AIME-Con 2025

Artificial Intelligence in Measurement and Education Conference (AIME-Con)

Volume 2: Works in Progress

The AIME-Con organizers gratefully acknowledge the support from the following sponsors.

Platinum

Pearson

Gold

*ets research institute

Silver

Gates Foundation

Supporters

The future of language assessment is here

The Duolingo English Test is a computer adaptive test powered human-in-the-loop AI and supported by rigorous validity research. The test measures speaking, writing, reading, and listening skills, providing a deeper insight into English proficiency.

Built on the latest language assessment science

- Accessible by design, supporting test takers wherever they are for just \$70
- Built on rigorous research and industry- leading security
- Integrates the latest assessment science and AI for accurate results
- Accepted by over 5,800 programs worldwide

Evidence-based approach to Al in Measurement & Learning

At the intersection of artificial intelligence and educational measurement, Pearson stands as your trusted partner—delivering clarity, confidence, and innovation in every assessment moment.

Why Pearson?

- Al-Enhanced Accuracy: Using automated scoring and predictive analytics to provide insights that are accurate, fair, and timely.
- Future-Ready Solutions: Platforms that evolve with policy, pedagogy, and technology.
- Personalized Learning Journeys: Multi-lingual access and adaptive item generation to support each student's unique growth trajectory.
- Ethical Al Practices: Commitment to data security, transparency, explainability, and bias mitigation.
- Collaborative Innovation: Partnering with educators, researchers, and technologists to shape the future of assessment.

Human-Centric Al	Pearson believes Al's highest purpose is to elevate and empower human capabilities.
Assessment as a Learning Continuum	We reimagine assessments not as endpoints, but as integral parts of the learning journey.
Al as an Environment	Pearson is exploring how this shift impacts our approach to assessment—ensuring our tools are adaptive and future-ready.
Balancing Vision and Capabilities	We deliver reliable solutions today while building toward the future of AI in education.

The future of i-Ready Assessment is invisible.

Voice technology is coming to i-Ready Literacy Tasks

Built to hear students' voices of all accents and dialects

Creating the best possible solution by collaboratively learning with teachers in the classroom

Learn more about our vision for the future

*ets research institute

Shaping the Future of AI in Assessment

ETS advances responsible Al research to promote fairness, trust, and innovation. As Al transforms education, ETS brings decades of expertise to ensure that new solutions are not only powerful, but also valid, equitable, and transparent. Our work is driving the next-generation of measurement science, standing at the intersection of Al, learning, and assessment.

Highlights from ETS research at NCME AIME 2025:

- Investigating racial and ethnic subgroup representation in automated essay scoring
- Using generative AI teaching simulations to support teacher training
- Designing fairness-promoting, automated fraud detection systems
- Validating Aligenerated scoring rationales

REVIEW OUR GUIDELINES FOR RESPONSIBLE AI→

Advancing Assessment with Al

Grounded in science and responsible best practices, we use Al to enhance how we measure what students know and can do.

19states

we serve use hybrid scoring

24M essays & short answers auto-scored by

our Al engines

responses auto-scored by our Al engines

2M verbal

More Al-Powered Features - Coming Soon!

- WriteOn with Cambi
- Item Parameter Estimation
- Cheating Analysis
- Teacher Authoring with Al passage generation
- Hotline for student-at-risk work detection

Data reflects the 2024-2025 academic year

♦ CollegeBoard

College Board Is a Proud Sponsor of AIME-Con

Join our engaging sessions to learn how we're advancing innovative and responsible use of Al in educational measurement.

edCount is pleased to sponsor 2025 NCME AIME-Con Over 20 years of service to students and educators!

Our Belief Statement

Every individual brings unique experiences, skill sets, and perspectives that work to advance our purpose: continuously improving the quality, fairness, and accessibility of education for all students.

Our Services

- Assessment Design, Development, and Evaluation
- Instructional Systems and Capacity Building
- · Policy Analysis and Technical Assistance

www.edCount.com

(202) 895-1502 | info@edCount.com

www.NBME.org

ADVANCING ASSESSMENT, SUPPORTING OPTIMAL CARE

Through research and collaboration, NBME is evolving how we evaluate and support learners, with a focus on applying new technology to develop assessments that measure and build the knowledge and skills needed to provide optimal, effective care to all.

©2025 National Council on Measurement in Education (NCME)

Order copies of this and other NCME proceedings from:

National Council on Measurement in Education (NCME) 520 S. Walnut St. Box 2388
Bloomington, IN 47402
USA

Tel: +1-812-245-8096 ncme@ncme.org

ISBN 979-8-218-84229-1

Preface

Introduction

The inaugural NCME-sponsored Artificial Intelligence in Measurement and Education Conference (AIME-Con) brought together an interdisciplinary community of experts working at the intersection of artificial intelligence (AI), educational measurement, assessment, natural language processing, learning analytics, and technological development. As AI continues to transform education and assessment practices, this conference provided a critical platform for fostering cross-disciplinary dialogue, sharing cutting-edge research, and exploring the technical, ethical, and practical implications of AI-driven innovations in measurement and education. By bringing together experts from varied domains, the conference fostered a rich exchange of knowledge to enhance the collective understanding of AI's impact on educational measurement and evaluation.

Conference Theme - Innovation and Evidence: Shaping the Future of AI in Educational Measurement

The NCME-Sponsored AIME-Con focused on how rigorous measurement standards and innovative AI applications can work together to transform education. With sessions spanning summative large-scale assessment, formative classroom assessment, automated feedback, and informal learning tools, this conference fostered both the advancement and evaluation of AI technologies that are effective, reliable, and fair.

The National Council on Measurement in Education

The National Council on Measurement in Education is a community of measurement scientists and practitioners who work together to advance theory and applications of educational measurement to benefit society. A professional organization for individuals involved in assessment, evaluation, testing, and other aspects of educational measurement, our members are involved in the construction and use of standardized tests; new forms of assessment, including performance-based assessment; program design; and program evaluation. Learn more about NCME, including our goals and our leadership, at www.ncme.org. We are grateful to the NCME.

NCME Special Interest Group on Artificial Intelligence in Measurement and Education

The AIME SIGIMIE seeks to advance the theoretical and applied research into AI of educational measurement by bringing together data scientists, psychometricians, education researchers, and other interested stakeholders. The SIGIMIE will discuss current practices in using Generative AI, approaches to evaluate their precision/accuracy, and areas where more foundational research is required into the way we test and measure educational outcomes. This group seeks to create a strong professional identity and intellectual home for those interested in the use of AI in many areas, including automated scoring, item evaluation, validity studies, formative feedback, and generative AI for automated item generation.

Proposal Requirements and Review Process for Work-in-Progress Papers

AIME-Con invited submissions of Working Papers, which were submissions of up to 1,000 words in the form of a structured summary. This format was designed for work-in-progress or pilot studies. Working Papers required a title, short abstract, and followed a structured format with the following headings:

- · Background
- Aims
- Sample(s)
- Methods
- Results (or Anticipated Results)
- Conclusions (or Anticipated Contributions)
- References, tables, and figures included as needed.

Submissions were evaluated by members of the review committee using a rubric that evaluated the following dimensions:

- Relevance and community impact: pertinence to the AI in measurement and education community, and potential contribution to current discussions and challenges in the field
- **Significance and value:** scholarly merit or practical importance of the work, and potential impact on theory, practice, or policy
- **Methodological rigor:** coherence and appropriateness of the proposed methods, techniques, and approaches; and soundness of the overall research design
- Quality of expected outcomes: whether the proposed analysis and interpretation methods are appropriate, and the potential contribution to knowledge in the field
- **Feasibility and timeline:** the realistic likelihood that the proposed work can be completed by the conference date

For the purposes of this conference, "AI" was defined broadly to include rule-based methods, machine learning, natural language processing, and generative AI/large language models. Reviewers provided constructive feedback and overall recommendations to ensure that accepted sessions reflected both scholarly merit and practical value to the AI in measurement and education community.

Organizing Committee

NCME Leadership

Amy Hendrickson, Ph.D. (President) Rich Patz, Ph.D. (Executive Director)

Conference Chairs

Joshua Wilson, University of Delaware Christopher Ormerod, Cambium Assessment Magdalen Beiting Parrish, Federation of American Scientists

Proceedings Chair

Nitin Madnani, Duolingo

Proceedings Committee

Jill Burstein, Duolingo Polina Harik, NBME

Program Committee

Conference Chairs

Joshua Wilson, University of Delaware Christopher Ormerod, Cambium Assessment Magdalen Beiting Parrish, Federation of American Scientists

Reviewers

Ketan, University of Massachusetts, Amherst

Hope Adegoke, University of North Carolina

Tazin Afrin, NBME

Ernest Amoateng, Western Michigan University

Kylie Anglin, University of Connecticut

Sergio Araneda, Caveon

Meirav Attali, Fordham University

Nurseit Baizhanov

Lee Becker, Pearson

Beata Beigman Klebanov, ETS

Ummugul Bezirhan, Boston College

Janet Shufor Bih Epse Fofang, University of Pittsburgh

Peter Bodary, University of Michigan School of Kinesiology

Brad Bolender, Finetune by Prometric

Jill Burstein, Duolingo

Hye-Jeong Choi, HumRRO

Jinmin Chung, Univ. of Iowa

Christina Cipriano, Yale University

Lisa Clark, City University of New York

Victoria Delaney, San Diego State University

Onur Demirkaya, Riverside Insights

Scott Elliot, SEG Measurement

Andrew Emerson, National Board of Medical Examiners

Mingyu Feng, WestEd

Taiwo Feyijimi, University of Georgia

Carla Firetto, Arizona State University

Jonathan Foster, University at Albany

Samantha Goldman, The University of Kansas

Chad Green, Loudoun County Public Schools

Joe Grochowalski, College Board

Yi Gui, The University of Iowa

Aysegul Gunduz, University of Alberta

Hongwen Guo, ETS Research Institute

Yage Guo, Center for Applied Linguistics

Gulsah Gurkan, Pearson

Suhwa Han, Cambium Asessment

Michael Hardy, Stanford University

Qiwei He, Georgetown University

Alexander Hoffman, AleDev Research & Consulting

Ruikun Hou, Technical University of Munich

Ruiping Huang, University of Illinois Chicago

Yue Huang, Measurement Incorporated

Hiu Ching Hung, Friedrich-Alexander-Universität Erlangen-Nürnberg

HUIMIN JIAO

Jamie Jirout, University of Virginia

Ji Yoon Jung, Boston College

Olasunkanmi Kehinde, Norfolk State University

YoungKoung Kim, The College Board

Becky King, University of Pittsburgh

Miryeong Koo, University of Illinois at Urbana-Champaign

Aakash Kumar, Texas A&M University

Alexander Kwako, Cambium Assessment

Brandon LeBeau, WestEd

Hansol Lee, Stanford University

Arun Balajiee Lekshmi Narayanan, University of Pittsburgh

Hongli Li, Georgia State University

Tianwen Li, University of Pittsburgh

Li Liang

Boyuan LIU, Department of Educational Psychology, The Chinese University of Hong Kong

Chen Liu, UC Merced

Will Lorie

Susan Lottridge, Cambium Assessment

Max Lu, Harvard University

Yi Lu, Federation of State Boards of Physical Therapy

Wenchao Ma, University of Minnesota

Henry Makinde, University of North Carolina - Greensboro

Mike Maksimchuk, Kent Intermediate School District

Salih Mansur, Touro University of New York

Jamie Mikeska, ETS

Mubarak Mojoyinola, University of Iowa

Wesley Morris, Vanderbilt University

Tim Moses, Buros Center for Testing

William Muntean, National Council of State Boards of Nursing

Mariel Musso, University of Granada- CONICET

Supraja Narayanaswamy, Acelero Inc.

Lynn Nguyen, Fruitions eTutoring

Tram-Anh Tran Nguyen, University of Massachusetts, Amherst

Chunling Niu, The University of the Incarnate Word

Kai North, Cambium Learning Group, Inc.

Teresa Ober, ETS

Maria Oliveri, Purdue University

Christopher Ormerod, Cambium Assessment

Jay Parkes, University of New Mexico

Hallie Parten, University of Virginia

Katie Pedley, Pearson

Benjamin Pierce, University of Pittsburgh

Andrew Potter, Arizona State University

Sonya Powers, Edmentum

Ricardo Primi, Universidade São Francisco

Sarah Quesen, WestEd

Ruchi Sachdeva, Pearson

Fariha Hayat Salman, American University in Dubai

Lydia Scholle-Cotton, Queen's University (Kingstion, ON, Canada)

Qingzhou Shi, Northwestern University

Jinnie Shin, University of Florida

Anthony Shiver, Law School Admission Council

Stephen Sireci, University of Massachusetts Amherst

Anastasia Smirnova, San Francisco State University

Xiaomei Song, Case Western Reserve University School of Medicine

Kayden Stockdale, Virginia Tech

Caitlin Tenison, ETS

Danielle Thomas, Carnegie Mellon University

Zewei Tian, University of Washington

Nhat Tran, University of Pittsburgh

FELIPE Valentini, Graduate School of Psychology, Universidade São Francisco

Marcus Walker, National Commission on Certification of Physician Assistants

Cole Walsh, Acuity Insights

Huanxiao Wang, University of Pennsylvania

Yun-Han Weng, Ohio State University

Joshua Wilson, University of Delaware

Sirui Wu, University of British Columbia

Hyesun You, University of Iowa

Meltem Yumsek Akbaba, Ministry of National Education, Turkey

Diego Zapata-Rivera, ETS

Dake Zhang, Rutgers University

Jiayi (Joyce) Zhang, University of Pennsylvania

Liang Zhang, University of Georgia

Ting Zhang, American Institutes for Research

Lauren Zito, WGU Labs

Table of Contents

Automated Item Neutralization for Non-Cognitive Scales: A Large Language Model Approach to Reducing Social-Desirability Bias Sirui Wu and Daijin Yang
AI as a Mind Partner: Cognitive Impact in Pakistan's Educational Landscape Eman Khalid, Hammad Javaid, Yashal Waseem and Natasha Sohail Barlas
Detecting Math Misconceptions: An AI Benchmark Dataset Bethany Rittle-Johnson, Rebecca Adler, Kelley Durkin, L Burleigh, Jules King and Scott Crossley 20
Optimizing Opportunity: An AI-Driven Approach to Redistricting for Fairer School Funding Jordan Abbott
Automatic Grading of Student Work Using Simulated Rubric-Based Data and GenAI Models Yiyao Yang and Yasemin Gulbahar
Cognitive Engagement in GenAl Tutor Conversations: At-scale Measurement and Impact on Learning Kodi Weatherholtz, Kelli Millwood Hill, Kristen Dicerbo, Walt Wells, Phillip Grimaldi, Maya Miller-Vedam, Charles Hogg and Bogdan Yamkovenko
Chain-of-Thought Prompting for Automated Evaluation of Revision Patterns in Young Student Writing Tianwen Li, Michelle Hong, Lindsay Clare Matsumura, Elaine Lin Wang, Diane Litman, Zhexiong Liu and Richard Correnti
Predicting and Evaluating Item Responses Using Machine Learning, Text Embeddings, and LLMs Evelyn Johnson, Hsin-Ro Wei, Tong Wu and Huan Liu
Evaluating LLM-Based Automated Essay Scoring: Accuracy, Fairness, and Validity Yue Huang and Joshua Wilson
Comparing AI tools and Human Raters in Predicting Reading Item Difficulty Hongli Li, Roula Aldib, Chad Marchong and Kevin Fan84
When Machines Mislead: Human Review of Erroneous AI Cheating Signals William Belzak, Chenhao Niu and Angel Ortmann Lee
Fairness in Formative AI: Cognitive Complexity in Chatbot Questions Across Research Topics Alexandra Barry Colbert and Karen D Wang
Keystroke Analysis in Digital Test Security: AI Approaches for Copy-Typing Detection and Cheating Ring Identification Chenhao Niu, Yong-Siang Shih, Manqian Liao, Ruidong Liu and Angel Ortmann Lee 107
Talking to Learn: A SoTL Study of Generative AI-Facilitated Feynman Reviews Madeline Rose Mattox, Natalie Hutchins and Jamie J Jirout
AI-Powered Coding of Elementary Students' Small-Group Discussions about Text Carla Firetto, P. Karen Murphy, Lin Yan and Yue Tang
Evaluating the Reliability of Human–AI Collaborative Scoring of Written Arguments Using Rational Force Model Noriko Takahashi, Abraham Onuorah, Alina Reznitskaya, Evgeny Chukharev, Ariel Sykes, Michele Flammia and Joe Oyler

Evaluating Deep Learning and Transformer Models on SME and GenAl Items Joe Betts and William Muntean	1
Comparison of AI and Human Scoring on A Visual Arts Assessment Ning Jiang, Yue Huang and Jie Chen	ŀ7
Explainable Writing Scores via Fine-grained, LLM-Generated Features James V Bruno and Lee Becker	55
Validating Generative AI Scoring of Constructed Responses with Cognitive Diagnosis Hyunjoo Kim16	56
Automated Diagnosis of Students' Number Line Strategies for Fractions Zhizhi Wang, Dake Zhang, Min Li and Yuhan Tao	18
Medical Item Difficulty Prediction Using Machine Learning Hope Oluwaseun Adegoke, Ying Du and Andrew Dwyer 18	35
Examining decoding items using engine transcriptions and scoring in early literacy assessment Zachary Schultz, Mackenzie Young, Debbie Dugdale and Susan Lottridge)1
Addressing Few-Shot LLM Classification Instability Through Explanation-Augmented Distillation William Muntean and Joe Betts)7
dentifying Biases in Large Language Model Assessment of Linguistically Diverse Texts Lionel Hsien Meng, Shamya Karumbaiah, Vivek Saravanan and Daniel Bolt20)4
mplicit Biases in Large Vision–Language Models in Classroom Contexts Peter Baldwin	. 1
Enhancing Item Difficulty Prediction in Large-scale Assessment with Large Language Model Mubarak Mojoyinola, Olasunkanmi James Kehinde and Judy Tang21	8
Leveraging LLMs for Cognitive Skill Mapping in TIMSS Mathematics Assessment Ruchi J Sachdeva and Jung Yeon Park	23