@inproceedings{belzak-etal-2025-machines,
title = "When Machines Mislead: Human Review of Erroneous {AI} Cheating Signals",
author = "Belzak, William and
Niu, Chenhao and
Ortmann Lee, Angel",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-wip.11/",
pages = "90--97",
ISBN = "979-8-218-84229-1",
abstract = "This study examines how human proctors interpret AI-generated alerts for misconduct in remote assessments. Findings suggest proctors can identify false positives, though confirmation bias and differences across test-taker nationalities were observed. Results highlight opportunities to refine proctoring guidelines and strengthen fairness in human oversight of automated signals in high-stakes testing."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="belzak-etal-2025-machines">
<titleInfo>
<title>When Machines Mislead: Human Review of Erroneous AI Cheating Signals</title>
</titleInfo>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Belzak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenhao</namePart>
<namePart type="family">Niu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angel</namePart>
<namePart type="family">Ortmann Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84229-1</identifier>
</relatedItem>
<abstract>This study examines how human proctors interpret AI-generated alerts for misconduct in remote assessments. Findings suggest proctors can identify false positives, though confirmation bias and differences across test-taker nationalities were observed. Results highlight opportunities to refine proctoring guidelines and strengthen fairness in human oversight of automated signals in high-stakes testing.</abstract>
<identifier type="citekey">belzak-etal-2025-machines</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-wip.11/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>90</start>
<end>97</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T When Machines Mislead: Human Review of Erroneous AI Cheating Signals
%A Belzak, William
%A Niu, Chenhao
%A Ortmann Lee, Angel
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84229-1
%F belzak-etal-2025-machines
%X This study examines how human proctors interpret AI-generated alerts for misconduct in remote assessments. Findings suggest proctors can identify false positives, though confirmation bias and differences across test-taker nationalities were observed. Results highlight opportunities to refine proctoring guidelines and strengthen fairness in human oversight of automated signals in high-stakes testing.
%U https://aclanthology.org/2025.aimecon-wip.11/
%P 90-97
Markdown (Informal)
[When Machines Mislead: Human Review of Erroneous AI Cheating Signals](https://aclanthology.org/2025.aimecon-wip.11/) (Belzak et al., AIME-Con 2025)
ACL
- William Belzak, Chenhao Niu, and Angel Ortmann Lee. 2025. When Machines Mislead: Human Review of Erroneous AI Cheating Signals. In Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress, pages 90–97, Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States. National Council on Measurement in Education (NCME).