@inproceedings{colbert-wang-2025-fairness,
title = "Fairness in Formative {AI}: Cognitive Complexity in Chatbot Questions Across Research Topics",
author = "Colbert, Alexandra Barry and
Wang, Karen D",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-wip.12/",
pages = "98--106",
ISBN = "979-8-218-84229-1",
abstract = "This study evaluates whether questions generated from a socratic-style research AI chatbot designed to support project-based AP courses maintains cognitive complexity parity when inputted with research topics of controversial and non-controversial nature. We present empirical findings indicating no significant conversational complexity differences, highlighting implications for equitable AI use in formative assessment."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="colbert-wang-2025-fairness">
<titleInfo>
<title>Fairness in Formative AI: Cognitive Complexity in Chatbot Questions Across Research Topics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="given">Barry</namePart>
<namePart type="family">Colbert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karen</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84229-1</identifier>
</relatedItem>
<abstract>This study evaluates whether questions generated from a socratic-style research AI chatbot designed to support project-based AP courses maintains cognitive complexity parity when inputted with research topics of controversial and non-controversial nature. We present empirical findings indicating no significant conversational complexity differences, highlighting implications for equitable AI use in formative assessment.</abstract>
<identifier type="citekey">colbert-wang-2025-fairness</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-wip.12/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>98</start>
<end>106</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fairness in Formative AI: Cognitive Complexity in Chatbot Questions Across Research Topics
%A Colbert, Alexandra Barry
%A Wang, Karen D.
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84229-1
%F colbert-wang-2025-fairness
%X This study evaluates whether questions generated from a socratic-style research AI chatbot designed to support project-based AP courses maintains cognitive complexity parity when inputted with research topics of controversial and non-controversial nature. We present empirical findings indicating no significant conversational complexity differences, highlighting implications for equitable AI use in formative assessment.
%U https://aclanthology.org/2025.aimecon-wip.12/
%P 98-106
Markdown (Informal)
[Fairness in Formative AI: Cognitive Complexity in Chatbot Questions Across Research Topics](https://aclanthology.org/2025.aimecon-wip.12/) (Colbert & Wang, AIME-Con 2025)
ACL