating AI Scorer performance. Items cov-
ered grades 6-12 mathematics, addressing algebra,
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Figure 3: The Criteria Development Platform’s AI
Scorer interface displaying performance metrics (MCC,
FPR, FNR) and response-level results with the AI’s scor-
ing reasoning for each evaluation.

geometry, and ratio topics aligned with Common
Core State Standards.They generated 68 develop-
ment cycles. When content creators tested the same
criteria version multiple times during development,
we included only the final run for each version in
our analysis. This resulted in 61 distinct criteria ver-
sions with 10,200 synthetic response evaluations.

We analyzed two distinct item groups. Eight
items (47%) underwent iterative refinement
through multiple criteria revisions. Nine items
(53%) achieved strong performance without crite-
ria changes, maintaining consistent criteria across
runs. This division lets us examine both the refine-
ment process and cases of immediate success.

3.1.2 Performance Metrics
We evaluated AI Scorer performance using four
metrics that measure agreement between AI-
generated scores and ground truth labels (expert

human scoring):
Matthew’s Correlation Coefficient (MCC)

serves as our primary metric for evaluating scoring
reliability, considering all classification outcomes.
Values range from -1 to +1, with ≥ 0.80 threshold.
MCC balances imbalanced datasets.

Three additional metrics provide comprehensive
evaluation alongside our primary MCC metric:

Cohen’s kappa (κC) quantifies agreement be-
yond what random chance would produce, with ≥
0.81 indicating substantial reliability (per Landis
and Koch (1977)).

False Positive Rate (FPR) tracks a critical fail-
ure mode: marking incorrect responses as correct,
which terminate conversations prematurely. Our
threshold of ≤ 0.10 ensures the AI does not often
terminate conversations prematurely.

Accuracy: proportion correct.

3.1.3 Statistical Analysis

We compared first versus last criteria versions
across refined items (n=8) using bootstrap methods
with 10,000 iterations. Bootstrap provides robust p-
values without requiring distributional assumptions
that may not hold for our metrics. For non-refined
items (n=9), we report performance metrics for the
single iteration only. We used one-tailed tests for
all metrics: expecting increases for MCC, κC , and
accuracy, and expecting a decrease for FPR.

3.1.4 Results

RQ1: Creator Engagement in Iterative Refine-
ment Creators used iteration effectively. Items
underwent a median of 3 versions (mean 5.2 ver-
sions per item), with 58.8% of items being revised
at least once (10 of 17 items). Among all 17 items,
8 (47%) had meaningful criteria version changes
that we analyze as “refined items,” while 9 (53%)
maintained consistent criteria across runs (“non-
refined items”). This iteration pattern suggests
creators found a productive balance between re-
finement and effort: enough iteration to improve
performance without excessive revision cycles.

The platform enabled rapid development. Items
were developed over a median of 1 day (range: 1-4
days), addressing the time bottleneck.

Criteria became more detailed through iteration,
with a median increase of 5 words from first to
last version (60 to 65 words, representing an 8.3%
increase). The number of individual criteria also
increased modestly from an average of 1.9 to 2.2.
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RQ2: Performance Improvements Through It-
eration For the 8 items that underwent criteria
refinement (47% of the dataset), comparing first
versus last criteria versions revealed statistically
significant improvements across key performance
metrics (Table 1). Our primary metric, MCC, im-
proved from 0.659 to 0.863 (p < 0.001), represent-
ing a +0.203 improvement in scoring reliability.
This improvement means refined items moved from
moderate to strong reliability. κC also improved
significantly, from 0.620 to 0.860 (p < 0.001), a
gain of +0.240. According to Landis and Koch
(1977), this represents improvement from substan-
tial agreement (0.61-0.80) to almost perfect agree-
ment (≥ 0.81).

False positive rates decreased from 0.148 to
0.087 (-0.060, p = 0.163). While not statistically
significant in aggregate, individual items showed
varied patterns. Some items achieved large FPR
reductions (one item improved by 0.420). Others
experienced FPR increases while creators prior-
itized our primary MCC metric (another item’s
FPR increased from 0.020 to 0.140 while its MCC
improved by 0.323). Overall accuracy improved
significantly from 0.818 to 0.938 (p < 0.001), repre-
senting a +0.119 improvement. Notably, 100% of
refined items showed improvements in both MCC
and κC , demonstrating that the iterative refinement
process consistently led to better scoring reliability.

For example, item A-CED.A.3 asks students to
interpret inequality solutions in real-world contexts.
Through iteration, creators refined the criteria for
greater precision. The refined criteria specified that
students must explicitly state why a whole number
is needed for the real-world scenario and explicitly
explain why rounding down is necessary to satisfy
the inequality. These refinements, which instructed
the AI Scorer not to accept implied reasoning, im-
proved the AI Scorer’s MCC from 0.554 to 0.971
(Figure 4; see Appendix A for complete criteria
text).

RQ3: Achievement of Reliability Standards
With iterative refinement, 100% of items achieved
our primary reliability standard (MCC ≥ 0.80),
compared to only 58.8% based on first-attempt
performance. This 100% success rate shows how
CDP’s guided refinement process makes reliable
assessment development accessible to creators re-
gardless of their psychometric expertise. This im-
provement suggests that CDP rescued 7 items that
would have required abandonment or costly pilot-

Figure 4: Item A-CED.A.3 scoring reliability across 10
iterations. Matthews Correlation Coefficient improved
from 0.554 to 0.971 (95% confidence intervals shown),
demonstrating how iterative refinement strengthened the
scoring criteria.

based revision. When considering both MCC and
our secondary FPR threshold (≤ 0.10), 76% of
items (13 of 17) met both standards after CDP re-
finement.

The items demonstrated two development pat-
terns. Nine items (53%) achieved strong perfor-
mance immediately, meeting the MCC threshold
of 0.80 without criteria changes. These items main-
tained consistent criteria across all runs. The re-
maining 8 items (47%) underwent iterative refine-
ment. Of these refined items, only 1 (12.5%) ini-
tially met the MCC threshold but was still refined
(possibly to improve other metrics or address cre-
ator concerns). Through CDP’s iterative process,
all 8 refined items achieved MCC ≥ 0.80, with a
final mean MCC of 0.863.

All 8 refined items achieved the MCC threshold,
but FPR outcomes varied. Five of 8 items (62.5%)
met the FPR ≤ 0.10 threshold after refinement.
This reflects the challenge of optimizing multiple
metrics simultaneously. Creators sometimes pri-
oritize specific metrics based on their assessment
goals.

These results validate CDP’s solution to the twin
challenges of time and expertise: all items achieved
reliability standards (expertise) within days rather
than months (time).

4 Limitations

Three limitations shape the interpretation of these
results.

First, synthetic responses cannot capture all the
ways real students think. Students use unexpected
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Table 1: First vs. Last Criteria Version Performance Comparison for Refined Items (n=8)

Metric First Run [95% CI] Last Run [95% CI] Change p-value Items Improved
MCC 0.659 [0.589-0.734] 0.863 [0.833-0.900] +0.203 <0.001*** 8 (100%)
κC 0.620 [0.533-0.711] 0.860 [0.830-0.898] +0.240 <0.001*** 8 (100%)
FPR 0.148 [0.033-0.288] 0.087 [0.045-0.130] -0.060 0.163 3 (37.5%)
Accuracy 0.818 [0.769-0.867] 0.938 [0.924-0.954] +0.119 <0.001*** 8 (100%)

Note: *** p < 0.001; Bootstrap tests with 10,000 iterations, one-tailed

terminology, creative analogies, and unique error
patterns that synthetic generation misses. Future
work must validate with real student data.

Second, we validated CDP with mathematics
items and GPT-4o. While the approach should
generalize to other domains using the same EYT
format, criteria optimized for GPT-4o’s scoring ten-
dencies might not transfer directly to other LLMs.

Third, CDP optimizes scoring reliability but
doesn’t evaluate conversation quality. Criteria both
evaluate and trigger follow-ups. We measured scor-
ing, not dialogue quality. Future work should ex-
amine whether improvements in scoring reliability
correlate with better conversation flow and more
effective probing of student understanding.

These limitations point to clear next steps: vali-
dating with real student data, testing beyond math
and GPT-4o, and measuring conversation quality.

5 Conclusions

In order to create effective conversation-based as-
sessments, we need effective criteria for scoring
them. These criteria are traditionally difficult and
time-consuming to develop. The Criteria Develop-
ment Platform addresses this challenge through pre-
pilot optimization with synthetic data. Our analysis
of 68 development cycles across 17 mathematics
items demonstrates CDP’s impact: success rates
improved from 59% to 100%, rescuing 7 items
from abandonment or costly pilot revision. The
eight items that underwent refinement showed sub-
stantial gains, with MCC improving from 0.659
to 0.863. CDP solves both traditional CBA de-
velopment challenges: reducing timelines from
months to days (median 1 day) while enabling non-
technical experts to achieve reliable results through
guided refinement.

These results have broader implications for ed-
ucational technology. Pre-pilot optimization with
synthetic data provides an effective approach when
authentic data is expensive or unavailable. The plat-
form’s transparency shows creators exactly why

scoring succeeds or fails, transforming develop-
ment from intuition to evidence. By making reli-
able assessment development accessible to educa-
tors without specialized expertise, tools like CDP
enable more practitioners to create LLM-based as-
sessments that measure deep understanding.

6 Appendix A: Example Criteria Changes

This appendix documents the criteria refinement
process for Item A-CED.A.3, which improved from
MCC = 0.554 to 0.971.

Students must explain two things: why decimal
solutions need whole number rounding, and why
rounding down (not up) satisfies the constraint.

6.1 First Criteria Version (MCC = 0.554)

The initial criteria were:

• Criterion 1: Student recognizes that the an-
swer has to be a whole number of rides in
order to make sense in the real world.

• Criterion 2: Student acknowledges that
rounding the decimal answer down to the
lower whole number is necessary because
rounding up to the higher whole number
makes the inequality that defines the number
of credits no longer true.

6.2 Final Criteria Version (MCC = 0.971)

Testing revealed the AI accepted implied reasoning
when explicit statements were needed. Revised:

• Criterion 1: Student must explicitly state rea-
soning for rounding to a whole number that
includes making sense in the real-world (for
example, “it does not make real-world sense
for a quantity of rides to be a fraction or deci-
mal”). It is not correct for a student to imply
reasoning or to only say that they rounded
down.
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• Criterion 2: Student acknowledges that
rounding the decimal answer down to the
lower whole number is necessary to satisfy
the inequality. Student must explicitly refer
to the inequality or explain why they round
down in the context of the problem (example:
the most number of rides without going over
in credits). It is not correct for a student to
imply reasoning.
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Abstract

Story retell assessments provide valuable in-
sights into reading comprehension but face im-
plementation barriers due to time-intensive ad-
ministration and scoring. This study examines
whether Large Language Models (LLMs) can
reliably replicate human judgment in grading
story retells. Using a novel dataset we conduct
three complementary studies examining LLM
performance across different rubric systems,
agreement patterns, and reasoning alignment.
We find that LLMs (a) achieve near-human re-
liability with appropriate rubric design, (b) per-
form well on easy-to-grade cases but poorly on
ambiguous ones, (c) produce explanations for
their grades that are plausible for straightfor-
ward cases but unreliable for complex ones, and
(d) different LLMs display consistent “grading
personalities” (systematically scoring harder or
easier across all student responses). These find-
ings support hybrid assessment architectures
where AI handles routine scoring, enabling
more frequent formative assessment while di-
recting teacher expertise toward students requir-
ing nuanced support.

1 Introduction

Story retell tasks offer unique advantages for assess-
ing reading comprehension, requiring students to
actively reconstruct understanding rather than sim-
ply recognize correct answers. Despite their ped-
agogical value, implementation faces significant
barriers: administering, transcribing, and scoring
individual responses is time-intensive, particularly
for teachers managing large classes in resource-
constrained environments.

Recent advances in Large Language Models
(LLMs) present opportunities to address these bar-
riers while maintaining assessment quality. This
study examines whether LLMs can reliably repli-
cate human judgment in grading story retells and,
critically, whether they can identify cases requiring
human attention. Such capabilities could enable

hybrid assessment systems that automate routine
scoring while preserving teacher expertise for com-
plex decisions.

We address three interconnected questions: (1)
To what extent can LLMs replicate human judg-
ments about story retell quality across different
rubric systems? (2) What patterns emerge in model-
human agreement, particularly for cases humans
find ambiguous? (3) How well do LLM explana-
tions correspond with human reasoning?

Using 95 student story retells from Ghana, we
examine these questions through three complemen-
tary studies. Study 1 establishes baseline perfor-
mance across rubric types. Study 2 investigates
agreement patterns and model “grading personal-
ities.” Study 3 explores the relationship between
explanation quality and scoring accuracy.

Our findings have direct implications for edu-
cators considering AI-supported assessment tools,
providing evidence for how such technologies
might enhance rather than replace human judg-
ment in literacy assessment, particularly in contexts
where frequent formative assessment is essential
but difficult to implement.

2 Prior Work

2.1 Story Retell as Reading Comprehension
Assessment

Story retelling provides a unique window into read-
ing comprehension by requiring students to ac-
tively reconstruct narratives rather than simply rec-
ognize correct answers. The cognitive demands
of retelling—drawing upon memory for factual
details, generating inferences to fill gaps, and re-
constructing events in sequence—mirror authentic
comprehension processes (Reed and Vaughn, 2012;
Wilson et al., 1985). This active recall requirement
distinguishes retelling from recognition-based as-
sessments, potentially providing richer insights into
student understanding.
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Research on retell effectiveness has yielded
mixed but generally positive findings. Reed and
Vaughn (2012)’s review of 54 studies found moder-
ate correlations between retell scores and standard-
ized comprehension measures across grade levels.
However, some studies report inconsistent relation-
ships with reading abilities (Hagtvet, 2003; Mar-
cotte and Hintze, 2009), suggesting retelling may
capture distinct aspects of comprehension not fully
reflected in traditional assessments.

2.2 Scoring Approaches and Challenges
Multiple scoring methods exist, each with inherent
trade-offs. Idea-unit analysis divides passages into
weighted narrative elements, enabling granular as-
sessment but requiring text-specific development
that limits cross-story comparison (Maria, 1990).
Component-based scoring evaluates narrative ele-
ments (characters, setting, plot) more generalizably
but faces reliability challenges, with researchers ob-
serving inconsistent inter-rater agreement (Klesius
and Homan, 1985).

Holistic scoring assigns overall quality ratings,
balancing efficiency with detail but introducing sub-
jectivity that can compromise reliability without
careful rubric design and rater calibration. Word-
count measures offer objectivity and ease of au-
tomation but may reward verbosity over compre-
hension quality, as critics note students could ma-
nipulate metrics without demonstrating understand-
ing (Altwerger et al., 2007; Goodman, 2006).

2.3 Formative Assessment in Literacy
Contexts

Black and Wiliam (1998)’s seminal meta-analysis
established formative assessment as one of ed-
ucation’s most powerful interventions, demon-
strating effect sizes between 0.4 and 0.7 stan-
dard deviations. Building on Sadler (1989)’s
framework—understanding quality standards, com-
paring work against standards, and possessing gap-
closing strategies—formative assessment becomes
“formative” when evidence actively adapts instruc-
tion to meet student needs.

In literacy contexts, formative assessment plays
a critical role in comprehension development. The
comprehensive nature of reading assessment de-
mands substantial time investment that conflicts
with classroom constraints, particularly given in-
creasing student-teacher ratios.

Story retelling emerges as a particularly power-
ful formative tool, demonstrating moderate correla-

tions with other comprehension measures while
showing stronger relations to authentic literacy
tasks than traditional assessments. The interactive
nature provides diagnostic capabilities revealing
thinking strategies inaccessible through traditional
measures.

2.4 Large Language Models and Educational
Assessment

Recent advances in Large Language Models
present distinctive capabilities for assessment sup-
port. Unlike rigid scoring systems, LLMs demon-
strate capacity to generalize to new tasks with min-
imal examples, completing assessments through
prompt modification rather than retraining (Ouyang
et al., 2022). However, Schneider et al. (2023) cau-
tion that readiness for independent grading remains
uncertain given the complexity of human narrative
interpretation. This study examines whether these
capabilities can be systematically applied to story
retell assessment within educational contexts.

3 Dataset and Methods

3.1 Dataset Description

The ROARS dataset comprises responses from 130
Ghanaian adolescent students who read one of two
400-word fictional stories and completed compre-
hension tasks including story retell. Of these, 95
students completed the retell task, with remain-
ing responses left blank. All retells were tran-
scribed verbatim and word counts recorded. This
dataset provides a diverse context for examining AI-
assisted assessment capabilities in a Global South
educational setting.

3.2 Human Rating Process and Rubric
Development

Three human raters evaluated the 95 story retells
using three distinct rubric systems adapted from
literature. All raters held Master of Education de-
grees and had classroom teaching experience, pro-
viding professional expertise in literacy assessment.
Ground truth scores were determined by averaging
ratings and rounding to the nearest whole number.
This averaging process itself highlights inherent
assessment ambiguity—unanimous agreement oc-
curred in only 66% of cases.

The adapted rubrics are presented in Ap-
pendix ??.
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Examples of different rater’s scoring by rubric

Retell 1
lucy was a girl who like learning around she round
through the country stole that night allways when every-
one including the sheeps and lambs were as sleep. lucy
helped to save the shepherd when the shepherd got a
broke in his leg.

2-class 3-class 5-class
Rater 1 0 1 1
Rater 2 0 1 2
Rater 3 0 1 2
Ground Truth 0 1 2

Retell 2
Lucy was different from all the other sheep right from
the start. One day something terrible happened. The
shepherd fell over and broke his leg...

2-class 3-class 5-class
Rater 1 1 2 4
Rater 2 1 2 3
Rater 3 1 1 4
Ground Truth 1 2 4

Table 1: Examples of different rater’s scoring by rubric

3.3 LLM Assessment Methodology

For the automated grading component, we used
GPT-4 (GPT-4o-2024-05-13) with carefully de-
signed prompts that replicated the human rating
context. The prompts instructed the model to act
as a literacy teacher evaluating reading comprehen-
sion through story retell assessment. Each prompt
included: the complete rubric with detailed scoring
criteria, the original story text for context, instruc-
tions to provide only the numeric score output, and
role-based framing to establish appropriate assess-
ment perspective.

4 Study 1: LLM Replication of Human
Judgments

4.1 Inter-Rater Agreement Analysis

Before examining LLM performance, we first es-
tablished baseline human inter-rater agreement to
understand the inherent reliability of the assess-
ment task. Analysis of average ratings revealed
systematic differences between raters. Rater 3 con-
sistently awarded higher scores than Raters 1 and
2 across rubrics, suggesting more lenient grading
standards. For the two-class rubric, average scores
were 0.17, 0.21, and 0.37 respectively (scale 0-1).
Similar patterns emerged for three-class (0.37, 0.36,
0.59; scale 0-2) and five-class rubrics (1.41, 1.14,
1.22; scale 0-4).

Inter-rater reliability varied substantially across
rubric types. For the binary rubric, Fleiss’ kappa

Prediction Prec. Rec. F1 Supp.

Bad Retell (0) 0.86 1.00 0.93 74
Good Retell (1) 1.00 0.25 0.40 16

Average 0.89 0.87 0.83 90

Table 2: Two-class rubric performance (LWK/QWK =
0.35)

was 0.56, indicating moderate agreement. Agree-
ment improved markedly for the three-class rubric
(Kendall’s W = 0.81) and further for the five-class
rubric (Kendall’s W = 0.85). As validation, pair-
wise Cohen’s kappa averages showed the same pro-
gression: 0.60 (two-class), 0.74 (three-class), and
0.78 (five-class).

This pattern suggests that more granular rubrics
enable higher inter-rater reliability, possibly be-
cause they provide clearer distinctions between
performance levels. The binary forced choice be-
tween “bad” and “good” may inadequately capture
the complexity of student responses, leading to in-
consistent judgments when responses fall near the
decision boundary.

4.2 LLM Performance

We evaluated GPT-4’s ability to score student
retells using the same rubrics as human raters. The
model received simple prompts explaining the task,
relevant rubric, original story, and student response,
then provided numeric scores. This straightforward
approach established baseline capabilities without
sophisticated prompt engineering.

4.2.1 Two-Class Rubric Results
The model’s performance on the binary rubric re-
vealed significant challenges, as shown in Table 2.

The model showed bias toward the “Bad Retell”
category, correctly identifying all poor responses
but capturing only 25% of good retellings. This
conservative grading produced perfect precision for
“Good Retell” (no false positives) but poor recall.
The LWK of 0.35 indicates low agreement with
human consensus, substantially below the human
inter-rater agreement of 0.56.

4.2.2 Three-Class Rubric Results
Performance improved dramatically with the three-
class rubric, as shown in Table 3.

The model excelled at identifying bad retellings
(94% recall, 95% precision) and showed improved
recognition of mediocre responses (81% recall).
However, it remained conservative with “Good
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Prediction Prec. Rec. F1 Supp.

Bad Retell (0) 0.95 0.94 0.94 64
Mediocre (1) 0.57 0.81 0.67 16
Good Retell (2) 1.00 0.25 0.40 8

Average 0.89 0.85 0.84 88

Table 3: Three-class rubric performance (QWK = 0.78)

Prediction Prec. Rec. F1 Supp.

Bad (0) 0.68 0.91 0.78 23
Poor (1) 0.77 0.68 0.72 34
Mediocre (2) 0.65 0.58 0.61 19
Acceptable (3) 0.50 0.38 0.43 7
Good (4) 1.00 1.00 1.00 1

Average 0.69 0.69 0.68 84

Table 4: Five-class rubric performance (QWK = 0.82)

Retell” classifications, capturing only 25% despite
perfect precision. The QWK of 0.78 approaches
the human inter-rater agreement of 0.81, suggesting
near-human reliability.

4.2.3 Five-Class Rubric Results
The five-class rubric yielded the highest agreement
levels, as shown in Table 4.

While individual category performance varied,
the QWK of 0.82 nearly matches human agreement
(0.85). The model showed strongest performance at
the extremes—identifying clearly bad (91% recall)
and the single good retelling (100% recall)—with
more uncertainty in middle categories. This pattern
mirrors human rating behavior, where edge cases
between adjacent categories prove most challeng-
ing.

4.3 Comparative Analysis
The progression of model-human agreement across
rubrics closely parallels the pattern in human inter-
rater reliability:

Rubric Model-Human Human-Human

2-Class 0.35 0.56
3-Class 0.78 0.81
5-Class 0.82 0.85

Table 5: Agreement comparison across rubric types

This parallel suggests that model performance
is fundamentally constrained by the same factors
affecting human reliability. The poor performance
on binary classification appears to stem from the
rubric’s inadequacy rather than model limitations.

When provided with sufficiently granular evalua-
tion criteria, LLMs approach human-level reliabil-
ity.

4.4 Implications

These findings demonstrate that LLMs can achieve
near-human reliability in story retell assessment
when provided with appropriate rubric structures.
The critical factor appears to be rubric design rather
than model capability. Binary classifications prove
problematic for both humans and machines, while
detailed rubrics enable consistent evaluation.

The model’s conservative grading tendency—
high precision but lower recall for positive
categories—may actually benefit educational ap-
plications. False positives (incorrectly identifying
poor comprehension as good) pose greater instruc-
tional risks than false negatives, as they could lead
teachers to overlook students needing support. The
model’s bias toward identifying weaknesses aligns
with formative assessment goals of catching stu-
dents who need help.

The strong performance on five-class rubrics
(QWK = 0.82) suggests AI assessment has reached
practical viability for supporting classroom instruc-
tion. However, this performance depends critically
on well-designed evaluation criteria that provide
sufficient granularity to capture meaningful distinc-
tions in student performance.

5 Study 2: Model-Human Agreement
Patterns

5.1 Research Questions and Approach

Building on Study 1’s finding that models approach
human reliability with detailed rubrics, Study 2 in-
vestigates deeper patterns in model-human agree-
ment. Specifically, we examine how rating consis-
tency relates to assessment uncertainty and whether
models exhibit systematic grading tendencies simi-
lar to human raters.

We expanded our analysis to include Claude Son-
net 4 and Gemini 2.0 Flash alongside GPT-4, test-
ing each at three temperature settings (0, 0.5, 1.0)
to examine consistency. This provided nine model
configurations plus three human raters for com-
parison. Given Study 1’s poor results with binary
classification, we focused exclusively on the three-
class rubric.

We analyze these data in two ways: first by ex-
amining the differences in Cohen’s Kappa when the
human raters agreed and disagreed, and whether
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or not the human raters score the comprehension
activity as 1. Next we evaluate the consistency
of raters directional bias (i.e., whether they gave
higher or lower grades than average) by estimating
a multilevel regression model with random inter-
cepts of the students who was being graded and
raters (humans and models). Then we compared
these random intercepts to see whether their were
patterns of rater bias within and between models.

Figure 1 presents Cohen’s kappa values for pair-
wise comparisons between human raters and AI
models. Across all ratings (human and model),
agreement was moderate to high, with kappas rang-
ing from .50 to 1.0. The highest agreement oc-
curred within models, indicating that temperature
differences between 0 and 1 do not introduce mean-
ingful variability in coding.

5.2 Key Findings
Cohen’s kappa values for pairwise comparisons be-
tween human raters and AI models revealed mod-
erate to high agreement, with kappas ranging from
.50 to 1.0. The highest agreement occurred within
models, indicating that temperature differences be-
tween 0 and 1 do not introduce meaningful variabil-
ity in coding. By contrast, the lowest agreements
were observed between human coders and the mod-
els.

When all human coders agreed, the kappa values
between models and human coders increased to be-
tween .66 and .80. Alternatively, when at least one
coder disagreed, the models showed low inter-rater
reliability with the human raters, with kappas rang-
ing from 0.15 to 0.45. The same pattern emerged
when comparing cases in which no human coder
gave a score of 1 (i.e., raters were confident the
student either did or did not comprehend the text)
versus cases in which at least one human rater as-
signed a score of 1 (i.e., at least one human was
uncertain about whether the student comprehended
the text). These findings suggest that the models
align more closely with human judgments when hu-
mans themselves are more certain of the outcome.

It is noteworthy that two of the human raters
(Rater 1 and Rater 2) tended to agree even in un-
certain cases. Their kappas were 0.65 when at
least one human rater disagreed and 0.70 when at
least one human rater gave a score of 1. However,
the models still tended to diverge more from these
raters under uncertain circumstances. This suggests
that even when humans reach consensus in diffi-
cult cases, the models may continue to struggle to

Figure 1: Pairwise weighted kappa heatmaps comparing
agreement among human raters and AI models across
multiple rating conditions.
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align with them, potentially because the models are
sensitive to the uncertainty reflected in these cases.

Furthermore, even when the humans were un-
certain, the models maintained high internal con-
sistency, as indicated by strong within-model re-
liability. For example, when at least one human
rater disagreed or assigned a retell a score of 1,
the Claude Sonnet 4 models consistently exhibited
very high agreement within model (κ = .95–1.0).

Figure 2: Random intercept estimates for human and AI
raters across groups.

Figure 2 presents the random intercepts from
a multilevel regression model predicting ratings
by rater. The model included random intercepts
for each retell to account for performance-related
differences across students. Thus, the random inter-
cepts for each rater can be interpreted as systematic
deviations from the overall mean rating (i.e., an
intercept of 0 indicates that the rater’s judgments
consistently align with the grand mean).

Random intercepts from a multilevel regression
model predicting ratings by rater revealed system-
atic grading tendencies. Models exhibited consis-
tent levels and directions of bias relative to the
mean. Specifically, Gemini tended to assign higher
scores than all other raters, Claude tended to assign
lower scores, and GPT produced ratings closest to
the mean.

Human raters showed more variation: two raters
(Human Rater 1 and Human Rater 2) consistently
assigned lower scores, while one rater (Human
Rater 3) tended to assign higher scores. This pat-
tern aligns with the inter-rater reliability findings,
which showed that Human Raters 1 and 2 had
higher reliability with each other compared to Hu-

man Rater 3.

5.3 Implications for Hybrid Assessment

These findings suggest that AI models may be par-
ticularly effective for evaluating clear-cut cases,
where human raters also show high certainty and
agreement. In contrast, more difficult-to-evaluate
student responses—those requiring additional con-
text, nuanced interpretation, or expert teacher
judgment—could be flagged for human review.
Leveraging AI confidence scores to identify such
cases can support hybrid assessment approaches
that combine the efficiency of automated scoring
with the depth and expertise of human evaluation.
This layered approach ensures that straightforward
judgments are handled quickly and consistently,
while complex or ambiguous cases receive the care-
ful consideration of trained educators.

6 Study 3: Analysis of Grading
Rationales [Exploratory]

6.1 Research Questions

While Studies 1 and 2 established that models can
achieve human-level scoring reliability, a critical
question remains: Do models reach correct an-
swers through human-like reasoning? Understand-
ing whether models identify the same strengths
and weaknesses that teachers recognize has pro-
found implications for using AI-generated feed-
back in formative assessment. This exploratory
study examines whether model explanations align
with human reasoning and whether such alignment
predicts scoring accuracy.

6.2 Methods

One human rater (former classroom teacher, M.Ed.)
provided written justifications for all 94 story retell
scores using the three-class rubric. We then mod-
ified prompts for Claude Sonnet 4, GPT-4.1, and
Gemini 2.0 Flash to request explanations alongside
scores.

We assessed explanation similarity based on
conceptual alignment rather than exact wording,
examining: identification of similar strengths or
weaknesses, reference to comparable story ele-
ments or gaps, assessment of narrative flow and
comprehension quality, overall evaluation tone
(weak/medium/strong). For example, human not-
ing “lacks essential narrative elements” and model
stating “missing key story components” were con-
sidered conceptually similar. This approach fo-

74



cused on substantive agreement rather than linguis-
tic matching.

6.3 Results

6.3.1 Quantitative Context: When Models
Succeed and Struggle

Before examining reasoning quality, we established
when models achieve accurate scoring. Analysis
revealed no instances of maximal disagreement
among humans (0 vs 2 scores), suggesting disagree-
ments occur at category boundaries rather than re-
flecting fundamental assessment differences.

For the approximately two-thirds of cases (62
out of 94) where all three human raters assigned
identical scores, we considered these as potentially
“easy to grade” responses—those with clear indi-
cators of quality that multiple raters could consis-
tently identify. For these unanimous cases, the
human ground truth score was simply the agreed-
upon score. For the remaining one-third of cases
(32 out of 94) where human raters showed some
level of disagreement, we considered these as po-
tentially ambiguous or difficult-to-assess responses.
For these non-unanimous cases, the human ground
truth was determined by majority vote.

We then compared these human ground truth
scores against the model consensus scores (deter-
mined by majority vote across Claude Sonnet 4,
GPT-4.1, and Gemini 2.0 Flash) to assess how
model performance varies based on the inherent
difficulty of the assessment task.

Agreement Level Cases Direct QWK

Unanimous 62 (66%) 82.3% 0.808
Non-Unanimous 32 (34%) 50.0% 0.516

Table 6: Model consensus performance by human agree-
ment

The results reveal a striking pattern: when hu-
man raters unanimously agree on a score, the model
consensus achieves strong agreement (QWK =
0.808) with the human judgment. However, when
human raters disagree—suggesting inherent ambi-
guity in the student response—model performance
drops substantially to moderate agreement (QWK
= 0.516), with direct agreement falling to chance
levels (50%). This pattern suggests that models ex-
cel at identifying clear-cut cases but struggle with
the same ambiguous responses that challenge hu-
man raters.

6.3.2 Explanation-Score Alignment Analysis
Given that models achieve high accuracy on clear
cases but struggle with ambiguous ones, we ex-
amined whether the reasoning behind their scores
aligns with human thinking. Do models identify
the same strengths and weaknesses that teachers
recognize, even when they arrive at the correct
score?

Table 7 presents the relationship between expla-
nation similarity and scoring accuracy across all
three models:

Model Similar Different

Match No Match Match No Match

Claude 87.0% 13.0% 66.7% 33.3%
GPT-4.1 81.3% 18.7% 65.2% 34.8%
Gemini 69.5% 30.5% 77.1% 22.9%

Table 7: Relationship Between Explanation Similarity
and Score Agreement

Claude and GPT-4 demonstrate strong align-
ment: when their explanations resemble human
reasoning, scores match 81-87% of the time. This
high precision suggests that explanation similar-
ity could serve as a confidence indicator for au-
tomated scoring. However, it’s important to note
that similar explanations occurred in only about
50% of cases for Claude and GPT-4, while Gemini
achieved 62.8% explanation similarity.

The moderate occurrence of similar explanations
(50-63% across models) reveals an important in-
sight: many accurate scores emerge through dif-
ferent reasoning paths than humans employ. This
suggests that models may identify alternative but
potentially valid indicators of comprehension qual-
ity that differ from traditional human assessment
approaches.

Gemini presents an interesting anomaly—
achieving the highest rate of similar explanations
but showing the weakest correlation between ex-
planation similarity and score agreement (69.5%).
This pattern suggests that surface-level explanation
similarity may not always indicate deep alignment
in assessment reasoning, and that the quality of
reasoning alignment may be more important than
the quantity.

6.3.3 Explanation Similarity as a Trust Signal
To evaluate whether explanation similarity could
serve as a practical indicator of scoring reliability
in operational systems, we calculated performance
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metrics treating explanation similarity as a predic-
tor of score agreement:

Model Precision Recall F1 FPR

Claude Sonnet 4 87.0% 55.6% 0.68 13.0%
GPT-4.1 81.3% 56.5% 0.67 18.7%
Gemini 2.0 69.5% 60.3% 0.65 30.5%

Table 8: Performance Metrics for Using Explanation
Similarity to Predict Score Agreement

The high precision for Claude and GPT-4
(>80%) suggests that when these models “speak
the same language” as human raters, their scores
are generally trustworthy. The low false positive
rates (13-19% for Claude and GPT-4) indicate they
rarely provide human-like explanations for incor-
rect scores—a desirable property for building edu-
cator trust.

However, the moderate recall values (55-60%)
reveal that many correct scores emerge through dif-
ferent reasoning paths. This asymmetry has prac-
tical implications: similar explanations strongly
predict reliable scores, but divergent explanations
don’t necessarily indicate unreliability. Models
may identify alternative but valid indicators of com-
prehension quality that human raters don’t typically
consider.

6.4 Implications and Limitations
These findings suggest limited utility for direct stu-
dent feedback from model explanations. While
models can identify obvious strengths and weak-
nesses in clear-cut cases, their explanations for
ambiguous responses—where students most need
guidance—prove unreliable. The moderate overall
explanation similarity (50-63%) indicates models
identify alternative but potentially valid compre-
hension indicators that humans don’t typically con-
sider. This could enrich assessment if properly
understood but requires careful interpretation.

The finding that models reach correct scores
through different reasoning paths reinforces that AI
assessment should complement rather than replace
human evaluation. Models may notice patterns hu-
mans miss, but their reasoning remains opaque and
potentially misleading, particularly for challenging
cases.

This exploratory analysis has significant limita-
tions. Single human rater evaluation limits gen-
eralizability. Subjective determination of expla-
nation “similarity” introduces potential bias. The
specific task and rubric may not represent broader

assessment contexts. Despite limitations, consis-
tent patterns across scoring and explanation anal-
ysis suggest current language models can handle
routine assessment but shouldn’t be trusted with
generating feedback for ambiguous responses. The
relationship between model reasoning and human
judgment merits systematic study with multiple
raters across diverse contexts.

7 Discussion and Conclusion

7.1 Key Findings and Implications

This research demonstrates that Large Language
Models can achieve near-human reliability in story
retell assessment, but with critical nuances that
guide implementation. The convergence of model
performance (QWK = 0.82) with human inter-rater
reliability (0.85) represents practical viability, yet
this aggregate metric masks important performance
stratification.

The most significant finding is the dramatic
performance difference based on case ambigu-
ity. When human raters unanimously agree—
approximately 66% of cases—models achieve 82%
direct agreement. For the 34% generating human
disagreement, model performance drops to chance
levels (50%). This natural segmentation suggests
a clear division of labor: AI handles routine cases
while humans address ambiguous responses requir-
ing professional judgment.

The discovery of consistent “grading personal-
ities” across model families has important imple-
mentation implications. Claude’s systematic strict-
ness, Gemini’s leniency, and GPT’s moderation
persist across temperature settings, indicating these
are fundamental model characteristics. Schools
must be aware of these tendencies to avoid inad-
vertently advantaging or disadvantaging students
through model selection.

Rubric design emerges as foundational for both
human and AI reliability. The progression from
poor binary classification to strong five-class perfor-
mance underscores that technology amplifies rather
than compensates for assessment design quality.
The conditional reliability of model explanations—
strong for clear cases but unreliable for ambiguous
ones—limits their utility for direct student feed-
back.

These findings collectively support hybrid as-
sessment architectures that leverage respective
strengths. For teachers managing 25+ students,
automating the 66% of clear-cut cases could en-
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able weekly rather than monthly retell assessments,
dramatically increasing formative data availability
while redirecting teacher expertise toward students
most needing support.

7.2 Limitations and Future Directions

This exploratory study examined specific models,
rubrics, and student populations. Generalization
requires systematic investigation across diverse ed-
ucational contexts. The single human rater provid-
ing explanations limits reasoning analysis conclu-
sions. Future research should examine longitudinal
impacts on learning outcomes and develop robust
methods for uncertainty detection beyond simple
confidence scores.

7.3 Conclusion

Large Language Models can reliably support story
retell assessment when implemented thoughtfully
within hybrid human-AI systems. The technology
has reached sufficient maturity for practical appli-
cation, but success depends on understanding both
capabilities and limitations. By handling routine
assessment tasks, AI can free teachers to focus on
complex pedagogical decisions that truly require
professional judgment. The goal isn’t to automate
education but to enhance human connections at
its heart, providing teachers with better tools for
understanding and supporting student learning.

Limitations

This study has several important limitations. First,
our dataset consists of only 95 student responses
from a specific educational context in Ghana,
which may not generalize to other populations or
educational settings. Second, while we tested three
prominent LLMs, the rapid pace of model develop-
ment means our findings may not apply to newer or
different architectures. Third, our analysis of grad-
ing rationales relied on a single human rater’s judg-
ments, limiting the generalizability of our conclu-
sions about explanation quality. Fourth, we exam-
ined only story retell tasks, and performance may
differ for other literacy assessment types. Finally,
our study is cross-sectional and cannot address the
long-term impacts of AI-assisted assessment on
student learning outcomes or teacher practices. Fu-
ture work should address these limitations through
larger, more diverse datasets, longitudinal studies,
and multiple raters for explanation analysis.
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This research was conducted with appropriate eth-
ical oversight and student data was anonymized
prior to analysis. We acknowledge several ethical
considerations: First, automated assessment sys-
tems risk perpetuating or amplifying biases present
in training data or human rating patterns. Sec-
ond, over-reliance on AI assessment could diminish
valuable teacher-student interactions that occur dur-
ing traditional assessment. Third, the use of student
data from Ghana raises questions about technologi-
cal colonialism and the appropriateness of applying
Western assessment frameworks in diverse cultural
contexts. We advocate for AI assessment tools as
supplements rather than replacements for human
judgment, emphasizing transparency about system
limitations and maintaining teacher agency in all
assessment decisions. Any deployment should
involve stakeholder consultation, particularly in
Global South contexts, to ensure cultural appropri-
ateness and educational benefit.
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Abstract

Large Language Models in Conversation-Based
Assessment tend to provide inappropriate hints
that compromise validity. We demonstrate that
self-critique – a simple prompt engineering
technique – effectively constrains this behavior.
Through two studies using synthetic conver-
sations and real-world high school math pilot
data, self-critique reduced inappropriate hints
by 90.7% and 24-75% respectively. Human ex-
perts validated ground truth labels while LLM
judges enabled scale. This immediately deploy-
able solution addresses the critical tension in
intermediate-stakes assessment: maintaining
student engagement while ensuring fair com-
parisons. Our findings show prompt engineer-
ing can meaningfully safeguard assessment in-
tegrity without model fine-tuning.

1 Background

1.1 Introduction
Conversation-Based Assessment (CBA) represents
an innovative approach to educational evaluation.
In CBA, students engage in dialogue with a chatbot
while being assessed, which can improve test score
validity (Yildirim-Erbasli and Bulut, 2023). Unlike
traditional formats, CBA enables natural language
responses that expand construct coverage (Bejar,
2017) while providing two unique assessment ad-
vantages: immediate, tailored feedback to enhance
engagement, and follow-up questions that probe
deeper understanding when initial responses are
incomplete.

While CBA has shown promise in low-stakes
formative assessments, intermediate-stakes assess-
ments present a unique challenge (Perie et al.,
2009). These assessments require both student
engagement to ensure validity (Eklöf, 2010; Finn,
2015) and standardized conditions to enable fair
comparisons between students. This creates ten-
sion between providing motivating feedback and
maintaining assessment standardization.

The integration of Large Language Models
(LLMs) into CBA systems presents both an oppor-
tunity and a challenge. LLMs excel at providing
supportive, encouraging responses that could en-
hance student engagement – a critical factor for as-
sessment validity. They achieve this through train-
ing that maximizes human preferences (Ziegler
et al., 2020). However, this same preference-
maximizing behavior leads LLMs to naturally pro-
vide overly helpful responses. These responses
may include inappropriate hints, solutions, or an-
swers (Jones and Bergen, 2024). For assessments
where protecting validity and comparability is criti-
cal, LLM behavior must be carefully constrained
to harness engagement benefits while preventing
inappropriate assistance (Puech et al., 2025).

1.2 Constraining LLM behavior
The critical need to prevent inappropriate assis-
tance in assessment contexts makes methods for
constraining LLM behavior essential. While model
tuning can modify behavior through weight up-
dates, prompt engineering (PE) offers a more acces-
sible approach using carefully crafted instructions
and code-based techniques (Vijayan and Vengath-
attil, 2025).

Among PE techniques for behavioral constraint
(Sahoo et al., 2024), self-critique shows particu-
lar promise. This technique uses the LLM to cri-
tique and revise its own responses (He et al., 2025),
demonstrating effectiveness at reducing hallucina-
tions (Dhuliawala et al., 2023) and performing well
as a self-critic for short inputs (He et al., 2025),
making it well-suited for assessment applications
where responses are typically brief.

1.3 Evaluation methodology
Rigorous measurement is essential for evaluating
LLM behavior in assessment contexts. Evaluat-
ing whether an LLM gives inappropriate hints re-
quires measurement methodology borrowed from
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social science (Ameli et al., 2024; Wallach et al.,
2024). The process begins with construct definition
and task development (Wallach et al., 2024), fol-
lowed by evaluation using multiple human raters
and assessment of interrater reliability (Belur et al.,
2021).

To enable evaluation at scale, researchers in-
creasingly employ LLM judges that complement
human evaluation. While requiring careful vali-
dation against human judgments (Li et al., 2024),
LLM judges have demonstrated accuracy in ed-
ucational contexts including standards alignment
(Lucy et al., 2024), response scoring (Frohn et al.,
2025; Morris et al., 2024), and content refinement
(Clark et al., 2025). This dual approach – com-
bining human ground truth with validated LLM
evaluation – enables rapid testing and experimenta-
tion during development of assessment safeguards.

1.4 Research questions

Intermediate-stakes CBA faces a critical tension:
leveraging LLMs’ engagement benefits while pre-
venting their tendency to provide inappropriate
assistance. This paper addresses this challenge
through the following research questions:

1. How accurately can an LLM judge detect inap-
propriate hints when validated against human
expert judgments?

2. Can self-critique mechanisms effectively re-
duce inappropriate hints in LLM-based CBA?

3. Does self-critique performance generalize
from synthetic development data to real-world
student conversations?

To address these questions, we develop and eval-
uate a self-critique mechanism where the LLM eval-
uates and revises its own responses before delivery.
Through two studies – one using synthetic con-
versations for development and validation, and an-
other using real student pilot data – we demonstrate
that prompt engineering can successfully constrain
LLM behavior while maintaining the engagement
benefits that make CBA valuable for intermediate-
stakes assessment.

2 Research

To evaluate whether self-critique can effectively
prevent inappropriate hints in CBA interactions,
we conducted two complementary studies. Study

Figure 1: Screenshot of the Explain Your Thinking CBA
item type. The student first answers a math problem
(left), and then has a conversation about the problem
(right) which is designed to assess their conceptual un-
derstanding.

1 used synthetic conversations between LLM-
simulated students and the assessment chatbot
(hereafter “ProctorBot”) to develop and validate
our self-critique mechanism under controlled con-
ditions. Study 2 validated these findings using real
student conversations from high-school math as-
sessment pilots, demonstrating the practical effec-
tiveness of self-critique in authentic assessment
contexts.

2.1 Study 1: Pre-pilot development and
validation using synthetic data

Study 1 developed and evaluated the self-critique
mechanism under controlled conditions. Using
synthetic conversations between LLM-simulated
students and ProctorBot, we: (1) collected human
expert labels to establish ground truth, (2) validated
an LLM judge for detecting inappropriate hints,
and (3) conducted an A/B test comparing baseline
ProctorBot against a self-critique version.

2.1.1 Methods
Definition of inappropriate hint. For this study,
we define an “inappropriate hint” as a ProctorBot
response that reveals a concept from the assessment
criteria that students are expected to demonstrate.
Unlike a response that would draw out a student’s
thinking and reveal what they know (e.g., a So-
cratic question), an inappropriate hint would state
or strongly hint at one of the criteria concepts –
making it difficult to assess what they know. For
example, say we wanted to assess if a student under-
stood the concept of inverse operations: If the stu-
dent solved the problem 1.5x = 3 by dividing, and
then ProctorBot asked “How does dividing undo
the multiplication?”, this would be an inappropri-
ate hint because it reveals the inverse operations
concept.
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Synthetic data generation. We generated syn-
thetic conversation data using two LLM agents: (1)
ProctorBot, designed to assess and question stu-
dents about their conceptual understanding of math
problems, and (2) a student simulator (“Student-
Bot”) designed to express adversarial behaviors
(asking for help, expressing uncertainty, refusing
to answer) expected to increase the likelihood of
inappropriate hints.

Using a Python script to orchestrate conversa-
tions between the two agents, we generated 200
synthetic conversations (50 conversations × 4 math
problems). Of these, 62 ended early when Proctor-
Bot determined that StudentBot had immediately
satisfied the assessment criteria. From the remain-
ing 138 conversations, we systematically extracted
597 test cases at various conversation depths for
later experimental use.

The synthetic conversations reflected realistic
assessment interactions: StudentBot responses had
a median length of 11 words, ProctorBot responses
averaged 18 words, and full conversations had a
median of 7 turns. To increase response diversity,
we varied several StudentBot parameters across
simulation runs (see Appendix A).

From this corpus, we sampled 120 ProctorBot
responses for human labeling, with some conversa-
tions contributing multiple responses from different
points in the interaction.

Data labeling and ground truthing. Three
subject-matter experts labeled each ProctorBot re-
sponse as containing an inappropriate hint or not.
We presented each response with full context: con-
versation history, the math problem, assessment
criteria, and the inappropriate hint definition.

Initial inter-rater agreement was slight (Fleiss’
kappa, denoted κF = 0.191 [0.070, 0.314]), with
only 53 of 120 items (44%) achieving unanimous
agreement. The 67 items with disagreements under-
went group discussion and arbitration, resolving 59
cases. This process increased agreement to almost
perfect (κF = 0.884 [0.798, 0.954]), establishing a
reliable ground truth dataset for subsequent analy-
ses.

LLM judge development and validation. To
develop an LLM judge capable of detecting inap-
propriate hints, we tested three prompt variations
that differed only in how the target behavior was
specified:

1. Baseline-prompt: Provided only a simple def-

inition stating that an inappropriate hint “gives
away KEY information from the Criteria that
has not already been mentioned”

2. Enhanced-specificity: Added clarification
that “simply mentioning KEY concepts from
the Criteria. . . IS ENOUGH to be considered
leading”

3. Example-based: Supplemented the base-
line definition with six annotated examples
(three inappropriate hints, three appropriate
responses)

All configurations used GPT-4o with tempera-
ture=0 and included the variables in Table 1 as
context for the LLM judge. We ran each configu-
ration 20 times on our 120-item dataset to ensure
stable estimates, then calculated Cohen’s kappa (de-
noted κC) for two-rater agreement and confidence
intervals using bootstrap resampling (N=1000) to
account for clustering.

Context Element Description

Problem The math problem that the student
is having a conversation about

StudentAnswer The student’s answer to the problem
Criteria The assessment criteria
BehaviorDefinition The definition of inappropriate hints
ConversationHistory The conversation between student

ProctorBot so far
ProctorBotResponse The ProctorBot response that is be-

ing judged, which immediately fol-
lows ConversationHistory

Table 1: Context elements provided to the LLM judge.

The enhanced-specificity configuration obtained
substantial agreement with ground truth (Landis
and Koch, 1977), and had the best balance of perfor-
mance and simplicity (κC = 0.629 [0.611, 0.648])
– outperforming the baseline-prompt (κC = 0.553
[0.533, 0.569]), and performing comparably to the
significantly more complex example-based prompt
(κC = 0.612 [0.597, 0.628]). Thus, we decided to
use the enhanced-specificity prompt for our imple-
mentation of self-critique.

Experiment to evaluate self-critique effective-
ness. Having established a reliable automated
method for detecting inappropriate hints through
our validated LLM judge, we could now evalu-
ate our proposed self-critique intervention at scale.
The following experiment tests whether incorporat-
ing self-critique into ProctorBot’s response gener-
ation process can effectively reduce the frequency
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of inappropriate hints compared to the baseline sys-
tem.

From our synthetic dataset of 597 test cases, we
identified those with high propensity for inappro-
priate hints by screening each case 10 times with
baseline ProctorBot. This yielded 179 conversation
states that produced at least one inappropriate hint
(as determined by our LLM judge).

For each of these 179 test cases, we generated
responses using both baseline ProctorBot and a
self-critique version, then evaluated each response
using the LLM judge developed above. The self-
critique mechanism employs a two-step process:
(1) ProctorBot generates an initial response, then
(2) a critic evaluates whether this response inap-
propriately reveals assessment criteria. If the critic
detects an inappropriate hint, it generates a replace-
ment response that avoids revealing assessment
criteria. During development, we conducted infor-
mal qualitative review of the critic’s replacement
responses to ensure they maintained pedagogical
appropriateness.

2.1.2 Results
Self-critique dramatically reduced inappropriate
hints from 65.9% (118/179) in the baseline to 6.1%
(11/179), representing a 90.7% reduction. Figure 2
illustrates this substantial improvement.

To account for the paired nature of our data
(same conversation states tested with both ver-
sions), we used McNemar’s test, which revealed
a highly significant difference (χ2 = 101.23, p <
0.001). Of the 111 test cases that showed differ-
ent outcomes between versions (62% of all cases),
98.2% improved with self-critique: 109 cases
changed from producing inappropriate hints to ap-
propriate responses, while only 2 cases showed the
opposite pattern.

These findings provided strong evidence for self-
critique effectiveness in controlled settings, leading
us to validate the approach with real-world data in
Study 2.

2.2 Study 2: Post-pilot validation using
real-world assessment pilot data

While Study 1 demonstrated self-critique effective-
ness with synthetic data, validating this approach
with authentic student interactions remained essen-
tial.

Study 2 validated the self-critique mechanism in
authentic assessment contexts. Using real student
conversations from high-school math assessment

Figure 2: Results of the experiment showing the propor-
tion of inappropriate hints with baseline and self-critique
versions of ProctorBot. Self-critique dramatically re-
duced the rate of inappropriate hints from 65.9% to 6.1%
– a 90.7% reduction.

pilots, we: (1) collected human expert labels to
establish ground truth, (2) validated an LLM judge
for detecting inappropriate hints, and (3) conducted
an A/B test comparing baseline ProctorBot against
a self-critique version.

2.2.1 Methods
Data source and sampling. We analyzed conver-
sation data from two high school math assessment
pilots (algebra and geometry) conducted between
April 14 and May 31, 2025, involving approx-
imately 7,000 students and 9,000 conversations.
From this corpus, we sampled 400 conversation
states (specific points in conversations where Proc-
torBot responded), selecting 50 samples from each
of eight Common Core standards problems.

To ensure sufficient positive examples given the
expected low base rate of inappropriate hints, we
performed stratified sampling: we pre-classified 25
examples per problem as likely containing inap-
propriate hints and 25 as likely not, using GPT-4.1
with the judge prompt from Study 1. We chose
GPT-4.1 over GPT-4o for preliminary screening
based on its superior agreement with our synthetic
ground truth data.

Data labeling and ground truthing. Following
the same protocol as Study 1, three subject-matter
experts labeled each ProctorBot response. To re-
duce labeling burden, we employed a tie-break pro-
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cess: two raters initially labeled each response,
with a third rater resolving disagreements.

Inter-rater agreement (κF ) was moderate dur-
ing training (κF = 0.428 [0.305, 0.506]) and ini-
tially moderate for the main labeling session (κF =
0.571 [0.447, 0.682]).1 Exercise-level analysis re-
vealed that one problem achieved only chance-level
agreement (κF = -0.004 [-0.389, 0.341]), likely due
to ambiguous assessment criteria. Excluding this
problem increased overall agreement to substantial
(κF = 0.669 [0.537, 0.785]).

The final ground truth dataset comprised 350
items, with 82 responses (23.4%) labeled as con-
taining inappropriate hints. Note that this rate re-
flects our stratified sampling strategy, not the popu-
lation prevalence in actual student conversations.2

LLM judge validation. We validated an LLM
judge against the ground truth, testing three mod-
els (GPT-4.1, GPT-4o, and GPT-5-mini) and
two prompt configurations (baseline and chain-of-
thought reasoning). GPT-5-mini without chain-of-
thought achieved the strongest agreement with hu-
man judgments (κC = 0.596 [0.497, 0.688]), reach-
ing a moderate level of agreement (see Appendix
B for complete model comparison results).

Confirmatory experiment. To validate whether
the self-critique effectiveness observed in Study 1
would generalize to real student conversations, we
tested three models (GPT-5-mini, GPT-4.1, GPT-
4o) implementing self-critique on our 350 conver-
sation states. We compared these to the original
ProctorBot responses from the assessment pilots
(baseline), with all responses evaluated using the
GPT-5-mini judge.

The self-critique implementation followed the
same two-step process as Study 1, with all models
operating at temperature=0 (except GPT-5-mini at
fixed temperature=1).

2.2.2 Results
Self-critique proved effective with real-world data.
All three models showed substantial reductions in
inappropriate hints compared to the baseline rate
of 27.4% (96/350): GPT-5-mini achieved a 75.0%
reduction (to 6.9%), GPT-4.1 a 65.6% reduction (to

1We excluded tie-break labels from agreement calculations
as they are conditionally sampled only when initial raters
disagree, violating assumptions for valid kappa statistics.

2The true population rate is likely substantially lower, as
we deliberately oversampled conversations initially classified
as containing inappropriate hints to ensure sufficient positive
examples for analysis.

Figure 3: Inappropriate hint rates across model configu-
rations on real-world pilot data. Self-critique implemen-
tations achieved reductions ranging from 24% (GPT-4o)
to 75% (GPT-5-mini) compared to the null baseline,
with all improvements being statistically significant. Er-
ror bars represent 95% confidence intervals.

9.4%), and GPT-4o a 24.0% reduction (to 20.9%).
Figure 3 displays these improvements across mod-
els.

McNemar’s test confirmed highly significant dif-
ferences for all models (all p < 0.001, significant af-
ter multiple comparison correction). The improve-
ment pattern mirrored Study 1: of discordant pairs,
the vast majority (89.1% for GPT-5-mini, 88.9%
for GPT-4.1, 79.5% for GPT-4o) changed from
inappropriate hints to appropriate responses with
self-critique.

3 Conclusions

Our two-study investigation demonstrates that self-
critique substantially reduces inappropriate hints in
both synthetic and real-world CBA contexts.

Self-critique offers educational institutions a
practical, immediately deployable solution for con-
straining LLM behavior in Conversation-Based As-
sessment. Organizations can implement this safe-
guard through simple prompt modifications, avoid-
ing the costs and complexity of model fine-tuning.
The technique’s accessibility makes it particularly
valuable for institutions with limited technical re-
sources.

Our systematic evaluation methodology provides
a template for assessing LLM behaviors in educa-
tional contexts. We progressed from synthetic to
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real-world data with rigorous human validation.
The significant reductions in inappropriate hints
across both studies validate self-critique as an ef-
fective safeguard. The same process could be used
to attempt to reduce answer giving in other tutor
scenarios where providing the answer is not de-
sired. However, important limitations remain. Our
evaluation focused specifically on mathematics as-
sessment and hints that reveal assessment criteria.
Generalization to other domains and types of as-
sistance requires further investigation. Addition-
ally, we did not systematically evaluate whether
self-critique impacts overall response quality or ed-
ucational value. Our focus remained exclusively
on inappropriate hint reduction. While informal
qualitative review during development suggested
that responses remained pedagogically appropriate,
quantifying any trade-offs between constraint ef-
fectiveness and response quality remains an open
question.

Together with other emerging approaches for
quality assurance in educational AI, self-critique
offers a targeted solution for constraining LLM out-
puts through prompt engineering. Our contribution
shows that even simple, immediately deployable
techniques can meaningfully reduce inappropriate
LLM behaviors and advance assessment validity
when grounded in rigorous evaluation. As educa-
tional institutions navigate the integration of gen-
erative AI, this combination of theoretical frame-
works, empirical validation, and practical tools will
prove essential for maintaining the standards that
make assessment meaningful.

4 Appendix A: StudentBot parameter
variations

To increase the diversity of synthetic student re-
sponses in Study 1, we varied the following Stu-
dentBot parameters across simulation runs:

• Model selection: GPT-4o and Llama-3.1
• Initial answer correctness: Whether Student-

Bot provided a correct or incorrect answer to
the initial math problem

• Student persona traits: Anxiety level, com-
munication style (formal vs. informal), pa-
tience, and engagement level

These variations ensured that our synthetic
dataset captured a range of student behaviors and
interaction patterns, improving the robustness of
our inappropriate hint detection and self-critique
evaluation.

5 Appendix B: LLM judge model
comparison results

Complete results from Study 2 LLM judge valida-
tion (κC with 95% confidence intervals):

• GPT-5-mini: κC = 0.596 [0.497, 0.688]
(without chain-of-thought); 0.551 [0.445,
0.652] (with chain-of-thought)

• GPT-4.1: κC = 0.422 [0.304, 0.527] (without
chain-of-thought); 0.437 [0.303, 0.550] (with
chain-of-thought)

• GPT-4o: κC = 0.195 [0.086, 0.303] (without
chain-of-thought); 0.320 [0.200, 0.431] (with
chain-of-thought)
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Abstract

Automated Essay Scoring (AES) is one of the
most widely studied applications of Natural
Language Processing (NLP) in education and
educational measurement. Recent advances
with pre-trained Transformer-based large lan-
guage models (LLMs) have shifted AES from
feature-based modeling to leveraging contex-
tualized language representations. These mod-
els provide rich semantic representations that
substantially improve scoring accuracy and hu-
man–machine agreement compared to systems
relying on handcrafted features. However, their
robustness towards adversarially crafted inputs
remains poorly understood. In this study, we
define adversarial input as any modification of
the essay text designed to fool an automated
scoring system into assigning an inflated score.
We evaluate a fine-tuned DeBERTa-based AES
model on such inputs and show that it is highly
susceptible to a simple text duplication attack,
highlighting the need to consider adversarial
robustness alongside accuracy in the develop-
ment of AES systems.

1 Introduction

Automated Essay Scoring (AES) is one of the ear-
liest applications of Natural Language Processing
(NLP) to educational assessment, with roots dating
back to the 1960s (Page, 1967). Over the decades,
AES systems have evolved from statistical mod-
els with shallow surface-level features to highly
sophisticated neural architectures (Beigman Kle-
banov and Madnani, 2020). Traditional approaches
often relied on handcrafted features designed to
approximate lexical diversity, syntactic complexity,
discourse organization, and stylistic control. For
example, the use of connectives such as “there-
fore” or “in conclusion” could serve as proxies
for argumentative structure, while measures such
as type–token ratio or average sentence length are
aimed at capturing lexical richness (Chodorow and

Burstein, 2004). These approaches, although ef-
fective to some extent, are inherently limited: they
depend heavily on feature engineering and are vul-
nerable to superficial manipulation by test takers
(Powers et al., 2001; Chodorow and Burstein, 2004;
Perelman, 2020).

The advent of deep learning (Goodfellow et al.,
2016), and more recently pre-trained Transformer
(Vaswani et al., 2017) based large language mod-
els (LLMs), has reshaped the AES landscape.
Transformer-based models such as BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019), and De-
BERTa (He et al., 2020) learn contextual repre-
sentations of text that capture lexical, syntactic,
and semantic information simultaneously. When
fine-tuned on essay scoring datasets, these models
substantially increase the agreement between ma-
chine predictions and human raters, often measured
using Quadratic Weighted Kappa (QWK) (Li and
Ng, 2024). This leap in performance could lead
to growing enthusiasm towards operational deploy-
ment of LLM-based AES in high-stakes testing
environments.

Yet, the question of robustness remains underex-
plored (Ding et al., 2020; Kabra et al., 2022). Accu-
racy gains in typical test settings do not guarantee
resilience under adversarial conditions. Adversar-
ial attacks in NLP — ranging from synonym substi-
tution in sentiment analysis (Zhou et al., 2021) to
input perturbations in machine translation (Michel
et al., 2019) — have shown that state-of-the-art
models can be surprisingly fragile. In educational
contexts, this fragility has serious implications. Un-
like sentiment classification or translation, AES
models directly influence student outcomes. If
models can be “fooled” by trivial manipulations,
such as artificially inflating essay length or insert-
ing irrelevant but sophisticated-sounding sentences
or words, the integrity of automated scoring is jeop-
ardized. This is particularly concerning given the
high stakes of standardized assessments, where
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even a one-point increase in an essay score can
affect admissions or scholarship decisions.

Prior work has begun to highlight these vulnera-
bilities. Ding et al. (2020) showed that content scor-
ing systems can be misled by adversarial strings
of meaningless characters. Kabra et al. (2022)
proposed toolkits for systematically probing AES
robustness, underscoring the need for adversarial
evaluation. Jeon and Strube (2021) demonstrated
that essay length continues to exert disproportion-
ate influence on neural AES models, echoing con-
cerns that date back to earlier systems (Chodorow
and Burstein, 2004). Collectively, this line of work
suggests that LLM-based AES models, despite
their sophistication, may inherit structural weak-
nesses from both feature-based and neural prede-
cessors.

In this preliminary study, we take a focused step
toward systematically evaluating adversarial robust-
ness of an LLM-based AES model. Specifically,
we examine the behavior of a DeBERTa-based scor-
ing system fine-tuned on the Persuade 2.0 corpus
(Crossley et al., 2024). We design and test three
adversarial scenarios that are both simple to imple-
ment and highly plausible in real testing conditions:

• Appending high-impact words, where the test
taker simply append few words that are likely
to be found in high scoring essays. If an au-
tomatic scoring model is overly relying on
uni-grams such essays could see a boost in
score.

• Fancy-language injection, where a short para-
graph of complex, topic-agnostic sentences
are appended to the essay to mimic advanced
vocabulary and sentence structure.

• Text duplication, where a test taker repeats
their essay once or twice to artificially inflate
length. Scoring models often pick up essay
length as a proxy to essay quality, duplication
of text is the easiest way to increase essay
length.

To provide additional context for robustness, we
also examine noise-based perturbations such as
scrambling words or sentence spans. These ma-
nipulations allow us to probe the model’s reliance
on lexical coherence versus discourse-level organi-
zation.

Findings from our preliminary study are twofold:

• We demonstrate that a DeBERTa-based AES
model, while achieving strong baseline accu-
racy (QWK = 0.87), is highly vulnerable to
text duplication, with systematic and substan-
tial score inflation.

• We show that the model is relatively robust to
high-impact lexicon and sentence insertions,
suggesting that sophisticated vocabulary and
structuring without semantic relevance does
not easily fool the system.

Taken together, these findings highlight a central
tension in AES research: while LLMs improve ac-
curacy, they do not automatically confer robustness.
Even trivial adversarial strategies can yield large
score changes, raising fairness and validity con-
cerns. We argue that adversarial robustness should
be treated as a primary design criterion for AES,
alongside scoring accuracy and reliability, and we
hope this work stimulates further research in this
direction.

2 Experiment Setup

For our experiments we use the Persuade Corpus
2.0 (Crossley et al., 2024), a large-scale dataset
of approximately 25,000 student essays written by
grades 6–12 in response to argumentative writing
prompts. Each essay in this corpus has been scored
holistically by human raters on a six-point ordinal
scale (1 = weakest, 6 = strongest), reflecting over-
all writing quality rather than individual analytic
traits. The dataset is particularly suitable for adver-
sarial evaluation because it is both large enough to
fine-tune LLMs effectively and realistic in content,
covering authentic student writing with diverse lev-
els of proficiency. In addition, Persuade 2.0 is a
recent corpus explicitly designed to advance AES
research, which makes it a valuable benchmark for
studying not only predictive performance but also
model robustness. For training and evaluation, we
adopt the official splits, which contain 15,528 items
in the training set and 10,356 items in the test set.

Our AES model is built on DeBERTa (He et al.,
2020), a Transformer-based large language model
that improves upon BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019) through disentan-
gled relative attention mechanisms. Specifically we
used DeBERTa V3 base (He et al., 2021) via the
Hugging Face Transformers Python Module. An
important parameter that is relevant for this partic-
ular study is the token limit, which limits the size
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transform mean change (sd)
scramble-words -2.10 (1.0)
scramble-sents -0.06 (0.2)
add-low-words -0.13 (0.2)
add-high-words -0.09 (0.1)

add-smoke -0.05 (0.2)
length-2x 0.93 (0.3)
length-3x 1.28 (0.6)

Table 1: Mean score change (SD) per transform (score range 1-6).

of the input text. Thanks to relative positioning
bias in DeBERTa, the maximum number of tokens
is given by (2k − 1)l, where l is the number of
layers and k is the maximum relative distance al-
lowed between tokens. Since in DeBERTa base
l = 12 and k = 512, we can have a maximum
of 24,528 tokens in the input text. This is lower
than the thrice the number of tokens in the longest
essay (1902 tokens 1) in the dataset. To adapt De-
BERTa for essay scoring, we attach a simple regres-
sion head on top of the [CLS] token embedding to
predict continuous essay scores in the range 1–6.
The head consists of a two-layer feed-forward net-
work trained jointly with the DeBERTa encoder,
so that the model learns both task-specific features
and general linguistic representations. Training is
performed with mean squared error (MSE) loss,
and model quality is evaluated using Quadratic
Weighted Kappa (QWK), a standard metric for
measuring agreement with human raters in AES
research. When evaluated on the test-set our model
gives a QWK of 0.87.

2.1 Attacks

2.1.1 Adding High Scoring Words
This attack tests whether the scoring model is re-
lying on uni-grams to score the essay. High scor-
ing essays are likely to have impactful vocabulary.
Thus test takers may add such words out of con-
text in the hope of triggering the scoring model
to award a higher score. To find such words, we
split the dataset (train) into two, a high scoring set
which has essays having scores 4, 5, 6 and a low
scoring set with essays having score 1, 2, 3. Now
for each word we find its log-odds ratio of prob-
ability of the word occurring in the high scoring
set over the probability of the word occurring in
the low scoring set. This allows us to rank words

1tokens here refer to lexical units after tokenisation

based on how likely they are to be found exclu-
sively in high scoring essays. The attack then is to
append a sequence of 10 words sampled randomly
from the top 100 of these words to each of the test
essays. As this is a preliminary study the choice
of 10 is informed intuitively as the likely number
of words test takers may add. We defer testing a
range of numbers to future work. Here is such a
random sample: dependence, traditional, theatre,
platforms, extracurriculars, etc. This attack is re-
ferred to as add-high-words.

2.1.2 Adding Fancy Language
Our next attack is to test the impact of adding a
paragraph with impactful sentence structure and
vocabulary. This simulates the situation where test
takers may memorise a piece of fancy sounding text
that could be added to any essay in order to trigger
the machine to give a higher score. To study the
effect of fancy-language injection, we transform
the essay texts by adding the following to the end
of each essay: “Conceptual dynamics often emerge
through the oscillations of undefined frameworks.
This interaction, while nebulous, suggests a layered
intentionality. Consequently, abstraction persists
as both method and outcome.". This is an arbitrary
piece of text intended to add a dose of potentially
high-impact vocabulary and sentence structure. As
this is a preliminary study, we do not attempt to
quantify what is meant by high-impact, and also
limit the study to considering only a single instance.
We refer to this attack as add-smoke.

2.1.3 Inflating Essay Length
Essay scores are often correlated to its length. One
of the easiest ways a test taker can game this fea-
ture, without adding out of context text is to simply
duplicate their essays. To study the effect of text-
duplication we transform the essay text by dupli-
cating it once, and twice, referred to as length-2x

88



and length-3x, respectively.

2.1.4 Baselines
To understand the general robustness of our model
we add two more transformations, scramble-
words: in which words in the essay are scrambled,
and scramble-sents: in which the spans of text sep-
arated by newlines are scrambled (note that this is
not perfect sentence scrambling). To contrast with
the add-high-words attack we include a add-low-
words where we append words that are exclusively
found in low scoring essays. The intention is to test
if adding such words can lower the essay scores. A
random sample from add-low-words : luke, elec-
trol, presendent, thay, negitive, etc. We find that
most of these are typos, and therefore can be ex-
pected to bring down scores when added to essays.

3 Experiments and Results

3.1 Average Score Change

Table 1 gives the mean and standard deviation of
the score change induced by each transformation.
The first clear observation is that scrambling words
devastates performance (–2.10 average). This is ex-
pected: scrambling disrupts local coherence, mak-
ing essays nonsensical.

In contrast, scrambling sentences produces al-
most no change (–0.06). This suggests that the
DeBERTa-based AES model may be largely in-
sensitive to discourse-level ordering of sentences.
Although discourse coherence is a key aspect of hu-
man evaluation, our results imply that the model’s
reliance on the [CLS] embedding fails to ade-
quately capture paragraph-level or argumentative
flow. This insensitivity could become problematic
if test takers deliberately manipulate essay structure
while maintaining superficial lexical quality.

The more striking pattern emerges with duplica-
tion attacks. Doubling essay length (length-2x)
increases average scores by +0.93, and tripling
(length-3x) by +1.28. These are substantial gains
considering the total score range is only 1–6. The
effect size rivals the difference between adjacent
holistic score levels as judged by human raters. Put
differently, a mediocre essay rated 3 could be ar-
tificially boosted into the “proficient” range (4–5)
simply by repetition.

Interestingly, adding high-scoring words or high
impact vocabulary and sentence structure out
of context doesn’t increase the scores, instead
marginally decreases the scores. This contrasts

with anecdotal expectations that “sophisticated”
vocabulary could fool models. Instead, the AES
model appears somewhat robust to this type of lex-
ical padding, possibly because embeddings capture
topical mismatch between the appended text and
the main essay body.

3.2 Score Change at each Human Score Level

Table 2 disaggregates score changes by human-
assigned scores. This analysis yields three notable
insights.

scramble-words degrades higher-quality essays
more severely. Essays originally scored 6 lose over
4 points, while those scored 1 lose less than 1.

Duplication benefits mid-range essays the most.
For length-2x and length-3x, the largest gains oc-
cur at human scores 3–4. For example, a 3-rated
essay rises on average by +1.42 under length-
3x. This reflects the model’s tendency to con-
flate length with quality in borderline cases. Such
vulnerabilities are particularly concerning because
many operational decisions hinge on distinguishing
“adequate” from “proficient” performance in this
mid-range.

add-smoke and add-high-words has negligible
effects across all bins. The consistency of near-zero
changes suggests that superficial stylistic padding
does not easily exploit this model.

3.3 Score Change Distribution

Average changes alone can obscure practical im-
pact. Figure 1 therefore examines the distribution
of rounded score differences under duplication.

For length-2x, nearly 80% of essays increase by
at least +1 point, and around 10% gain +2 points.
Such shifts could materially alter student outcomes:
an essay initially rated 3 (marginal) may be reclas-
sified as 4 (proficient).

For length-3x, the effects are even more dra-
matic: 50% of essays gain +1 point and 40%
gain +2. In practice, this means almost every dupli-
cated essay is rewarded, with a non-trivial fraction
jumping two score categories.

Very few essays decrease in score, confirming
that duplication is a high-reward, low-risk adver-
sarial strategy.

These findings underscore the operational sig-
nificance of duplication: if undetected, test takers
can consistently and predictably exploit the scoring
system.
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transform 1 2 3 4 5 6
scramble-words -0.39 (0.4) -1.08 (0.4) -1.86 (0.5) -2.69 (0.5) -3.59 (0.5) -4.29 (0.3)
scramble-sents -0.01 (0.1) -0.04 (0.1) -0.07 (0.2) -0.07 (0.2) -0.05 (0.2) -0.02 (0.1)
add-low-words -0.07 (0.1) -0.10 (0.1) -0.13 (0.2) -0.17 (0.2) 0.17 (0.2) 0.09 (0.1)
add-high-words -0.06 (0.1) -0.08 (0.1) -0.09 (0.1) -0.12 (0.2) 0.08 (0.2) 0.00 (0.1)

add-smoke -0.05 (0.1) -0.07 (0.1) -0.08 (0.2) -0.07 (0.2) 0.03 (0.2) 0.09 (0.1)
length-2x 0.82 (0.4) 0.91 (0.3) 0.99 (0.3) 1.04 (0.3) 0.78 (0.4) 0.27 (0.3)
length-3x 1.12 (0.6) 1.42 (0.4) 1.49 (0.5) 1.33 (0.5) 0.71 (0.6) 0.01 (0.6)

Table 2: Mean score change (SD) at each human score level.

Figure 1: Score change distribution.

4 Conclusion

This study has examined the adversarial robust-
ness of an LLM-based AES system trained on
the Persuade 2.0 corpus. While the baseline De-
BERTa model achieved strong agreement with hu-
man raters (QWK = 0.87), our experiments reveal
that high scoring accuracy alone does not guaran-
tee robustness to adversarially crafted responses.
The most striking finding is the model’s vulnera-
bility to duplication: repeating an essay once or
twice almost always leads to inflated scores, with
gains of one or even two points on a six-point scale.
Because such changes occur consistently across a
large portion of the test set, they represent a gen-
uine threat to the validity of AES in operational
settings. Even if duplication is easy to detect with
simple preprocessing, the fact that a trivial manipu-
lation yields such predictable benefits underscores
the importance of evaluating AES systems against
adversarial input.

At the same time, the results also highlight ar-
eas where the model appears more robust. The
insertion of sophisticated but irrelevant sentences
(“smoke text”) produced negligible effects, and

the more systematic attempt to append vocabulary
disproportionately associated with high- or low-
scoring essays also failed to move predictions in
a meaningful way. These negative results suggest
that the model does not simply reward isolated lex-
ical items, even when those items are correlated
with writing quality in the training data. Instead,
it appears to integrate vocabulary in context, dis-
counting out-of-place words. This robustness to
shallow lexical padding contrasts with the severe
susceptibility to length manipulation, pointing to a
specific structural weakness rather than a general
fragility.

It is to be noted that these results are from our
preliminary study along these lines. A major limi-
tation of this study is that we have evaluated only
one kind of model. A comprehensive evaluation is
being planned as future work with multiple AES
models, and to address other limitations.

More generally future studies should pursue two
directions in parallel: developing systematic tax-
onomies of adversarial risks in AES (including se-
mantic drift, coherence disruption, and targeted
vocabulary injection), and exploring defenses that
go beyond heuristic filters. Possibilities include ex-
plicit modeling of discourse, normalization against
essay length, and the integration of adversarial
training protocols.

Ultimately, if AES systems are to be trusted in
high-stakes testing, adversarial robustness must be
evaluated alongside accuracy and fairness. Our
results provide early evidence that while certain
manipulations are resisted, others remain alarm-
ingly effective. Robustness cannot be assumed
from model sophistication alone; it must be delib-
erately measured and built into the design of future
AES systems.
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Abstract

Various detectors have been developed to detect
AI-generated essays using labeled datasets of
human-written and AI-generated essays, with
many reporting high detection accuracy. In
real-world settings, essays may be generated
by models different from those used to train
the detectors. This study examined the effects
of generation model on detector performance.
We focused on two generation models – GPT-
3.5 and GPT-4 – and used writing items from
a standardized English proficiency test. Eight
detectors were built and evaluated. Six were
trained on three training sets (human-written es-
says combined with either GPT-3.5-generated
essays, or GPT-4-generated essays, or both)
using two training approaches (feature-based
machine learning and fine-tuning RoBERTa),
and the remaining two were ensembled detec-
tors. Results showed that a) fine-tuned detec-
tors outperformed feature-based machine learn-
ing detectors on all studied metrics; b) detectors
trained with essays generated from only one
model were more likely to misclassify essays
generated by the other model as human-written
essays (false negatives), but did not misclassify
more human-written essays as AI-generated
(false positives); c) the ensembled fine-tuned
RoBERTa detector had fewer false positives,
but slightly more false negatives than detectors
trained with essays generated by both models.

1 Introduction

Generative artificial intelligence (AI) tools, such
as ChatGPT, Copilot, and Gemini, have become
increasingly capable at generating human-like text
and are now more accessible. In education, AI has
great potential at enhancing teaching, learning, and
assessments (U.S. Department of Education, Office
of Educational Technology, 2023). At the same
time, there are also concerns about the misuse of
AI in writing tasks (Lund et al., 2025). Writing
assignments are routinely given in both K-12 and

higher education. There are also many standard-
ized writing tests designed to measure test takers
writing proficiency, such as the ACT writing test,
the Graduate Record Examinations (GRE) writing
test, and the Writing assessment program (WrAP)
for grades 3-12 students. These tests require test
takers to write essays independently. If some test
takers use generative AI tools to write essays and
use these essays as their own, the validity and fair-
ness of the writing assessment are compromised.

To address concerns about AI-generated text,
many detectors have been developed to identify
such content. For example, Grammarly (Gram-
marly Inc., 2025), Scribbr (Scribbr, 2025), and
GPTZero (GPTZero, 2025) provide online tools
that allow users to enter text and then output an es-
timated percentage of the text being AI-generated,
although documentation on how they were trained
is generally unpublished. Several research studies
reported the training and evaluation of custom-built
AI-generated essay detectors. For example, Yan
et al. (2023) generated essays using GPT-3 for four
writing items from a large-scale assessment. Us-
ing these essays and real human test takers’ essays,
the authors trained two detectors: one using su-
pervised machine learning (ML) approach and the
other by fine-tuning the pre-trained language model
RoBERTa (Liu et al., 2019). The detection accu-
racy on a holdout test set was respectively 96% and
99.75% for these two detectors. Jiang et al. (2024)
studied the accuracy and potential bias in detecting
ChatGPT-generated essays. Using 10,000 essays
generated by ChatGPT and 10,000 essays written
by real test takers for 50 GRE writing items, the
authors trained detectors using supervised ML with
linguistic features extracted by e-rater (Attali and
Burstein, 2006) and GPT-2-based perplexity fea-
tures. Detection accuracy of the best performing
detector was nearly 100% on a holdout test set,
and showed no evidence of bias against non-native
English speakers.
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When AI-generated essay detectors are applied
in real-world settings, several factors may affect
their performances. For example, users may use a
different generation model than the models used to
generate the essays used for training the detectors.
They may also use a different sampling tempera-
ture, different prompts, instruct the AI tool to para-
phrase the generated essays to disguise its being
AI-generated, or revise the generated output essays
manually (themselves or other human).

Given the growing number of generative AI tools
and the rapid release of newer AI models, under-
standing how different generation models affect
the detection of AI-generated essay is an impor-
tant research question. The study by Zhong et al.
(2024) provides insights into this issue. The authors
generated 200 essays using each of 10 different
large language models (LLMs) and compared the
essays in terms of linguistic features, textual sim-
ilarities, and scores. They also trained a detector
for each LLM using a feature-based ML approach
relying on human-written essays and the 200 es-
says generated by that specific LLM. They found
that while the detection accuracies for identifiying
essays trained by the same LLM were higher than
.9, when the detectors were applied to essays gen-
erated by the different LLMs, detection accuracy
could be as low as .5. These findings showed the
challenge of generalizing AI detectors to different
generative models.

In this study, we investigate the effects of gen-
eration model on detecting AI-generated essays,
expanding prior research to detectors trained on
essays generated by more than one LLM as well
as using a fine-tuning LLM approach. Specifically,
we focus on two widely used generation models –
GPT-3.5 and GPT-4 – and use writing items from
a large-scale standardized English proficiency test
for detector training and evaluation.

2 Method

2.1 Writing Items

We used 20 writing items from a standardized En-
glish proficiency test. The majority of the test tak-
ers are young adults. Each item asks test takers
to write an essay expressing their opinion on a
given topic with supporting details, with at least
100 words written within a 10-minute time limit.
Essays were typed on a computer.

2.2 Data

Human-written essays We collected all test tak-
ers’ responses to these 20 items when each item
was administered for the first time and in test cen-
ters. The number of essays per item ranged from
192 to 6,438. For items with more than 300 essays,
we randomly sampled them down to 300. The re-
sulting total number of human-written essays used
in this study was 5,745.

AI-generated essays We used GPT-3.5 turbo
(version 0613) and GPT-4 (version 0613) to gener-
ate essays via the Azure OpenAI API. To generate
a diverse sample of essays and match the length
of human-written essays, we used 15 prompts per
item – covering 5 levels of content (i.e., varying the
amount of detail in the item stem or the direction of
opinion to be expressed in the essay) and 3 levels
for word count targets (100 words, 110 words, and
120 words). 20 essays were generated per prompt.
Sampling temperature was set to 1.2 to balance
text variance and text quality. Artificial typos were
added to an average of 3.5% of the words using
the python package typo (Kumar, 2022). 6,000 es-
says were generated using each generation model,
resulting from 20 items × 15 prompts × 20 essays.

Training and test sets The 5,745 human-written
essays were given a label of 0 (i.e., not AI-
generated), and the 6,000 GPT-3.5-generated and
6,000 GPT-4-generated essays were given a label
of 1. These essays and labels are referred to as the
total dataset. Among them, we randomly selected
1,000 human-written, 1,000 GPT-3.5-generated,
and 1,000 GPT-4-generated essays as the test sets
for evaluating detectors’ performances. From the
remaining 4,745 human-written, 5,000 GPT-3.5-
generated, and 5,000 GPT-4-generated essays, we
created three training sets to build AI-generated
essay detectors. All three training sets contain the
same 4,745 human-written essays and differ by the
AI-generated essays: respectively 5,000 GPT-3.5-
generated, 5,000 GPT-4-generated, and a combina-
tion of randomly selected 2,500 GPT-3.5-generated
and 2,500 GPT-4-generated essays. These training
sets are named as Human + GPT-3.5, Human +
GPT-4, and Human + GPT-3.5 + GPT-4.

2.3 Detector Training

We trained detectors for AI-generated-essay using
a combination of two training approaches crossing
the three training sets described in the previous
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section. The two training approaches are feature-
based machine learning (ML) approach and fine-
tuning RoBERTa. Two additional detectors were
ensembled from the detectors trained on Human +
GPT-3.5 and Human + GPT-4, respectively for the
ML and fine-tuning approach.

Feature-based ML approach Eleven features –
10 high-level linguistic features and the logarithm
of GPT-2-based perplexity of an essay - were used
in the ML approach. The 10 high-level linguistic
features were extracted using e-rater (Attali and
Burstein, 2006). These features represent grammat-
ical errors, usage errors, mechanics errors, organi-
zation, development, word length, word frequency,
collocation and preposition, sentence variety, and
discourse coherence aspects of the essays. Per-
plexity (i.e., exponential of the cross-entropy loss)
reflects how uncertain a language model is with
predicting the next token given previous tokens.
A higher value indicates the text sequence is less
likely to be generated by the language model. It has
been found to be contributing features for detecting
AI-generated essays in previous research (see e.g.,
Yan et al., 2023; Jiang et al., 2024). Because the es-
says were relatively short, we only used perplexity
for the entire essays. Although essays were gen-
erated by GPT-3.5 and GPT-4, those two models
were proprietary and perplexity were not available
via the API. Thus, we calculated the open-source
GPT-2 perplexity using the transformers library
(Wolf et al., 2020).

Four type of ML classifiers – random forest, gra-
dient boosting, support vector machine and multi-
layer perception - were employed. Five-fold cross
validation was used on the training set for hyper-
parameter tuning. The best classifier with hyper-
parameters that led to the highest cross-validation
accuracy were selected to train the final models on
the entire training set. Analyses were conducted
using the Scikit-learn package (Pedregosa et al.,
2011).

Fine-tuning approach We fine-tuned the base
version of the pretrained language model RoBERTa
(Liu et al., 2019) for classification. Batch size was
fixed at 16. Five-fold cross validation was used on
the training set for tuning hyperparameters, includ-
ing the learning rate (in the range of 5e− 4, 1e− 4,
5e − 5, 1e − 5, 5e − 6, 1e − 6) and the number
of epochs (from 2 to 5). Again, hyperparameters
that led to the highest cross-validation accuracy
were selected to train the final models on the entire

training set. All fine-tuning was conducted using
the transformers (Wolf et al., 2020) and PyTorch
libraries(Paszke et al., 2019).

Ensemble Using the combined Human + GPT-
3.5 + GPT-4 training set is one way to help detec-
tors learn that essays generated by either GPT-3.5
or GPT-4 are AI-generated. An alternative way is
to ensemble the detectors trained separately on Hu-
man + GPT-3.5 and Human + GPT-4 training sets.
We obtained two additional detectors – one for the
ML approach and another for the fine-tuning ap-
proach – by ensembling the predictions from the
respective GPT-3.5 and GPT-4 detectors. Note that
ensembling happened at inference time, without
additional model training. For each essays to be
classified, we averaged the predicted probabilities
from the GPT-3.5 and GPT-4 detectors. If the re-
sulting ensemble probability was higher than 0.5,
the essays was classified as AI-generated (label =
1).

2.4 Detector Evaluation

A total of eight detectors were applied to the test
sets for evaluation. We can organize these detectors
into four conditions, each comprising two detectors
trained using either a feature-based ML approach
or a fine-tuned RoBERTa model. In the first two
conditions, detectors were trained on AI-generated
essays produced by only one LLM, either GPT-3.5
or GPT-4. The third condition used the combined
Human + GPT-3.5 + GPT-4 training set. The fourth
condition involved the ensembled detectors.

We used the number of correctly and falsely clas-
sified essays in each of the 1,000 human-written,
GPT-3.5-generated, and GPT-4-generated essays as
evaluation metrics. Given the goal of detecting AI-
generated essays, the number of human-written es-
says that were misclassified as AI-generated essays
are false positives, and the number of AI-generated
essays misclassified as human-written essays are
false negatives. We used frequencies as evaluation
metrics instead of accuracy, precision and recall,
which are affected by the ratio between human-
written essays and AI-generated essays in the test
set. This is because in our test set, the composition
of human-written and AI-generated essays is 1:2,
which is unlikely in real settings.
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3 Results

3.1 Essay Similarities

We first examined pairwise text similarities among
essays for each item, because the extent of simi-
larities among human-written, GPT-3.5-generated,
and GPT-4 generated essays can affect detector
performances. Per item, within the same gener-
ation source (i.e., human-written, GPT-3.5, and
GPT-4), the number of pairs was nk(nk − 1)/2,
where nk is the number of essays in source k for
this item. Across sources, the number of pairs was
ninj/2, where ni and nj are the number of essays
for sources i and j. The number of pairs for GPT-
3.5-generated, and GPT-4-generated essays was
897,000; for human-written essays was 834,074,
for GPT-3.5-generated and GPT-4-generated es-
says for 1,800,000, for GPT-3.5/4-generated and
human-written essays was 1,723,500. For each pair
of essays, we calculated the cosine similarity of tri-
gram term frequency-inverse document frequency
(TF-IDF) vectors, and the edit similarity (Navarro,
2001). Both similarity measures are within 0 to
1, with a higher number indicating higher similar-
ities. Box plots of pairwise similarities of essays
for the same items within and between sources are
provided in Figure 1. Sources with higher median
similarities are located higher on the y-axis.

Essay similarity results revealed differences
between GPT-3.5- and GPT-4-generated essays.
Within the same source, essays generated by GPT-
3.5 were the most similar as each others, while
GPT-4 was able to generate essays with higher text
variability, but not as diverse as human-written es-
says. Across sources, essays generated by the two
LLMs were more similar to each other than with
human-written essays. Human-written essays were
more similar with GPT-3.5-generated essays than
with GPT-4-generated essays.

3.2 Detector Performances

Eight detectors were applied to the three test sets
consisting of respectively 1,000 human-written,
GPT-3.5-generated and GPT-4-generated essays.
The number of essays correctly and wrongly clas-
sified as human-written or AI-generated on the
test sets by each detector are reported in Table 1.
Among all the studied ML classifiers, SVM yielded
the highest cross-validation accuracy in the three
training sets. Thus, detectors obtained using SVM
were used to represent the ML approach. When
building detectors by fine-tuning RoBERTa, the

following hyperparameters led to the highest cross-
validation accuracy respectively for the three train-
ing sets, lr = 5e− 5 and epoch = 4, lr = 5e− 5
and epoch = 5, and lr = 1e− 5 and epoch = 4.

First focus on detectors trained with AI essays
generated by only one LLM (i.e., conditions 1 and
2 in Table 1). In the columns for human-written
essays, we see that fine-tuned RoBERTa misclas-
sified fewer number of human-written essays as
AI-generated essays than SVM. While SVM mis-
classified 22 and 32 human-written essays as AI-
generated essays, detectors based on fine-tuned
RoBERTa misclassified fewer than 5 essays. For
AI-generated essays that were generated by the
same LLM as used in the training set (i.e., column
GPT-3.5-generated for condition 1, and column
GPT-4-generated for condition 2), detectors based
on fine-tuned RoBERTa correctly classified all AI
generated essays, while SVM missed 24 and 15 AI-
generated essays. However, when detectors trained
with AI-generated essays by one LLM were ap-
plied to essays generated by the other LLM (i.e.,
column GPT-4-generated for condition 1, and col-
umn GPT-3.5-generated for condition 2), the num-
ber of false negative cases increased. Fine-tuned
RoBERTa trained with GPT-3-generated essays
failed to identify 84 GPT-4-generated essays and
fine-tuned RoBERTa trained with GPT-4 generated
essays GPT-4 missed 192 GPT-3.5-generated es-
says. Performances of SVM detectors were worse.
They failed to identify respectively 522 and 370
essays generated by the other LLM.

When both GPT-3.5- and GPT-4-generated es-
says were included in the training set (i.e., condi-
tion 3 in Table 1), the resulting detectors had lower
number of false negatives cases for the combina-
tion of 1,000 GPT-3-generated and 1,000 GPT-4-
generated essays. Fine-tuned RoBERTa identified
all GPT-3.5 generated essays and only missed one
GPT-4 generated essay, while SVM missed 29 GPT-
3.5-generated and 26 GPT-4 generated. In terms
of false positives, fine-tuned RoBERTa misclassi-
fied 9 out of the 1000 human-written essays (0.9%)
as AI-generated essays, while SVM misclassified
41 (4%). These number of false positives were
slightly higher than those for detectors trained with
AI essays generated using only one model (i.e.,
conditions 1 and 2).

When GPT-3.5 detector and GPT-4 detector were
ensembled (condition 4 in Table 1), the ensembled
fine-tuned RoBERTa detector only misclassified 1
human-written essays as AI-generated essays and
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Figure 1: Box plots of the square root of cosine similarity and edit similarity among essays for the same items
within and between sources.

Table 1: Number of Correctly and Falsely Labeled Essays in Test Sets by Different Detectors

Training condition Approach Human-written GPT-3.5-generated GPT-4-generated
(n=1000) (n=1000) (n=1000)

Correct Wrong Correct Wrong Correct Wrong
1. Human + GPT-3.5 SVM 978 22 976 24 478 522

RoBERTa 996 4 1000 0 916 84
2. Human + GPT-4 SVM 968 32 630 370 985 15

RoBERTa 997 3 808 192 1000 0
3. Human + GPT-3.5 + GPT-4 SVM 959 41 971 29 974 26

RoBERTa 991 9 1000 0 999 1
4. Ensemble SVM 986 14 894 106 928 72

RoBERTa 999 1 993 7 993 7
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failed to identify 7 GPT-3.5-generated and also 7
GPT-4 generated essays. Ensembled SVM mis-
classfied 14 human-written essays as AI-generated
essays, but missed 106 GPT-3.5-generated and 72
GPT-4 generated. Comparing the conditions 3 and
4, in which detectors were given the information
that both GPT-3.5- and GPT-4-generated essays are
AI-generated, the ensembled detectors had lower
number of false positives and higher number false
negatives.

4 Discussion

In this study, we investigated the effects of gen-
eration model on performances of detectors for
AI-generated essays. We studied two generation
models (GPT-3.5 and GPT-4), two training ap-
proaches (feature-based ML and fine-tuning), and
two ways of providing information from both gen-
eration models (including essays generated by both
LLMs in the training set and ensembling detectors
trained with only one LLM for essay generation).
We found that a) fine-tuned detectors outperformed
feature-based ML detectors on all studied metrics;
b) compared to detectors trained with essays gener-
ated from both models, those trained with essays
generated from only one model did not misclas-
sify more human-written essays as AI-generated
(false positives), but did misclassify more essays
generated by the other model as human-written es-
says (false negatives); c) the ensembled fine-tuned
RoBERTa detector had fewer false positives, but
slightly more false negatives comparing to detec-
tors trained with essays generated by both GPT-3.5
and GPT-4.

Fine-tuning pre-trained large language models
has been found to be effective for many classifi-
cation tasks, including natural language inference
(Devlin et al., 2019), automated essay scoring (Fer-
nandez et al., 2023), and AI-generated essay de-
tection (Kaggle Community, 2025). Our findings
are inline with these previous findings, suggesting
superior performances of the fine-tuning approach
comparing to the feature-based ML approach for
AI-generated essay detection. However, the com-
plexity of LLMs makes it difficult to explain the
predicted results from fine-tuned LLMs. This posts
challenges of using fine-tuned detectors in high-
stakes situations, where false accusations against
individuals can have serious consequences. Re-
search to identify tokens or phrases that affecting
the fine-tuned detectors’ decisions, or the effects

of adversarial inputs can be important future direc-
tions.

To detect essays generated by a wide range of
AI models, the natural choice is to train a detec-
tor using essays generated by a diverse number of
AI models. However, it can be resource-intensive
to re-train the detector each time a new AI model
is released. If the number of human-written es-
says don’t increase, creating a balanced training set
may mean not include all the AI-generated essays
from previous AI models for training. This is the
scenario we studied. Even though we generated
5,000 GPT-3.5-generated essays in conditions 1,
and 5,000 GPT-4-generated essays in condition 2,
we only used 2,500 from each generation model
in condition 3. We found ensembling fine-tuned
RoBERTa can be an effective alternative. It al-
lows the use of the same number of AI-generated
essays for each generation model as the number
of human-written essays. Once detector is built
for each generation model, one can flexibly adjust
the contribution from each detector at inference, if
there is evidence on the likelihood of essays from
each generation model. Ensemble also allows easy
adjustment of threshold. For example, if reducing
false positives is more important, one may adjust
the threshold to higher than .5.

5 Limitations

In this study, we generated essays using two
AI models, built detectors with balanced sets of
human-written and AI-generated essays, and stud-
ied detector performance in terms of detection ac-
curacy. Results need to be generalized with caution
beyond these conditions. As noted in the introduc-
tion, in the real-world, AI can be used in creating
essays in many different ways. Other models that
are more distant from the models in the OpenAI
family, such as LLaMA or DeepSeek-R1, may pro-
duce more different essays, thus affect the detection
performance. Essays may also be created by both
humans and AI, with only a portion of the text gen-
erated by AI or humans revise AI-drafted essays.
Moreover, fairness in detection across demographic
groups is also an importance metric for evaluating
detector performance. For future work, we plan to
expand the study by including a broader range of
generation models and also varying the proportion
of AI generated text within essays.
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Abstract

Multiple strategies for AI-generated response
detection have been proposed, with many high-
performing ones built on language models.
However, the decision-making processes of
these detectors remain largely opaque. We
addressed this knowledge gap by fine-tuning
a language model for the detection task and
applying probing techniques using adversarial
examples. Our adversarial probing analysis
revealed that the fine-tuned model relied heav-
ily on a narrow set of lexical cues in making
the classification decision. These findings un-
derscore the importance of interpretability in
AI-generated response detectors and highlight
the value of adversarial probing as a tool for
exploring model interpretability.

1 Introduction

Modern foundation language models have demon-
strated the ability to generate coherent, well-
structured text across a wide range of domains (Li
et al., 2024; Zhao et al., 2023). This capability has
affected various aspects of writing, including as-
signments and assessments that require learners to
write original responses. As a result, educators and
assessment professionals have become increasingly
interested in distinguishing between human-written
and AI-generated responses (Jiang et al., 2024).
This task, which we refer to as AI-generated re-
sponse detection in this paper, is the focus of our
study.

The growing interest in, and demand for, AI-
generated response detection has led to the devel-
opment of algorithmic detectors, many of which
are themselves based on language models. Some
utilize the in-context learning capability of these
models combined with prompt engineering, while
others employ supervised fine-tuning on custom
datasets designed for the detection task (see, e.g.,
Fraser et al., 2025 and Wu et al., 2025). These
detectors are often marketed as highly accurate,

with reported classification accuracy routinely ex-
ceeding 90 percent. However, similar to other in-
ferences made by language models, the decisions
from these detectors are opaque and difficult to in-
terpret. This lack of transparency is particularly
concerning in AI-generated response detection, in
which learners may face serious consequences (e.g.,
academic penalties, score cancellations) based on
the detection outcome.

To address this knowledge gap, we investi-
gated the decision-making process of a custom
AI-generated response detector using probing tech-
niques. Probing has proven effective in examin-
ing the internal mechanisms of language models
across a variety of downstream tasks (Li et al.,
2023a; Niven and Kao, 2019; Ohmer et al., 2024;
Suau et al., 2020). In this study, we fine-tuned an
open-source language model on a dataset including
both human-written and AI-generated responses.
We then identified and manipulated lexical cues to
gauge their influence on the model’s classification
decisions.

Our findings show that the fine-tuned model
achieved high accuracy in the detection task by re-
lying heavily on a small set of lexical cues. While
this reliance demonstrates the expressive capacity
of language models, it also exposes their vulner-
ability to exploitation and manipulation. Overall,
our results substantiate the need for understanding
what AI-generated response detectors learn and for
evaluating the trustworthiness of their decisions in
real-world applications.

2 Background

Although the language generation capabilities of
modern foundation models have provided oppor-
tunities and benefits, they also pose risks that can
lead to undesirable outcomes. Crothers et al. (2023)
proposed a taxonomy that classifies these into four
high-level categories: (1) spam and harassment, (2)
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online influence campaigns, (3) malware and so-
cial engineering, and (4) AI authorship exploitation.
For our study, a particularly relevant form of AI au-
thorship exploitation is academic fraud committed
by learners and examinees. They may undermine
the learning and assessment purposes of writing
tasks by submitting responses that are generated by
AI models.

To mitigate the authorship exploitation risk, re-
searchers have explored various detection strategies
and their effectiveness. A consistent finding across
studies is that humans find it difficult to reliably
detect AI-generated text. Multiple investigations
have shown that human judges, including domain
experts, often perform at near-chance levels when
attempting to distinguish AI-generated text from
human-written one (e.g., Li et al., 2023b; Soni and
Wade, 2023; Uchendu et al., 2021), although train-
ing (Liu et al., 2023) and auxiliary information
(Gehrmann et al., 2019) may improve their detec-
tion performance. The difficulty of manual detec-
tion, combined with the scalability of AI-generated
text, has led researchers to algorithmic approaches.
This pursuit has quickly accumulated into a sizable
body of literature, for which multiple comprehen-
sive surveys are available (e.g., Beresneva, 2016;
Crothers et al., 2023; Dhaini et al., 2023; Jawahar
et al., 2020; Fraser et al., 2025; Wu et al., 2025).

Wu et al. (2025) and Fraser et al. (2025) clas-
sified algorithmic detectors into three main cate-
gories based on the type of information leveraged:
watermarks, manually engineered features, and lan-
guage model-based text representations. The third
category uses numerical embeddings derived from
foundation language models as implicit features for
classification; this allows researchers to circumvent
the need for watermarks or manual feature devel-
opment. Detectors based on this approach, particu-
larly those that relied on fine-tuned language mod-
els, have demonstrated strong performance, with
detection accuracies often exceeding 90% across di-
verse text types (e.g., Chen et al., 2023; Fagni et al.,
2021; Guo et al., 2023; Wang et al., 2023). How-
ever, the complexity of their architecture makes
it difficult to examine their decision making pro-
cesses. Although there are various linguistic dif-
ferences between AI-generated and human-written
texts (e.g., Seals and Shalin, 2023), it is unclear
whether and how these differences are utilized by
classifiers.

An effective approach for investigating the in-
ternal mechanisms of language model classifiers

involves the use of probing through adversarial ex-
amples: data points that are intentionally perturbed
to challenge a model’s decision boundaries while
preserving the original semantic content. These
examples function as diagnostic tools that can help
identify the specific cues that language models rely
on when making classification decisions. For ex-
ample, Niven and Kao (2019) demonstrated that
high classification performance can be achieved
through reliance on superficial word-level statisti-
cal patterns alone rather than meaningful linguis-
tic understanding. Their work demonstrated how
adversarial probing can reveal vulnerabilities in a
model’s generalization capabilities and shed light
on its interpretability. Subsequent studies have
applied adversarial probing to better understand
the decision-making processes of language models
fine-tuned for a range of classification tasks (e.g.,
Li et al., 2023a; Ohmer et al., 2024; Suau et al.,
2020).

In the domain of AI-generated text detection, ad-
versarial examples have also been used to evaluate
the robustness of detection systems. These adver-
sarial “attacks” may operate at varying levels of
granularity, including character-level perturbations
(e.g., Wang et al., 2024), word-level substitutions
(e.g., Pu et al., 2023; Wang et al., 2024), and para-
phrasing techniques that maintain semantic mean-
ing while altering surface form (e.g., Shi et al.,
2024; Krishna et al., 2023). While these studies
have effectively demonstrated the vulnerability of
detectors to such attacks, they often focus primar-
ily on evasion rather than on interpretability. As
a result, the internal decision-making processes of
these detectors remain largely opaque.

3 Methods

3.1 Data

Our dataset included both authentic responses writ-
ten by human examinees and AI-generated re-
sponses. The authentic responses were collected
from an essay writing task administered as part of
a standardized English language proficiency assess-
ment. In this task, examinees were asked to express
their opinion or preference on a given topic, pro-
viding supporting details. We used 5,745 authentic
responses on across 20 different topics submitted
by examinees representing a diverse range of na-
tionalities and first languages. The dataset also
included 6,000 responses on the same 20 topics
generated by GPT-3.5 (Ouyang et al., 2022) and
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GPT-4 (Achiam et al., 2023). These synthetic re-
sponses were produced as part of a separate study
(Zu et al., 2025), which provides a detailed descrip-
tion of the generation process.

AI-generated text typically lacks typographical
errors, whereas such errors are common in human-
written ones, including the authentic responses in
our dataset. This discrepancy could easily be ex-
ploited by detection models, potentially reducing
the task to a trivial problem. To address this issue,
Zu et al. (2025) randomly imputed typographical
errors into each AI-generated response, and we
used the generated responses that included these
imputed errors.

We allocated approximately 80% of the total
dataset (9,396 out of 11,745 responses) for train-
ing and the remaining 20% (2,349 responses) for
testing. The train-test split involved stratified ran-
dom sampling, with generation status (authentic vs.
AI-generated) as the stratification variable. This
ensured that both the training and test sets main-
tained a similar proportion of generated responses
(approximately 51%).

3.2 Fine-Tuning Detector

We fine-tuned the RoBERTa-base model (Liu et al.,
2019) as our primary detector of AI-generated re-
sponses. The key hyperparameters for fine-tuning
included learning rate and training epochs, which
were tuned through a two-dimensional grid search
using five-fold cross-validation on the training set.
We then used the hyperparameter values that led to
the best cross-validation performance to fine-tune
the RoBERTa base model using the entire training
set. More details about the fine-tuning process can
be found in Zu et al. (2025).

The choice of RoBERTa-base was primarily mo-
tivated by convenience. To examine the robust-
ness of our findings with respect to this model
choice, we also fine-tuned three additional mod-
els: RoBERTa-large, and two DeBERTa models
(He et al., 2021) of different sizes (base and large).
These alternative models were fine-tuned using
the same procedure as the main detector based on
RoBERTa-base.

3.3 Examining n-gram Distributions

To identify linguistic cues that our detector would
learn during fine-tuning, we analyzed the n-gram
distributions in authentic and AI-generated re-
sponses within the training set. For an n-gram

to be considered informative, it must satisfy two
conditions:

1. It should exhibit a distinct distribution be-
tween authentic and generated responses.

2. It should occur with sufficient frequency in
the training data.

To quantify these conditions, we adapted the
π and ξ statistics introduced by Niven and Kao
(2019). Let A and G denote the sets of authentic
and generated responses in the training set, respec-
tively. Let nui represent the count of an n-gram
u in response i. Using this notation, we formally
introduce the two adapted metrics below.

The asymmetry metric, adapted from the π statis-
tic in Niven and Kao (2019), captures the relative
difference in frequency of u between generated and
authentic responses:

Asymmetryu =

∑
i∈G nui −

∑
j∈A nuj∑

i∈G nui +
∑

j∈A nuj
.

This metric ranges from -1 to 1. The value of -1
indicates that the n-gram appears exclusively in
authentic responses. Similarly, the value of 1 indi-
cates exclusive presence in generated responses.

The impact metric, adapted from Niven and
Kao’s (2019) ξ statistic, measures the average dif-
ference in frequency per response:

Impactu =

∑
i∈G nui −

∑
j∈A nuj

(|G|+ |A|)/2 ,

where |G| and |A| denote the number of generated
and authentic responses (in the training set), re-
spectively. The sign of the impact metric aligns
with that of the asymmetry metric, indicating the
direction of distributional difference.

We analyzed the distributions of unigrams, bi-
grams, and trigrams in the training set using the
asymmetry and impact metrics, with the goal of
identifying n-grams exhibiting both high asymme-
try and high impact. For the unigram analysis,
129 stop words1 were excluded. The bigram and
trigram analyses were conducted twice: once in-
cluding the stop words and once excluding them.
The identified n-grams were used to construct ad-
versarial examples for probing the behavior of the
fine-tuned detector.

1We constructed this list by adding may and would to the
127 stop words from https://gist.github.com/sebleier/554280.
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4 Results

4.1 Detector Performance

The fine-tuned RoBERTa-base detector achieved
an overall test set accuracy of 0.991, with a pre-
cision of 0.983 and a perfect recall of 1.0. This
strong performance was robust across different
model choices: each of the three alternative fine-
tuned detectors achieved similarly high accuracy,
precision, and recall. Table 1 presents the confu-
sion matrices for all four fine-tuned detectors. In
addition, the detector’s performance remained sta-
ble under basic text manipulations. For example,
converting all characters to lowercase and remov-
ing punctuation had minimal impact on accuracy,
precision, or recall.

True Label
Aut. Gen.

RoBERTa-base
Aut. 1134 0
Gen. 21 1194

RoBERTa-large
Aut. 1145 0
Gen. 10 1194

DeBERTa-base
Aut. 1151 0
Gen. 4 1194

DeBERTa-large
Aut. 1154 0
Gen. 1 1194

Table 1: Test set confusion matrices for the main and
three alternative fine-tuned detectors. Aut: Authentic;
Gen.: Generated

4.2 n-gram Distributions

The results from the unigram, bigram, and trigram
analyses showed notable differences in their poten-
tial utility as classification cues. The bigram and
trigram distributions included only a few sequences
that stood out in terms of asymmetry and impact.
Moreover, most such bigrams and trigrams were
composed primarily of stop words. When stop
words were excluded, the same analysis yielded
few prominent sequences. The unigram distribu-
tions, on the other hand, showed greater potential
for distinguishing between authentic and generated
responses. While most unigrams in the training
set had near-zero asymmetry and impact values, a
small subset had large absolute values on one or
both metrics, suggesting their potential as strong in-
dicators. This overall pattern is illustrated in Figure
1 as a bivariate scatter plot of unigram asymmetry
and impact values. In addition, Table 2 lists the

top 10 unigrams in terms of their absolute impact
metrics.

Figure 1: The asymmetry and impact metrics from the
training set responses.

Table 2: Asymmetry (Asy.), impact (Imp.), and signal
direction (Dir.) of the top 10 unigrams in the training set,
in descending order of their absolute impact metrics.

Asy. Imp. Dir.
people -0.338 -0.599 Authentic
think -0.869 -0.523 Authentic
individuals 0.906 0.414 Generated
provide 0.697 0.386 Generated
overall 0.809 0.373 Generated
additionally 0.901 0.349 Generated
skills 0.314 0.325 Generated
learning 0.375 0.321 Generated
example -0.697 -0.254 Authentic
good -0.563 -0.237 Authentic

A key distinction between unigrams associated
with authentic versus generated responses was their
lexical complexity or sophistication. Words that are
long and typically used in formal settings tended to
signal generated responses, whereas shorter, more
informal ones were more indicative of authentic
responses. This pattern manifested in the aver-
age length of unigrams signaling the two classes:
among the 248 unigrams whose absolute asymme-
try and impact values exceeded 0.05, the 72 uni-
grams signaling authentic responses were on aver-
age 5.0 characters long, whereas the corresponding
average for the 176 unigrams signaling generated
responses was 7.9. This also aligns with our prior
expectations that human examinees in timed test-
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ing contexts are more likely to produce draft-like
responses, which may involve less frequent use of
sophisticated and formal vocabulary, and that the
training data for GPT 3.5 and GPT-4 are likely to
consist primarily of final versions of texts rather
than drafts.

4.3 Transforming Test Set Responses into
Adversarial Examples

To probe the fine-tuned detector, we transformed
test set responses into adversarial examples by re-
placing unigrams that signaled either authentic or
generated responses with synonyms indicative of
the opposite class. We focused on unigrams that
met two criteria: (1) high absolute values on both
asymmetry and impact metrics, and (2) availabil-
ity of a synonym frequently used in the opposite
class. For example, the unigram people, which
strongly signaled an authentic response, was re-
placed with individuals, a word that appeared
much more frequently in generated responses. To
ensure meaningful substitutions, we allowed syn-
onyms that were not unigrams, provided they oc-
curred frequently in the opposite category. For
instance, additionally, which appeared almost
exclusively in generated responses, was replaced
with in addition, a phrase more frequently used
in authentic responses.

Applying these criteria to the training set yielded
149 unigrams to be replaced with their respective
synonyms. The selected unigrams were a small
subset of all unigrams in the training set, which in-
cluded more than 30,000 unique unigrams. Among
the 149 unigram-synonym pairs, 100 involved un-
igrams signaling generated responses paired with
synonyms more frequent in authentic responses,
while the remaining 49 involved the reverse pair-
ing. Replacing the 149 unigrams with their syn-
onyms resulted in, on average, 12 substitutions per
response, affecting less than 10% of the average
unigram count per response. This controlled trans-
formation allowed us to evaluate the classifier’s
sensitivity to lexical shifts while preserving overall
semantic content.

4.4 Detector Performance on Adversarial
Examples

The transformation of test set responses into ad-
versarial examples noticeably degraded the perfor-
mance of the fine-tuned detector. Its overall accu-
racy dropped from 0.991 to 0.580. This accuracy
is only slightly higher than that of a degenerate

detector classifying every input into the most fre-
quent category (whose accuracy would have been
0.508). In addition to the decline in overall accu-
racy, the number of responses classified as gener-
ated also dropped from 1,215 (from the original
test set) to 210 on the post-transformation adver-
sarial examples. Among those that were classi-
fied as generated, all but one response were in-
deed generated, resulting in a still high precision of
0.995. However, the reduced number of detected
responses inevitably led to a sharp reduction in
recall, which fell from being perfect (1.0) to ex-
tremely low (209/1, 194 = 0.175), as can be seen
the confusion matrix in Table 3.

True Label
Aut. Gen.

RoBERTa-base
Aut. 1154 985
Gen. 1 209

RoBERTa-large
Aut. 1154 844
Gen. 1 350

DeBERTa-base
Aut. 1154 898
Gen. 1 296

DeBERTa-large
Aut. 1155 1097
Gen. 0 97

Table 3: Confusion matrices for the main and three alter-
native fine-tuned detectors on the adversarial examples.
Aut: Authentic; Gen.: Generated

The substantial decline in the frequency of re-
sponses classified as generated indicates that the
detector classified much more of the adversarial ex-
amples as authentic ones than it did for the original
responses. This in turn suggests that the perfor-
mance change could primarily be attributed to the
replacement of the 100 unigrams that were signal-
ing generated responses. To further substantiate
this conjecture, we did another transformation of
the original test set responses, this time only re-
placing the 100 such synonym pairs while leaving
the other 49 pairs unchanged. The results were
quite similar as those from the full transformation
involving all 149 unigrams (reported in Table 3),
with the overall accuracy of 0.581 and recall of
0.175 as well as the same tendency of classifying
only a small number of responses as generated. In
contrast, when we did the opposite transformation
of only replacing the 49 authentic-signaling syn-
onyms, the results changed little compared to the
original results (reported in Table 1): overall ac-
curacy, precision, and recall of 0.966, 0.999, and
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0.934, respectively. In sum, the performance de-
clined primarily because the replacement of the 100
unigrams signaling generated responses tricked the
detector into classifying generated responses as
authentic ones.

These overall results were persistent against
model choice. Table 3 also presents the confusion
matrices from the three alternative detectors. All
show the same pattern of substantial drop in overall
accuracy, primarily attributable to the drop in the
frequency of responses classified as generated and
the accompanying drop in recall. This suggests that
all four pre-trained language models mostly picked
up unigrams signaling generated responses in the
training set during fine-tuning and relied heavily
on those unigrams to make their classification deci-
sions.

5 Discussion & Conclusions

In this study, we probed an AI-generated response
detector to understand how the model makes its
decisions. The detector was built by fine-tuning the
RoBERTa-base model (as well as three alternative
language models) on a custom dataset, achieving
99.1% accuracy on a held-out test set. To identify
influential lexical cues, we analyzed n-gram distri-
butions in the training data and found 149 unigrams
strongly associated with either class. By replacing
these unigrams with synonyms indicative of the op-
posite class, we created adversarial test examples
that reduced the detector’s accuracy from 99.1% to
58.0%. This drop was primarily due to misclassifi-
cation of AI-generated responses: altering only a
small number of unigrams per response was suffi-
cient to cause most AI-generated responses to be
misclassified as authentic. The effect was consis-
tent across all tested base models. These findings
reveal the detector’s strong reliance on a narrow set
of lexical cues, which carries both promising and
concerning implications.

On the positive side, pre-trained language mod-
els effectively identified and leveraged meaning-
ful patterns in unigram distributions during fine-
tuning, resulting in high performance on held-out
data. Manually identifying these patterns would
have been much more difficult and time-consuming.
Moreover, such patterns can be used to build more
interpretable and explainable classifiers with min-
imal loss in performance, assuming the patterns
remain stable in future data.

However, the ease with which the detector’s ac-

curacy was reduced to near-chance levels raises
concerns about its generalizability and robustness.
If the small set of unigrams signaling AI-generated
responses becomes widely known, malicious ac-
tors could evade detection by substituting a few
words, as demonstrated in our adversarial exam-
ples. Therefore, a promising direction for future
research is to devise ways to encourage detectors
to learn more robust patterns. The identification of
this major concern and promising future research
step underscore the value of probing fine-tuned de-
tectors in understanding what they learn, evaluating
the trustworthiness of their decisions in real-world
applications, and guiding improvements where nec-
essary.

We acknowledge that this study was limited in
its scope. All detectors were trained on responses
from a single task type covering a relatively narrow
set of 20 topics. Large-scale writing tests, on the
other hand, may include multiple task types and a
broader range of topics to ensure topical diversity
and coverage. A training dataset drawn from such
varied sources may exhibit different characteristics
than those observed in our study, and the robustness
of detectors trained on more diverse data cannot be
reliably inferred from our findings. Furthermore,
even within similar training contexts, the rapid evo-
lution of generative AI raises uncertainty about
whether the same lexical cues will remain effec-
tive indicators of AI-generated content. Therefore,
our findings should be interpreted primarily as evi-
dence of what fine-tuned detectors can learn, and
how easily they can be compromised, rather than
as prescriptive guidance for detection or evasion
strategies.
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Abstract

A detection objective based on bounded group-
wise false alarm rates is proposed to promote
fairness in the context of test fraud detection.
The paper begins by outlining key aspects and
characteristics that distinguish fairness in test
security from fairness in other domains and ma-
chine learning in general. The proposed de-
tection objective is then introduced, the corre-
sponding optimal detection policy is derived,
and the implications of the results are examined
in light of the earlier discussion. A numerical
example using synthetic data illustrates the pro-
posed detector and compares its properties to
those of a standard likelihood ratio test.

1 Introduction

Test security refers to the policies, procedures, and
technologies used to protect the integrity and fair-
ness of tests. A key component of test security is
test fraud detection, that is, detection of unautho-
rized access to content, tools, or third-party assis-
tance. Statistical methods for test fraud detection
have been researched since at least the 1920s (Bird,
1927, 1929), with significant advances happening
in the late 20th and early 21st century (Sotaridona
and Meijer, 2002; Wollack, 2003; van der Linden
and Sotaridona, 2004)—see (Kingston and Clark,
2014; Cizek and Wollack, 2016) for comprehensive
overviews. In recent years, however, several devel-
opments have significantly expanded both the scope
and urgency of test fraud detection efforts:

• The COVID-19 pandemic prompted a sudden
shift from testing in tightly controlled test cen-
ters to remote testing in environments chosen
by the test takers. While this transition offered
significant convenience (Zheng et al., 2021;
St-Onge et al., 2022), it also introduced nu-
merous new opportunities for cheating (Bilen
and Matros, 2021; Janke et al., 2021; Newton
and Essex, 2023).

• Generative artificial intelligence (GenAI) mod-
els are now powerful enough to solve or assist
with a wide range of item types, from simple
multiple-choice questions to free-form essays
and coding exercises, making them highly ef-
fective tools for cheating. (Yan et al., 2023;
Susnjak and McIntosh, 2024)

• There is a movement towards more sociocul-
turally responsive (Bennett, 2023) and person-
alized (Bennett, 2024; Sinharay et al., 2025)
assessments to promote fairness and better
capture the growing diversity of knowledge
and abilities in increasingly heterogeneous test
taker populations. This shift has led to greater
item variety, resulting in fewer test takers re-
sponding to the same items.

These developments have made test fraud detection
increasingly challenging: impostors and proxy test
takers are more difficult to identify in remote set-
tings than in test centers; AI-generated responses
are harder to detect than content copied from tradi-
tional sources; and typical response times are diffi-
cult to establish for items that have been answered
by only a handful of test takers. Consequently, test
security reviews tend to require more time, exper-
tise and data than they did in the past.

One approach to addressing these challenges is
to delegate tasks to various AI systems, both gen-
erative and predictive. Building on the examples
above: facial recognition could help detect impos-
tors; typing pattern anomalies could signal proxy
test takers; AI-content detectors could identify non-
authentic writing or speech; and trained models,
rather than empirical distributions, could be used
to flag abnormal response times.

However, this approach typically and rightly
raises questions regarding the reliability, accuracy
and fairness of decision made by AI systems, espe-
cially in the context of high-stakes tests. (Weber-
Wulff et al., 2023; Perkins et al., 2024) While con-
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siderable research is being devoted to making AI
fairer, more transparent and more reliable, biases
and differential treatment continue to be observed
in practice. (Stureborg et al., 2024; Bai et al., 2025;
Maslej et al., 2025)

In contrast, many methods traditionally used in
psychometrics and, more broadly, decision-making
under uncertainty, have transparent objectives and
strong accuracy and/or fairness properties. (Dorans
and Cook, 2016; Johnson et al., 2022) In this paper,
we propose addressing the uncertainty and poten-
tial biases of AI outputs not by using them directly,
but by feeding them into a system that fuses and
processes them. In essence, the idea is to delegate
complex subtasks to advanced AIs while anchor-
ing the final decision-making procedure in tradi-
tional statistical methods, thereby enabling the use
of well-established techniques to define, measure,
and promote fairness.

To clarify, this paper does not address the design
or architecture of the complete system described
above, which remains an ongoing research effort.
(Fauss et al., 2025) Instead, it focuses on a specific
subtask: designing a detector that flags test takers
for potential fraud in a way that balances test in-
tegrity and group fairness. This task is formulated
and analyzed as a standalone problem, meaning the
proposed detector is largely agnostic to the specific
detection context. As such, it may be of theoretical
or practical interest beyond the use case discussed
here. However, as will become clear throughout the
paper, its design is explicitly guided by assumptions
tailored to the intended application of AI-assisted
test fraud detection.

2 Fairness in Test Security

In this section, we discuss some aspects and char-
acteristics that set fairness in test security apart
from fairness as a general concept in statistics and
machine learning. Specifically, we will make and
justify five claims. These claims are not intended
to be “truths”; rather, we see them as important,
sometimes overlooked aspects that can contribute
to a more informed discussion of what constitutes
fairness in test security applications.

Claim 1: Fairness and performance are not in
conflict.

A concept commonly encountered in the litera-
ture on statistical fairness is the so-called perfor-
mance–fairness tradeoff (Prost et al., 2019), which
implies that a procedure’s performance and fairness

are often in tension with one another. The underly-
ing idea is that in order to make a procedure fairer,
additional constraints have to be introduced that
shrink the space of feasible solutions, and, in turn,
reduce the performance. While this is true from a
purely mathematical perspective, we would argue
that the idea of a performance-fairness tradeoff can
be misleading in a test security context. This is the
case because detecting test fraud is in itself an ob-
jective that, in principle, promotes fairness. Among
other consequences, widespread, undetected cheat-
ing devalues the scores of honest test takers, poten-
tially harming their future opportunities. In general,
we consider the idea that a procedure can be “bad”
at its dedicated task, yet still perfectly fair problem-
atic. One can even argue that fairness issues are
a consequence of performance issues. A fraud de-
tector achieving perfect accuracy is not only highly
performant, it is also fair by all common criteria.
Fairness issues arise once a procedure starts making
mistakes, and certain groups are more frequently
or more severely affected by these mistakes. There-
fore, we argue that in the context of test security
fairness and performance should be considered two
sides of the same coin—often, a better detector will
also be a fairer detector.

Claim 2: Equality 6= fairness.
This claim is closely related to Claim 1. We sin-

gle it out to highlight the critical role that equality
plays in virtually all fairness criteria in the litera-
ture. For example, separation fairness (Barocas
et al., 2023) is defined in terms of equal true and
false positive rates among all groups. Analogously,
sufficiency fairness (Barocas et al., 2023) implies
that the probability of predicted labels being correct
is equal for all groups. Again, we would argue that
this idea can be misleading in a test security con-
text. For example, a fraud detector that randomly
declare test takers cheaters is perfectly fair by many
criteria, yet clearly dysfunctional and unfair in prac-
tice. Similarity, by most fairness criteria, a detector
with groupwise false alarm rates of, say, 30% and
35% is fairer than a detector with groupwise false
alarm rates of, say, 5% and 15%. In reality, it is
far from clear that test takers would view the higher
false alarm rate of the first detector as fairer than
the larger disparity in groupwise false alarm rates
produced by the second.

Claim 3: Fairness needs a concrete target.
We argue that any nontrivial measure or inter-

vention aimed at promoting fairness in test security
must clearly specify the type of discrimination it
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seeks to address and provide strong evidence that
it effectively mitigates or eliminates it. While this
may seem obvious, our experience suggests it is not
consistently implemented in practice. Frequently,
existing detectors or classifiers are made fair by
picking an arbitrary or convenient fairness crite-
rion, adding a corresponding penalty term to the
training objective, and adjusting its weight until
a “good performance-fairness tradeoff” is reached.
We believe that promoting fairness in this manner
can be superficial and ineffective. It will typically
lead to a slightly more uniform distribution of the
groupwise metric the fairness criterion considers
important. However, showing that the combined
effects on all groups and on the overall performance
really address unfair treatment is usually difficult.
In fact, the case for this kind of fairness measure
is often made in a circular manner: it promotes
fairness because it improves the fairness criterion
underpinning its design.

Claim 4: Fairness should not be a black box.
While Claim 3 argues that it should be clear what

a fairness-promoting procedure tries to accomplish,
here we argue that it should also be clear how the
procedure promotes fairness. This claim is based
on the observation that, in particular in test secu-
rity, fairness is closely connected to trust and trans-
parency. To clarify, we do not claim that one should
be able to explain every technical detail of a fairness-
promoting procedure to a non-technical audience.
However, we do believe that a sincere attempt at
making a procedure fairer should be implemented
in way that, at least conceptually, can be commu-
nicated to those affected by it. This also opens the
door for broader discussions of what constitutes
fairness and how it can be improved.

Claim 5: Fairness should be measurable.
Naturally, the vast majority of statistical fairness

criteria are defined in terms of probabilities. How-
ever, these probabilities are typically unknown and
must be estimated from data. This can lead to prob-
lems when certain events occur so infrequently that
reliably assigning them an empirical probability
becomes infeasible. This problem is more promi-
nent the smaller the population and the more groups
are considered. For example, in the context of test
fraud detection, a fairness criterion that incorpo-
rates groupwise cheating rates might run into the
problem that for some groups no cheaters have been
observed yet. Does this mean that the respective
cheating rates are low? Or that the detection rates
are low? Can, often self-declared, group variables

of cheaters be trusted in the first place? In a nutshell,
we argue that fairness should be based on quantities
that can accurately and reliably be inferred from
the data.

In the next section, we present a fairness pro-
moting detection objective that is informed by and
largely aligned with the above claims.

3 A Fairness-Promoting Detection
Objective

In this section, we propose a fairness-promoting de-
tection objective, derive the corresponding optimal
detector, and discuss its properties in light of the
claims in Section 2. While the intended use case of
the proposed detector is test fraud detection, it is not
limited to this context and likely has applications
in other areas.

A quick note on notation: In what follows, upper-
case letters, X , denote random variables, lowercase
letters, x, denote their realizations, and boldface,
x, indicates vectors. Probability distributions are
denoted by P , and probability density functions
(PDFs) by p.

3.1 Problem Formulation

Let N ∈ N≥1 be the number of test takers. For
every test taker we observe a random vector Xn ∈
RM , M ∈ N≥1, which is a collection of relevant
observations and features. In this paper, we do not
make further assumptions about the nature or mean-
ing of X or its elements. However, as discussed
above, in the intended application of (AI-assisted)
test fraud detection, X is assumed to consist of
high-level features that themselves are outputs of AI
systems (likelihood of AI-generated content, likeli-
hood of copy-typing, likelihood of impostor, etc.).

In addition to the feature vector, we assume that
a discrete random variable, Gn ∈ {1, . . . , NG},
NG ∈ N≥1 is observed for every test taker indicat-
ing membership in one of NG groups. Every test
taker is assumed to belong to exactly one group.
These groups are typically defined by demographic
attributes such as gender, race, age, or first language.
However, depending on the application, one might
also consider externally defined groups, such as test
takers receiving a certain form or taking the test
remotely versus in a test center.

Finally, we assume that every test taker is either
fraudulent (“cheater”) or honest (“non-cheater”).
This is indicated by a binary random variable
Cn ∈ {0, 1}, with Cn = 1 indicating a cheater
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and Cn = 0 indicating a non-cheater. Naturally,
Cn is assumed to be a latent variable.

Finally, we assume that the feature vectors of all
test takers are independent, conditioned on their
group membership and honesty. That is, there are
random variables X , G and C such that

Xn | (Gn = g, Cn = c)
d
= X | (G = g, C = c)

for all n ≤ N , where d
= denotes equality in distri-

bution. Therefore, the index n is omitted in what
follows. The assumption may not always hold in
practice, but it offers a useful approximation that
suffices for the discussion at hand.

The detector we seek to design is assumed to
generate a random variable Ĉ ∈ {0, 1} that indi-
cates whether the respective test taker is classified
as cheater (Ĉ = 1) or non-cheater (Ĉ = 0). It is
defined by a function f : RM → [0, 1] that maps
a feature vector to a probability of classifying the
corresponding test taker as a cheater, that is:

P (Ĉ = 1 |X = x, G = g, C = c) = f(x). (1)

for all x, g and c. Note that f is a function only
of the feature vector, x, but not of the group vari-
able, g, even though g is known. This is intentional,
as incorporating group information into a detector
is generally considered problematic. Most impor-
tantly, it can lead to cases in which two test takers
with identical feature vectors are classified differ-
ently depending on which group they belong to.

We next present the proposed detection objective:

max
f

P (Ĉ = 1 |C = 1) s.t. (2)

P (Ĉ = 1 |G = g, C = 0) ≤ α ∀g ≤ NG, (3)

where α ∈ (0, 1) is a free parameter. The con-
straints in (3) enforce an upper bound on the false
alarm rate (FAR) of each group. We refer to a de-
tector that satisfies these constraints as fair in the
sense of bounded FARs, or BFAR-fair for short. For
a given α, the objective in (2) picks the BFAR-fair
detector with the highest detection rate. This prob-
lem formulation will be discussed and justified in
more detail shortly.

3.2 Optimal Detector

The main result of this paper, a detector that is
optimal in the sense of BFAR fairness, is stated in
the following theorem:

Theorem 1. The detector that solves the problem
in (2) and (3) is given by

Ĉ∗ =

{
0, gλ∗(x) ≤ 0

1, gλ∗(x) > 0
, (4)

where

gλ(x) = p(x |C = 1)

−
NG∑

g=1

λgp(x |G = g, C = 0) (5)

and λ∗ is such that

P [Ĉ∗ = 1 |G = g, C = 0] = α (6)

if λ∗
g > 0 and

P [Ĉ∗ = 1 |G = g, C = 0] < α (7)

if λ∗
g = 0.

Proof. The statement in the theorem can be proven
using standard arguments in constrained optimiza-
tion. The Lagrange dual (Boyd and Vandenberghe,
2004, Ch. 5.2) of the problem in (2) is given by

min
λ≥0

max
f

Lα(f,λ), (8)

where

Lα(f,λ) = P [Ĉ = 1 |C = 1]

−
NG∑

g=1

λgP [Ĉ = 1 |G = g, C = 0] +

NG∑

g=1

λgα.

By conditioning and marginalizing over X we can
write Lα as

Lα(f,λ) =

∫
f(x)g(x)dx+ α

NG∑

g=1

λg, (9)

where gλ is defined in (5) and we used (1) to write
the relevant probabilities in terms of f . Since Lα

in (9) is linear in f , the maximizer of the inner
problem in (8) is given by

f∗(x) =

{
0, gλ(x) ≤ 0

1, gλ(x) > 0
. (10)

It remains to show that the optimal Lagrange mul-
tiplier satisfy (6) and (7). However, this property
follows immediately from the complementary slack-
ness condition of the KKT conditions (Boyd and
Vandenberghe, 2004, Ch. 5.5). Finally, note that for
f = f∗ and λ = λ∗ the constraints in (3) are satis-
fied by construction, which in turn implies that the
solution of the dual problem also solves the primal
problem. (Boyd and Vandenberghe, 2004, Ch. 5.5)
This completes the proof.
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3.3 Discussion
In this section, we discuss the problem formulation
in (2) and (3) in more detail and explain why we
consider BFAR fairness an appropriate and practi-
cal approach to promoting fairness in the context
of (AI-assisted) test fraud detection.

1. BFAR fairness requires the detector to operate
at a false alarm rate (type II error probability)
below α for all groups. This means that, in the
spirit of Claim 1, there is a minimum perfor-
mance level that the detector needs to meet in
order to be considered fair.

2. In the spirit of Claim 2, BFAR fairness pro-
motes equality, but does not enforce it. As long
as the error probabilities are acceptable for all
groups, it does not detract from the detector’s
fairness if it performs better for some groups.

3. BFAR fairness deliberately constraints false
alarm rates instead of alternative metrics, such
as false discover rates or detection rates. This
is in the spirit of Claims 3 and 4. BFAR fair-
ness targets unfairness from the perspective
of honest test takers and, consequently, can
be communicated in a straightforward manner:
For an honest taker, the probability of being
falsely flagged by a BFAR-fair detector is at
most α, irrespective of their race/age/first lan-
guage etc. Appropriate values of α might be
subject to debate, but we believe that both the
target group and the concept of BFAR fairness
are clear and transparent.

4. BFAR fairness does not require groupwise de-
tection rates. This is in the spirit of Claim 5.
For any reputable test, cheaters are a small
minority of the test taker population. There-
fore, as explained in the discussion of Claim 5,
estimating groupwise detection rates is notori-
ously difficult for smaller groups. Moreover,
groups can sometimes lose their meaning if
the corresponding test taker committed fraud.
For example, a native French speaker might
copy an essay written by a native Mandarin
speaker. Therefore, BFAR fairness avoids
grouping cheaters in the first place.

5. By inspection of (4) and (5), the BFAR-fair
detector is implemented via a modified like-
lihood ratio test. More specifically, it com-
pares the likelihood of the observed feature

vector under the cheater versus the honest hy-
pothesis. However, while a standard likeli-
hood ratio test marginalizes over the group
variables using their true probabilities, the
marginalization in the BFAR-fair test statis-
tic in (5) is performed with custom weights,
λ∗, that do not necessarily reflect the actual
group sizes. That is, the BFAR-fair detector is
implemented by re-weighting or oversampling
groups that would otherwise violate the false
alarm rate constraints. While details on how
to obtain these weights and how they enter
the test statistic may be more intricate, the un-
derlying idea of re-weighting or oversampling
is well-established, conceptually simple, and
easy to communicate—which aligns well with
the spirit of Claim 4.

However, BFAR fairness also has its shortcomings.
For example, two arguments against its use in oper-
ation are the following:

1. The detection rate and groupwise false alarm
rates can not be observed directly, but have to
be inferred based on some statistical model of
the test taker population. This aspect can be
argued to be in conflict with Claim 5. However,
as discussed above, the quantities of interest
were deliberately chosen to avoid problematic
corner cases or small-sample scenarios, and
we expect that they can typically be estimated
with reasonable accuracy.

2. The focus on honest test takers can conflict
with the goal of test integrity. Traditionally,
fraud detectors are tuned to meet specific de-
tection rate requirements, accepting poten-
tially high false alarm rates as a necessary cost.
From the BFAR perspective, one first deter-
mines a justifiable burden on honest test takers
and then accepts the corresponding detection
rates. On the one hand, this approach can be
difficult to defend in practice. On the other
hand, in the spirit of Claim 1, any detector
that can only satisfy integrity standards by im-
posing an unacceptable burden on honest test
takers may not be ready for operational use.

In summary, while BFAR fairness may not be suit-
able or implementable in every setting and appli-
cation, we believe that it is a useful, transparent,
practical and well-justified approach to promoting
fairness in test fraud detection.
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Table 1: Groupwise false alarm rates of likelihood ratio
and BFAR-fair detector with detection rate of ≈ 87%.

False Alarm Rate

Detector G = 1 G = 2 G = 3

Likelihood Ratio 0.0416 0.1298 0.0825

BFAR-fair 0.0835 0.1011 0.0997

4 Numerical Example

In this section, we demonstrate the BFAR fair de-
tector proposed in the previous section with a nu-
merical example. Since it is merely supposed to
provide a proof of concept, we deliberately keep
this example simple. Specifically, we assume that
the test taker population consists of three equally
likely groups of interest (NG = 3) and that two
features (M = 2) are observed for each test taker.
In line with the assumption that these features are
themselves probabilities of a test taker having com-
mitted fraud, likely generated by large, high-level
AI models, we assume that the feature vectors are
distributed on the unit square. We model these fea-
tures via a multivariate beta distribution in (Fauss,
2024). The exact parameters for each group are
given in Appendix A.

In order to establish a baseline performance, and
in light of Comment 5 in Section 3.3, we compare
the proposed BFAR-fair detector to a standard like-
lihood ratio test, that is, a detector with decision
rule

Ĉ =




1, p(x |C=1)

p(x |C=0) ≥ ν

0, p(x |C=1)
p(x |C=0) < ν

, (11)

where ν ∈ (0, 1) is a threshold that balances the
detection and false alarm rates.

We set the parameter of the BFAR-fair test to
α = 0.1, that is, the false alarm rate must not exceed
10% for any group. The corresponding weights,
λ∗, were determined by numerically solving the
optimality conditions in Theorem 1 and are given
by λ∗ ≈ (0, 0.7682, 0.4266). The probabilities on
the left-hand sides of (6) and (7) were approximated
by sampling from the specified distributions. The
threshold ν was selected so that the detection rate
of the likelihood ratio detector matches that of the
BFAR-fair detector, which was evaluated to 87% in
this case. Again, we used sampling to approximate
this rate. The resulting groupwise false alarm rates
for both detectors are reported in Table 1.

By inspection, the false alarm rates of the likeli-
hood ratio detector vary substantially across groups,
ranging from just above 4% for group 1 to nearly
13% for group 2. In contrast, by design, the BFAR-
fair detector keeps all false alarm rates below the
10% threshold. Note that while the false alarm
rates for groups 2 and 3 are close to this thresh-
old, the rate for group 1 is lower by a margin that
cannot be attributed to approximation errors alone.
This gap is consistent with the first element of λ∗

being zero, which indicates that the false alarm
rate constraint for group 1 is non-binding. In fact,
the BFAR detector uses effective group probabili-
ties/sizes ofP (G = 1) = 0,P (G = 2) ≈ 0.64 and
P (G = 3) ≈ 0.26. In words, the assumed proba-
bility of group 3 remains close to its true value of 1

3 ,
the probability of group 2 approximately doubles,
increasing its influence on the test statistic, while
the effective size of group 1 set to zero, effectively
ignoring it in the calculation of the non-cheater
likelihood. This implies that the false alarm rate
constraint for group 1 is redundant given the con-
straints for groups 2 and 3.

The decision boundaries of the two detectors are
shown in Figure 1. For illustration purposes, Fig-
ure 1 also shows samples of feature vectors drawn
from the respective distributions. Both decision
boundaries approximately follow the negative diag-
onal of the unit square, with a noticeable “bulge” in
the region where the feature distribution of honest
test takers in group 2 strongly overlaps with that
of the cheaters. However, the bulge is much more
pronounced in case of the BFAR-fair detector. This
increased lenience towards test takers in group 2 is
(partially) compensated by tightening the decision
boundary in the upper left region, which is unlikely
to contain members of group 2. This adjustment
explains the observed increase in false alarm rates
for test takers in groups 1 and 3.

In summary, at the same detection rate, the
BFAR-fair detector admits a significantly more uni-
form false alarm rate profile compared to a stan-
dard likelihood ratio test and keeps the “worst case”
false alarm rate across all groups below the targeted
10%. On the downside, the overall false alarm
rate, which, in this case, is given by the average of
the groupwise rates, increases from 8.5% to 9.5%.
Whether or not this drawback outweighs the bene-
fits of the BFAR-fair detector has to be evaluated on
a case-by-case basis. We hope that the discussions
in Section 2 and 3.3 provide valuable guidelines for
this evaluation.
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Abstract
We present preliminary evidence on the im-
pact of a NLP-based writing feedback tool,
Write-On with Cambi! on students’ argumen-
tative writing. Students were randomly as-
signed to receive access to the tool or not, and
their essay scores were compared across three
rubric dimensions; estimated effect sizes (Co-
hen’s d) ranged from 0.25 to 0.26 (with no-
table variation in the average treatment effect
across classrooms). To characterize and com-
pare the groups’ writing processes, we imple-
mented an algorithm that classified each revi-
sion as Appended (new text added to the end),
Surface-level (minor within-text corrections to
conventions), or Substantive (larger within-text
changes or additions). We interpret within-text
edits (Surface-level or Substantive) as potential
markers of metacognitive engagement in revi-
sion, and note that these within-text edits are
more common in students who had access to
the tool. Together, these pilot analyses serve as
a first step in testing the tool’s theory of action.

1 Introduction

The writing feedback tool, Write-on with Cambi!,
was designed to support students in revising their
argumentative essays. It highlights key argumen-
tative elements based on annotation guidelines
aligned to standards, which have been shown to
produce organizational patterns that correlate with
rubric scores [1]. These annotations drive the tool’s
feedback in two primary ways. First, they provide
students with a structured overview of their writ-
ing. Second, the absence of certain annotations in
a student’s essay triggers targeted feedback. [3]
Beyond annotation-based feedback, the tool flags
conventions-related errors (e.g., spelling, punctua-
tion, grammar). It does not auto-correct; instead,
it highlights each issue and provides guidance on
how to revise it.

The tool is grounded in a theory of action that,
at a high level, states: “Students who are guided

through a structured review of their essays with
immediate, annotated feedback that is well-aligned
to teacher instruction will produce essays of higher
overall quality.”[4] To further theorize the causal
mechanism that leads to this outcome, we posit
that, by prompting students to examine potentially
missing compositional elements and conventions-
related errors, the tool elicits metacognitive pro-
cesses (reviewing, evaluating, and editing) that, in
turn, improve essay quality.

This study aims to begin to evaluate this the-
ory of action by the way of the following two key
research questions:

1. Do students with access to the tool achieve
higher scores across all three dimensions of
the scoring rubric? Additionally, how does the
effect vary across different teachers in terms
of both magnitude and direction?

2. How can we begin to analyze the differences
in writing and revision strategies between stu-
dents who have access to the tool and those
who did not? How might we tie this back to
the theory of action?

2 Methods

2.1 Randomized Pilot
At the end of the 2024 school year, 11 educators
from two states volunteered to pilot the Write on
with Cambi! (or Cambi!) tool in their grade 6
through 8th grade classrooms. This pilot study
involved 262 seventh grade students within eleven
classrooms, with 125 from State A and 137 from
State B. During the test, students were randomly
assigned access to the tool: 124 did not receive
access (control group) and 138 students did receive
access to the tool (treatment group).

To begin to assess the impact of the writing tool
of Cambi! in student performance, students’ essay
responses were scored across three dimensions of
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the rubric: Conventions, Elaboration and Organi-
zation by an automated scoring engine, Autoscore.
All students answered the same writing prompt
and were scored using the same rubric, which was
common across the two states.

We report descriptive statistics (means/SDs),
estimate effect sizes (Cohen’s d), test group
differences (two-sample t-tests; Wilcoxon rank-
sum), describe score-point distributions, and
examine heterogeneity in treatment effects by
teacher/classroom.

2.2 Response Analysis
We collected the full text of each student’s essay
at 2-minute intervals throughout the writing ses-
sion, which we will be referring to as "2-minute
snapshots" or simply "snapshots."

This process yielded a primary corpus of 4,990
snapshots from 262 unique student participants.
Each entry in this corpus contains the student’s
unique ID, their assigned group (treatment or con-
trol), a chronological snapshot sequence number,
and the full text of their essay at that moment.

From a qualitative review of two-minute snap-
shots, we categorized essay revisions into two
types: appending—adding new text to the end
of the essay—and internal edits—changes made
within the previously written text. We further dis-
tinguish two forms of internal edits:

1. Surface-level Edits: Minor corrections, often-
times related to writing conventions, such as
spelling, punctuation, and grammar.

2. Substantive Edits: Larger changes or addi-
tions within the previously written text of the
essay.

Internal edits are of particular interest, as they
may signify a deeper level of metacognition, sug-
gesting a shift from automatic drafting to more
deliberate and strategic composing.

To analyze revision patterns, we developed a
custom algorithm to classify the changes between
consecutive 2-minute snapshots. After tokenizing
each snapshot’s text using the NLTK library, we
used a hierarchical classification logic to categorize
every change into one of three mutually exclusive
types:

1. Appended Text: Edits were first checked for
location. Any change involving an addition of
text at the very end of the previous snapshot
was classified as an Append.

2. Surface-level Edits: If an edit was not an
Append, its size was evaluated. Any inter-
nal change (an insertion, deletion, or replace-
ment within the body of the text) involving
3 words or fewer was classified as a Surface-
Level Edit.

3. Substantive Edits: Any internal edit involv-
ing more than 3 words was classified as a
Substantive Edit.

This process yielded a count for each of the three
edit types for every 2-minute interval. In the charts
presented below, the average number of edits is
calculated as the total number of edits of a specific
type (e.g., surface-level) within a given writing
stage, divided by the total number of students in
that group.

The algorithms used for this classification of
edits is detailed in Algorithm A.1

3 Results

3.1 Randomized Pilot

We analyzed the impact of thewriting tool on stu-
dent writing by comparing a treatment group (acess
to Cambi!) and a control group (without access to
Cambi!) across three rubric dimensions: Conven-
tions, Elaboration, and Organization.

3.1.1 Aggregate Results
Across all classrooms, essays written by students
with access to Cambi! had higher mean scores on
average, as outlined in Table 1. This corresponded
to a Cohen’s d ranging from 0.25 to 0.26. While
this effect size may appear small, it should be noted
that a review of over 700 k-12 intervention studies
suggest an effect size of over .2 is considered large
[2]

To test for statistical significance, we first ran
two-sample t-tests, which assume scores are inter-
val data. These tests, as shown in Table 2 con-
firmed the differences were statistically significant
(p<0.05). To better account for the ordinal nature
of the rubric scores (i.e., the distance between 1
and 2 may not equal the distance between 2 and
3), we also conducted a non-parametric Wilcoxon
rank-sum test. The results of this test approached
statistical significance at the p<0.05 level.

Analysis of the score point distributions revealed
specific shifts for the those with access to the writ-
ing tool compared to the group without access to
the tool, shown in Figure 1
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Table 1: Comparison of Mean Scores and Effect Sizes by access to Cambi!

Mean Score (SD)
Access to Cambi! Conventions Elaboration Organization
0 (n = 133) 1.50 (.72) 1.21 (.64) 1.46 (.72)
1 (n = 115) 1.67 (.60) 1.37 (.55) 1.63 (.58)
Effect Size (Cohen’s d) .26 .26 .25

Table 2: Two-sample t-test Results

Dimension t-Statistic p-value
Conventions -2.056 0.0408
Elaboration -2.044 0.0420
Organization -2.016 0.0449

Figure 1: Score Point Distribution by treatment and
control group

1. Conventions: The Cambi! group received
more scores of 2 and fewer scores of 1 and 0.

2. Elaboration: The Cambi! group had fewer
scores of 0, more scores of 1 and 2, and an
equal proportion of 3s.

3. Organization: The Cambi! group earned
fewer scores of 0, more scores of 1 and 2,
and a slightly higher proportion of 3s.

Notably, for Elaboration and Organization, a
score of 0 indicated a non-attempt, suggesting the
tool helped students overcome initial writing iner-
tia. Additionally, on Elaboration and Organization,
no students in either group achieved the maximum
score of 4.

3.1.2 Classroom-level Variability
Although aggregate results were positive, the es-
timated treatment effect varied across classrooms.

We take a closer look at one dimension, Organiza-
tion, to illustrate this variance in Figure 2. For this
dimension, 6 of 11 classrooms showed a positive
effect for Cambi!, 4 showed a negative effect, and
1 showed no difference.

The variation in results can be illustrated by ex-
amining the three largest classrooms, where teacher
survey data helps interpret the quantitative findings:

1. 0F8C (d=0.32; N: 15 control, 22 treatment):
This classroom showed a positive effect, but
the teacher provided no comment on their im-
plementation strategy.

2. CCA5 (d=-0.03; N: 24 control, 14 treatment):
This classroom showed a negligible effect.
The teacher noted that student engagement
may have been skewed by low motivation, as
the voluntary pilot took place after summative
testing at the end of the year.

3. 5F4E (d=0.22; N: 29 control, 41 treatment):
This classroom showed a positive effect. The
teacher reported actively scaffolding the tool
by going through each feedback tab with stu-
dents to ensure they understood the sugges-
tions and how to apply them.

In the next section, these pilot results are futher
explored to understand how we can begin to ana-
lyze the differences in writing and revision strate-
gies between students who have access to the tool
and those who did not.

3.2 Response Analysis

In this section, we describe how the revision pro-
cess—categorized into three edit types—differs be-
tween students with and without access to the writ-
ing tool.

3.2.1 Overview and Appended Text
An analysis of the overall composition of edits
shows that appending new text was a common be-
havior in both groups. However, as seen in Figure
3, those without access to Cambi! dedicated a
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Figure 2: Organization Effect of Access to Cambi! by Teacher/Classroom

larger proportion of their total revision activity to
appended edits compared to those who had access
to the writing tool.

3.2.2 Surface-level Edits
The timing and frequency of small, surface-level
edits revealed a notable difference in writing work-
flow between the groups.

1. Overall Trend: As shown in Figure 4, both
groups steadily accumulated surface-level ed-
its throughout the writing session. Notably,
while those without access to the writing tool
maintained a slightly higher cumulative edit
count for the first three quarters, those with
access showed a marked acceleration in edit-
ing during the final stage (76-100%). This
timing aligns with the tool’s feedback flow:
conventions-related feedback is delivered only
after students receive more substantive feed-
back focused on compositional elements.

2. Analysis by Score Point: This trend was most
pronounced among students with high scoring
essays on the Conventions score. However,
the most striking difference was observed
among students who ultimately scored a zero
on Conventions (Figure 5). Students who had

access to the tool but received a lower score
showed a high and increasing level of cumula-
tive surface-level edits. In contrast, the control
group’s essays that received zero scores show
almost no cumulative editing activity.

3.2.3 Substantive Edits
The analysis of substantive edits (defined as inter-
nal edits involving more than three words) reveals
a divergence in revision strategy between the two
groups. As shown in Figure 6, students with access
to Cambi! consistently accumulated more substan-
tive edits than the control group throughout the
entire writing session. The gap between the two
groups widened over time, with the treatment group
performing a substantially higher number of total
substantive revisions by the end of the session.

This difference in behavior was most pro-
nounced among the essays with the highest scores.
Figure 7 illustrates the cumulative edits specifically
for students who earned a score of 3 on the Organi-
zation rubric. For this tier, the treatment group’s en-
gagement in substantive revision was higher, with
an average of nearly 11 cumulative edits by the end
of the writing time. In contrast, their control group
peers who also scored a 3 performed very few of
these edits, averaging just over 2 by the session’s
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Figure 3: Proportion of Total Edit Types by group.

Figure 4: Cumulative Surface-level edits by Writing Stage
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Figure 5: Cumulative Surface-level Edits by Conventions Score Tier

end. The graphs for Organization scores 1 and 2
are in A.2

4 Discussion and Limitations

This work provides preliminary evidence for the ef-
fectiveness of an AI-powered writing tool through
a pilot study in which students were randomly as-
signed access. It also introduces methods for ex-
ploring the underlying mechanisms that explain
how and why the tool influences writing behavior
and outcomes, and ties back to the theory of action.

We observed a notable effect of using the tool on
student rubric scores, as scored by Autoscore, in
the aggregate. Across classes and states, the effect
size for each rubric dimension ranged between .25
and .26. While this effect size is large in educa-
tional contexts, the outcome of the rubric scores
is strongly aligned and scored immediately after
the student wrote the essay. As such, with less
aligned and further apart outcome variables, we
may expect an effect size of a smaller magnitude.
Furthermore, observed heterogeneity in the aver-
age treatment effect across classrooms, as expected
given differences in implementation and baseline
writing ability.

We offer several considerations when interpret-
ing the results:

1. Intent-to-Treat Study: In this study, we only
know if a student was granted access to the
tool, but we did not track if the tool was used.
The results should be interpreted accordingly.
These results provide an estimate of the tool’s
effectiveness in a real-world setting, where
not every student may utilize the tool, they
have access to.

2. Test Fatigue: The pilot occurred after annual
summative assessments, and teachers noted
student fatigue. This low-stakes context may
have suppressed scores across both groups and
masked a larger potential effect.

3. Control group Behavior: The control group,
aware they lacked access to a new AI tool,
may have been less motivated, potentially in-
flating the observed difference between the
groups.

4. Treatment Diffusion: Teachers reported help-
ing students interpret Cambi! feedback. It’s
possible that this guidance was overheard by
or shared with control group students, which
would weaken the measured effect

In this paper, we also explored methods to be-
gin to analyze differences in writing and revision
strategies between students who have access to the
tool and those who do not. First, we qualitatively
reviewed and categorized the two-minute snapshots
into three forms of revisions: appending, surface-
level, and substantive. The latter two forms of
in-text revisions are aligned with our theory of ac-
tion that the tool may lead the student to engage
in the metacognitive task of reviewing, evaluating,
and editing their text.

The findings indicate that students with access
to Cambi! tended to shift their efforts from simply
appending text toward more internal revisions. This
pattern varied across levels of student performance.

For surface-level edits, the tool’s impact was
most evident among students who received lower
scores. As shown in Figure 5, students in the treat-
ment group who ultimately scored a 0 on Conven-
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Figure 6: Cumulative Substantive Edits by Writing Stage

tions attempted a notable number of edits, whereas
their counterparts in the control group made very
few. While these edits did not raise their final
scores in this instance, this finding indicates that
the tool can prompt engagement from students who
might otherwise remain passive.

For substantive edits, the effect was particularly
notable among students with higher scores. The
data from students who achieved a score of 3 on the
Organization rubric shows a substantially higher
number of substantive revisions for the treatment
group compared to their control group peers (Fig-
ure 7). This suggests the tool may act as a scaffold,
guiding students who already are capable writers
to move beyond surface-level fixes and engage in
more complex, structural revision. Future work
could also explore different word-count thresholds
for differentiating between surface-level and sub-
stantive edits.

4.1 Conclusion

Building the evidence base for a writing tool in ar-
gumentative writing is ongoing. This paper offers
preliminary findings that Write-On with Cambi!
can support students and proposes a path for ana-
lyzing the mechanisms behind observed score dif-
ferences. These results serve as a first step in testing
the tool’s theory of action.

References

[1] Amy Burkhardt, Suhwa Han, Sherri Woolf, Allison
Boykin, Frank Rijmen, and Susan Lottridge. 2025.
Standards-aligned annotations reveal organizational
patterns in argumentative essays at scale. Frontiers
in Education, 10.

[2] Matthew A. Kraft. 2018. Interpreting effect sizes
of education interventions. Technical report, Brown
University.

[3] Sue Lottridge, Amy Burkhardt, Christopher
Ormerod, Sherri Woolf, Mackenzie Young, Milan
Patel, Harry Wang, Julius Frost, Kevin McBeth, Julie
Benson, Michael Flynn, Kevin Dwyer, Scott Fitz,
Radd Berkheiser, Henry Floyd, Dave Davis, Ben
Godek, and Quinell Wilson. 2025. Write on with
cambi: The development of an argumentative writing
feedback tool. Technical report, Cambium Assess-
ment, Inc.

[4] Sue Lottridge, Chris Ormerod, and Amy Burkhardt.
2025. Development and validation of an AWE sys-
tem “Write On with Cambi!”. In Proceedings of
the National Council on Measurement in Education
(NCME), Denver, CO.

A Appendix

A.1 Algorithm for edits retrieval

The algorithm used for classifying the edits into
three different categories, appended, surface-level
and substantive, is outlined in Algorithm 1
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Figure 7: Cumulative Substantive Edits for Students with a Top Organization Score (3)

Algorithm 1 Classification of Revision Edits
1: procedure CLASSIFYREVI-

SION(Sbefore, Safter, Nthreshold)
2: Input: Sbefore (previous text), Safter (cur-

rent text), Nthreshold (word count limit)
3: Output: List of classification labels for

each edit
4: Wbefore ← TokenizeAndClean(Sbefore)
5: Wafter ← TokenizeAndClean(Safter)
6: Wafter ←

HandleChoppedWord(Wbefore,Wafter)
7: Opcodes← Diff(Wbefore,Wafter)
8: Edits← []
9: for all (tag, i1, i2, j1, j2) ∈ Opcodes do

10: if tag = ’equal’ then continue
11: end if
12: if tag = ’insert’∧ i1 = |Wbefore| then
13: Append "Appended" to Edits
14: else if max(i2 − i1, j2 − j1) ≤

Nthreshold then
15: Append "Surface-level" to Edits
16: else
17: Append "Substantive" to Edits
18: end if
19: end for
20: return Edits
21: end procedure

A.2 Graphs for Organization scores 1 and 2
Figures 8 and 9 illustrate the cumulative edits by
students who earned a score of 1 and 2, respectively,
on the Organization rubric
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Figure 8: Cumulative Substantive Edits for Students with a Organization Score=1

Figure 9: Cumulative Substantive Edits for Students with a Organization Score=2
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