
Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con) – Volume 2: Works in Progress, pages 107–116
October 27-29, 2025 ©2025 National Council on Measurement in Education (NCME)

Keystroke Analysis in Digital Test Security: AI Approaches for
Copy-Typing Detection and Cheating Ring Identification

Chenhao Niu*, Yong-Siang Shih*, Manqian Liao, Ruidong Liu, Angel Ortmann Lee

Duolingo, Inc.
{chenhao,yongsiang,mancy,ruidong,angel.ortmannlee}@duolingo.com

Abstract

In high-stakes remote exams like the Duolingo
English Test, sophisticated cheating methods
such as copy-typing from external sources and
the operation of organized cheating rings pose
significant security threats. We introduce a
two-pronged, content-agnostic approach that
analyzes behavioral data to address these is-
sues. For copy-typing detection, we present
a sequence model that combines 1D convolu-
tional layers with a Transformer encoder, which
captures both local and long-range dependen-
cies in keystroke dynamics to distinguish be-
tween organic and transcribed typing, outper-
forming tabular and other sequential baselines.
For cheating ring identification, we propose
a deep metric learning framework that gener-
ates a unique behavioral embedding for each
test session using both keystroke and mouse
dynamics. The model outperforms a traditional
statistical baseline in linking test sessions com-
pleted by the same individual. Together, these
AI-driven methods provide a powerful and scal-
able toolkit for safeguarding the integrity of
remote assessments.

1 Introduction

Duolingo English Test (DET) (Naismith et al.,
2025) is a remotely administered, high-stakes En-
glish proficiency exam. Ensuring the integrity of
online assessments like the DET presents persis-
tent challenges, especially as new forms of digi-
tal test fraud emerge (Belzak et al., 2025a). Two
key threats are copy-typing and organized cheating
rings.

Copy-typing refers to the act of transcribing text
from an external source, rather than composing
it organically. In the context of high-stakes test-
ing, this form of misconduct often involves test
takers using pre-written answers, receiving live
assistance, or employing large language models

*Equal contribution.

(LLMs) to generate responses. Because security
measures like disabling copy-paste functionality
are applied, these illicitly obtained answers have
to be manually typed into the response box. This
behavior creates subtle but detectable deviations
from natural typing patterns. Our work introduces
a content-agnostic model that analyzes these behav-
ioral signals in keystroke dynamics to effectively
detect copy-typing.

Organized cheating rings are groups or commer-
cial services that assist multiple test takers in cheat-
ing. They pose a significant threat to the integrity
of the test due to their large-scale operations. Al-
though such services may use various methods,
we focus on a prevalent cheating ring scenario in
which a human helper effectively completes tasks
for multiple test takers using remote-control soft-
ware or external peripherals unobservable in we-
bcam footage. Because the same helper tends to
assist many test takers, an effective strategy is to
link test sessions completed by the same helper. We
propose to fingerprint behavior using keystrokes
and mouse dynamics, then compare test sessions
through learned embeddings. Identified clusters
of linked test sessions can be surfaced for human
review (Shih et al., 2024)1. To this end, we employ
a deep metric learning framework that embeds each
test session into a high-dimensional representation,
enabling efficient retrieval of similar test sessions
via approximate nearest neighbor search.

Contributions.
• A content-agnostic keystroke sequence model

for copy-typing detection that combines 1D
convolutional networks with a Transformer
encoder to effectively capture both local and
long-range dependencies in keystroke dynam-
ics.

1An initial high-level description of the cheating ring iden-
tification system appeared in Shih et al. (2024). Here we
contribute full technical details and new experiments.

107



• A deep metric learning framework for cheat-
ing ring identification, including a modified
n-pair training objective with hard negatives
controlling for hardware/region confounds.

2 Data Source and Context

Figure 1: An example of the writing item in DET. The
test taker has 30 seconds to prepare for the topic, and 5
minutes to write about it by typing on their keyboard.

Context. Our data originates from the Duolingo
English Test (DET), a high-stakes, remotely proc-
tored assessment of English proficiency (Naismith
et al., 2025). The test’s security protocol involves
multiple layers, such as video recording, screen
sharing, and input monitoring. Upon completion,
every test session undergoes a rigorous review pro-
cess that combines AI-driven analysis with human
proctor oversight to identify any integrity violations
(Belzak et al., 2025a). In our copy-typing detection
research, we focus on an open-ended writing task
in the DET, where test takers have 30 seconds to
read a question given by text, and 5 minutes to type
their response on a computer (See Figure 1 for an
example). Comparatively, in our cheating ring iden-
tification research, we utilize the mouse movement
patterns from the entire test session in addition to
the keystroke patterns from writing tasks to identify
the individual who completed the test.

Raw data collection. All DET test sessions
record keystroke and mouse activity, including the
timestamp of each key press and release, mouse
movements and clicks, cursor position, and other
contextual information (See Table 1 and Table 2
for details). We extract features from the raw log
files with application-specific feature engineering
methods.

Labels. To train and evaluate the models, the
collected data is labeled based on human and AI-
assisted proctoring decisions. The specific labeling
criteria for both experiments are detailed in §4.

3 Methodology

Our methodology leverages machine learning to an-
alyze behavioral data for two security tasks, based
on the same data source of raw keystroke data.

3.1 Copy-Typing Detection

In this section, we introduce our method for copy-
typing detection. At a high level, we treat the prob-
lem as a binary classification problem, and we train
a machine learning model with labeled data, using
a combination of tabular and sequential features.

3.1.1 Feature Engineering
For feature engineering, we process the raw fea-
tures (§2) of each keystroke event to extract both
sequential features and aggregated tabular features
for each sample.

Key code categorization. To ensure the model
is content-agnostic, we replace the exact key-code
with a categorical action-type, which takes
values among { INPUT, DELETE, MOVE, OTHER },
providing a coarser categorization. In addition,
we include a binary is-punctuation indicator for
punctuation keys.

A B

time

A B

press

release

dwell
inter-key

Figure 2: An example of extracting temporal features
for the keystroke of the key “B”. We consider four types
of durations: dwell, inter-key, press, and release.

108



Raw Feature Description

key-code The exact key being pressed, such as “a”, “shift”, “delete”, etc.
timestamp The timestamp of the key being pressed, in milliseconds.
dwell-duration The duration the key remains pressed, in milliseconds.
text-length The number of characters in the text box at the time of the key being pressed.
caret-position The current position of the caret in the text box, counted by the number of characters

from the beginning of the text box.

Table 1: Raw keystroke features and their descriptions.

Raw Feature Description

position The current mouse cursor position on the screen.
timestamp The timestamp when the data is recorded, in milliseconds.
is-clicked Whether it’s a click event or just a record of the current mouse position.
dwell-duration The duration the mouse button remains pressed, in milliseconds.

Table 2: Raw mouse movement features and their descriptions.

Temporal sequence features. Similar to exist-
ing research (Acien et al., 2021; Stragapede et al.,
2024), we extract timestamp-related features from
timestamp and dwell-duration, by calculating
the following four types of durations for each
keystroke. See Table 3 for details, and Figure 2
for a concrete example.

Text length and caret position processing. For
text-length and caret-position, we normalize
them by the maximum text length observed within
the item, to convert the feature values to the range
of [0, 1].

Auxiliary tabular features. In addition to tem-
poral sequence features, we compute several tab-
ular features for each sample. These features en-
hance the sequential model and enable comparison
against tabular baselines. Specifically, the tabu-
lar features include: (i) counts by action-type,
(ii) summary statistics { mean, std, p1, p25, p50,
p75, p99, skewness } for each temporal feature,
and (iii) pause-related measures: the count, total
paused time, and average pause duration for pauses
longer than thresholds { 200ms, 500ms, 1,000ms,
2,000ms, 3,000ms }.

All aggregates are normalized using training-set
statistics. When combined with the sequence en-
coder, we include only a minimal, non-duplicative
subset.

3.1.2 Model Architecture

Inspired by existing research (Acien et al., 2021;
Stragapede et al., 2024), we model copy-typing
detection as binary sequence classification over
keystroke tokens. Each item is represented as a se-
quence {xi}Li=1, where xi ∈ RDseq+Dtab is the per-
keystroke feature vector (§3.1.1), including Dseq
sequential features concatenated with Dtab tabu-
lar features. Figure 3 is a diagram of the model
architecture.

Overview. The architecture consists of: (i) one-
dimensional convolutional networks (1D CNN)
(Krizhevsky et al., 2012; Lea et al., 2016) that
down-samples the sequence; (ii) a Transformer
encoder (Vaswani et al., 2017) that models long-
range dependencies; and (iii) a classifier head that
produces an item-level logit. The design priori-
tizes robustness and efficiency while preserving
discriminative temporal patterns characteristic of
copy-typing.

Down-sampling with 1D CNN. An element-
wise multi-layer perceptron (MLP) projects each
input embedding from the width Dseq +Dtab to a
hidden width Dh. We then apply 1D CNN blocks
with kernel size 3 and stride-2 max pooling to pro-
gressively halve the temporal resolution. With
NCNN=3, this yields a sequence of length L/23

with width Dh = 32. Intuitively, the CNN cap-
tures subword-scale rhythms while reducing the
attention burden downstream.

109



Temporal Feature Description

dwell the duration between the press and release of the current key.
inter-key the duration between the release of the previous key and the press of the current key.
press the duration between the press of the previous key and the press of the current key.
release the duration between the release of the previous key and the release of the current

key.

Table 3: Definition of temporal sequence features that are extracted from raw keystroke timestamps.

Transformer encoder. We employ a Trans-
former encoder with NTransformer = 4 layers and
multi-head attention. Following a typical approach
for Transformer-based classification (Devlin et al.,
2019), we add positional embeddings and a train-
able [CLS] token embedding at the input of the
Transformer encoder, where the [CLS] token is a
special token used for the model to aggregate the in-
formation for classification. The [CLS] embedding
of the last layer is the output of the Transformer
encoder.

Classification. At the final classification layer,
we concatenate the output of the [CLS] token
embedding from the Transformer encoder with a
linear-transformed vector of the tabular features,
and use a multi-layer perceptron (MLP) with sig-
moid output to get the final classification output.

Training. Following a common approach in bi-
nary classification, we use Binary Cross Entropy
(BCE) loss as the training objective with the
AdamW optimizer (Loshchilov and Hutter, 2017).
For a batch with N samples, the BCE loss is de-
fined as

LBCE = − 1

N

N∑

i=1

[yi log(ŷi)+(1−yi) log(1− ŷi)]

Where yi ∈ {0, 1} is the ground truth label for the
i-th sample, and ŷi ∈ (0, 1) is the prediction for
that sample.

3.2 Cheating Ring Identification
In this section, we describe our cheating ring iden-
tification method. At a high level, the problem can
be framed as a binary classification task: determin-
ing whether a pair of test sessions was completed
by the same individual or not. Rather than training
a direct classifier, we approach this with a deep
metric learning framework (Kaya and Bilge, 2019).
The approach makes deployment more practical,
as the learned representations can be leveraged to

efficiently retrieve similar test sessions using ap-
proximate nearest neighbor search (Li et al., 2019).

3.2.1 Feature Engineering
Keystroke features. Following existing re-
search (Young et al., 2019), we compute summary
statistics – mean, standard deviation, and sample
count – for (i) the dwell duration of each key and
(ii) the transition duration2 between key pairs
within each test session. These summary statistics
constitute the keystroke features.

Mouse features. For mouse patterns, we com-
pute several mouse movement metrics adapted
from Zheng et al. (2011). The histograms of these
metrics are used as mouse features:

• For any three consecutive recorded mouse cur-
sor positions, A, B, and C, where the test taker
clicked the mouse at C, we compute the fol-
lowing metrics:

1. Direction: the angle between the hori-
zontal line and

−−→
AB.

2. Angle of Curvature: the angle between−−→
BA and

−−→
BC.

3. Curvature Distance Ratio: the ratio be-
tween (1) the distance from B to

−→
AC and

(2) the distance from A to C.
• For any two mouse clicks, we compute the

time duration between the two clicks.

3.2.2 Model Architecture
Overview. A visual overview of our metric learn-
ing model is shown in Figure 4. We use an MLP to
encode the input features to an embedding that rep-
resents the test session. The embeddings from two
test sessions are used to compute a dissimilarity
score, which is used in both training and inference.

Note that the same procedure is used to train two
MLPs based on keystroke features and mouse fea-

2In our implementation, the inter-key interval in Figure 2
is used as the transition duration if the previous key is
released before the next key is pressed; otherwise, the press
interval is used.

110



Sequence Features

1D CNN and MaxPooling

Tabular Features

TransformerLayer

Broadcast and Concatenate

Elementwise-MLP

Trainable
Embedding for
[CLS] token

Concatenation

[CLS] embedding

MLP w/ Sigmoid

Linear Projection

Prediction

Add Positional
Embeddings

Raw Keystroke Features

Figure 3: Copy-typing detection model architecture.

tures, and in the following discussions, we will not
distinguish whether the input features are keystroke
features or mouse features. During inference, we
aggregate the dissimilarity scores by computing a
weighted sum of the two. The weights are selected
by fitting a Logistic Regression model (Cox, 1958)
on the training dataset using the dissimilarity scores
as inputs to predict whether a pair of test sessions
is positive or negative.

Training. We use a modified multi-class n-pair
loss (Sohn, 2016) to train the MLP encoder, replac-
ing cosine with L2 distance d(·) and augmenting
batches with hard negatives matched on device
type or region to reduce confounding. Intuitively,
positives are pulled together while negatives are
pushed apart.

Let {(xi, x+i , x−i )}Ni=1 be N triplets of input fea-
tures sampled from the dataset, where each (xi, x+i )

Test Session A

MLP fθ

zA

Test Session B

MLP fθ

zB

d(zA, zB) = ∥zA − zB∥2

Modified n-pair loss

Figure 4: Each test session is encoded by the same
MLP to produce an embedding. The embeddings can be
compared to compute the dissimilarities between pairs
of test sessions. Here zA and zB represent the output
embeddings.

is a positive pair corresponding to test sessions
completed by the same individual (e.g., the same
helper), and each (xi, x

−
i ) is a hard negative pair

corresponding to test sessions completed by dif-
ferent individuals but involving the same type of
keyboard or mouse, or occurring in the same region.
We formulate a modified n-pair loss as shown in
Equation 1. 3

− 1

N

N∑

i=1

∑

x̂∈S

δ(xi, x̂)

ci
log

exp(−dθ(xi, x̂))∑

x′∈S
exp(−dθ(xi, x

′))
,

(1)

where ci =
∑

x̂∈S
δ(xi, x̂),

dθ(xi, x̂) = d(fθ(xi), fθ(x̂)),

d(zA, zB) = ∥zA − zB∥2,
S = {x+i }Ni=1 ∪ {x−i }Ni=1,

δ(xi, x̂) =

{
1, if (xi, x̂) is a positive pair,
0, otherwise.

Deployment. In our framework, the model learns
a distance function between test sessions through
their high-dimensional representations. At deploy-
ment, these representations could be stored in a
vector database, enabling efficient retrieval of sim-
ilar test sessions using any test session as a query.
By surfacing hidden connections between a test

3In our setup, there is a small probability that multiple
positive pairs exist in Equation 1. The normalization term ci
is introduced to ensure a valid probability distribution for the
cross-entropy loss. This is similar to the implementation of
tfa.losses.npairs_loss in TensorFlow Addons.

111



session under review and its most similar test ses-
sions, the system helps human proctors more effec-
tively identify organized cheating rings. To com-
bine keystroke-based and mouse-pattern-based dis-
similarity scores, we scale each embedding by the
inverse square root of its corresponding weight.
This normalization allows us to directly leverage
approximate nearest neighbor search in standard
vector databases.

4 Experiment

4.1 Copy-Typing Detection Experiment

Dataset. As described in §2, we collect samples
from DET test sessions. For copy-typing detec-
tion specifically, we filter out samples with short
responses (less than 100 characters) or with non-
standard key-code values, and collect 12,000 pos-
itive samples and 126,000 negative samples from
January 12, 2024 to August 1, 2024, and randomly
split them by a ratio of 6:2:2 for training, valida-
tion, and testing. We use the training set to train the
copy-typing detection model, the validation set for
early stopping and hyperparameter selection, and
the testing set for evaluation.

Labels. To support robust model development
and evaluation, labels are derived from both hu-
man and AI-assisted proctoring decisions. Specif-
ically, positive examples are test sessions where
proctors confirmed the usage of external resources,
such as large language model (LLM) generated re-
sponses, with both AI-based detection (Niu et al.,
2024) and video-based evidence. Negative exam-
ples are drawn from clean certified test sessions,
where proctors find no violations in the current test
session, and the user has no previous violations.

Settings. To validate the effectiveness of the pro-
posed approach against other settings, in addition
to the model architecture described in §3.1.2 (i.e.,
CNN + Transformer in Table 4), we select the fol-
lowing variations:

• Tabular models: To verify the effectiveness
of adding sequential features, we adopt two
baselines that use only the tabular features, in-
cluding Logistic Regression (Cox, 1958) and
LightGBM (Ke et al., 2017). They are noted
as “Logistic Regression” and “LightGBM” in
Table 4.

• Other sequential models: To verify the ad-
vantage of the Transformer-based encoder, we
replace the Transformer blocks with other se-

quential models such as 1D convolutional net-
works (CNN) and Long Short-Term Memory
networks (LSTM) (Hochreiter and Schmid-
huber, 1997). They are noted as “CNN only”
and “CNN + LSTM” in Table 4.

Metrics. Given that the positive and negative
samples are naturally imbalanced, we use the Area
Under the ROC Curve (AUROC) as a metric. Be-
sides, since the practical application typically re-
quires a low False Positive Rate (FPR), we also
report the True Positive Rate (TPR, a.k.a., recall)
at a 1% FPR.

4.2 Cheating Ring Identification Experiment

Dataset. As detailed in §2, our dataset is built
from DET test sessions. Specifically, we sample
certified test sessions from Q1 2025, excluding
any with insufficient keystroke data. The resulting
dataset covers approximately 102,000 test takers.
We partition these into training, validation, and test
sets with a 6:2:2 split. For validation and testing,
pairs of test sessions were sampled and the labels
are defined below. For training, we sample triplets
of test sessions and construct pairs following the
methodology described in §3.2.2. We use the val-
idation set for early stopping, while the test set is
used for evaluation.

Labels. For this task, we aim to detect when two
test sessions were taken by the same human helper.
However, the ground-truth data on cheating rings
is scarce. Therefore, we construct our dataset using
certified test sessions rather than confirmed cheat-
ing ring test sessions. The key intuition is that
test sessions completed by the same individual can
serve as positive pairs, since their behavior patterns
originate from the same person, and test sessions
completed by different individuals can serve as
negative pairs. To reduce potential confounding
factors, we require that test sessions in negative
pairs match on keyboard/mouse type or region.

Evaluation scenarios. We evaluated our models
under two scenarios. In the first scenario, 3051 pos-
itive pairs and 3051 negative pairs were sampled
for each split, and the models were evaluated based
on binary classification. We report the AUROC and
the true positive rate at a 1% FPR. In the second
scenario, we compare one test session against K
different test sessions from other test takers. The K
comparisons are treated as a single false positive if
any of the K pairs are predicted as positive by the

112



model. Otherwise, they are treated as a single true
negative. The test session is additionally compared
with one other test session from the same test taker.
The comparison is treated as true positive if the
model predicts positive. Otherwise, it is treated as
a false negative. 3051 test sessions were sampled
from the test split to construct 3051(K + 1) pairs
as described above, and we report the AUROC of
different models with different K.4

Baseline. We compare our proposed method with
an in-house t-test based method that is built upon
the work of Young et al. (2019), which utilizes
the summary statistics of dwell durations and
transition durations to determine if the two tests
are completed by the same individual.

5 Results

5.1 Copy-Typing Detection

The evaluation results for our copy-typing detec-
tion models are summarized in Table 4. These re-
sults suggest two critical points. First, the superior
performance of sequential models over the tabu-
lar baselines (Logistic Regression and LightGBM)
confirms that the temporal dynamics of keystrokes
contain essential signals for detecting copy-typing.
Second, the choice of sequence architecture is cru-
cial. While a simple “CNN only” model offers little
advantage over a strong tabular baseline, incorpo-
rating a sophisticated encoder like a Transformer or
LSTM to model long-range dependencies unlocks
substantial performance gains. This highlights the
necessity of using powerful sequence models to
fully leverage the predictive patterns in keystroke
data.

5.2 Cheating Ring Identification

The results based on the first evaluation scenario
for cheating ring identification are shown in Ta-
ble 5. As shown in the table, the proposed method
outperforms the baseline. We additionally report
the performance of our method using different sub-
sets of features. The superior performance of the
deep-full model demonstrates that keystroke and
mouse dynamics provide complementary signals,
and that combining them creates a more robust and
accurate behavioral fingerprint.

4The second scenario simulates the real-world use case: a
test session is compared with multiple test sessions to detect
links to the same human helper, and even a single predicted
match among them may require proctors’ review.

The results based on the second evaluation sce-
nario with K comparisons are shown in Figure 5.
In the plot, we can see that our method remains
competitive against the baseline as K increases,
demonstrating the robustness of our methods.

0 20 40 60 80 100
0.6

0.7

0.8

0.9

1

K: Number of tests compared against
A

U
R

O
C

keystroke
deep-full

Figure 5: Performance comparison between our deep-
full method and the t-test based keystroke baseline.

5.3 Fairness Analysis

Fairness is an important aspect of a Responsible
AI system (Burstein et al., 2025). With the notion
of equality of opportunity (Hardt et al., 2016), we
evaluate the True Negative Rate (TNR) across de-
mographic groups for both AI models. Intuitively, a
similar TNR across groups means that innocent test
takers in each group have a similar possibility of
not being falsely flagged by the AI models. For our
study, we focus on major geographical sub-regions
according to the United Nations geoscheme5, and
evaluate the TNR of the models on clean6 certified
test sessions (for copy-typing detection) and nega-
tive pairs (for cheating ring identification) across
groups. Table 6 and Table 7 present the proportion
of test takers and pairs from each major sub-regions
in the dataset, and the evaluation results of group-
wise TNR. Note that the demographic distributions
are slightly different for the two experiments be-
cause the datasets are sampled from different time
periods. For both experiments, the results verify
that the TNRs are within a small difference across
groups, ensuring the equality of honest test takers.

5https://unstats.un.org/unsd/methodology/m49/
6Filtered to reduce data contamination.

113



Features Model AUROC TPR@1%FPR

Tabular Logistic Regression 84.91% 11.12%
Tabular LightGBM 86.56% 12.64%
Sequential CNN only 84.96% 15.18%
Sequential CNN + LSTM 94.76% 39.05%
Sequential CNN + Transformer 95.22% 41.41%

Table 4: Copy-typing detection model performance. The best results are in bold.

Method AUROC TPR@1%FPR

keystroke 86.44% 69.42%
deep-keystroke 98.56% 72.93%
deep-mouse 93.63% 39.86%
deep-full 99.28% 89.28%

Table 5: Performance for cheating ring identification
methods. keystroke is the t-test based method, and
deep-* are our proposed methods with different in-
put features, where deep-full uses both keystrokes and
mouse features.

6 Conclusion

We presented a two-pronged, content-agnostic
framework for enhancing test security using be-
havioral data. For copy-typing detection, our
CNN-Transformer model effectively learns sequen-
tial patterns in keystroke dynamics, outperforming
both tabular and simpler sequential baselines in
identifying copy-typing behavior. For cheating
ring identification, our deep metric learning sys-
tem produces robust embeddings from keystroke
and mouse features, outperforming a statistical
baseline and enabling efficient, large-scale deploy-
ment via approximate nearest neighbor search. To-
gether, these AI-driven approaches provide a pow-
erful, scalable toolkit for safeguarding the integrity
of remote assessments. However, the deployment
of such powerful tools necessitates a commitment
to Responsible AI standards (Burstein et al., 2025).
To that end, these models are best implemented
not as automated judges, but as essential compo-
nents in a human-in-the-loop proctoring framework
that surfaces evidence for human review. This ap-
proach ensures that the AI models are governed
with human oversight, providing both a secure and
accountable system for assessment.

Limitations

For copy-typing detection, although the proposed
model achieves a meaningful TPR at a low FPR
of 1%, there still exist practical challenges when
adopting such AI-generated signals in test proctor-
ing process. For instance, since the output from
the deep learning model is not interpretable, the
proctoring guidelines need to be carefully designed
for human proctors to accurately confirm the copy-
typing detection result. Belzak et al. (2025b) dis-
cuss the findings in the practical usage of copy-
typing detection in detail. Besides, although our
approach is content-agnostic, prior work (Liang
et al., 2023) has shown that some AI-text detec-
tors can disproportionately flag non-native English
writing as AI-generated, raising fairness concerns
in educational settings. We therefore audit our
models for group-wise error differences (§5.3) and
maintain human-in-the-loop confirmation before
adverse actions.

For cheating ring identification, one limitation
is that our proxy positives (same-person test ses-
sions) are not equivalent to true cheating ring labels,
and may not fully capture the operational complex-
ity of organized cheating rings. For example, the
helper may deliberately vary typing/mouse behav-
iors to evade detection. In addition, the method is
designed to be used as a retrieval aid rather than a
fully automated proctor; its outputs must be com-
bined with other safeguards – such as additional
behavioral rules, corroborating signals, or human
proctor judgment – to avoid unfair penalization of
innocent test takers.

References
Alejandro Acien, Aythami Morales, John V Monaco,

Ruben Vera-Rodriguez, and Julian Fierrez. 2021.
Typenet: Deep learning keystroke biometrics. IEEE
Transactions on Biometrics, Behavior, and Identity
Science, 4(1):57–70.

William Belzak, Basim Baig, Ramsey Cardwell, Rose

114



Sub-region Proportion TNR@1%FPR (Copy-Typing Detection)

Southern Asia 25.46% 98.51%
Eastern Asia 12.99% 97.21%
Latin America and the Caribbean 12.89% 99.68%
Northern America 9.58% 99.77%
Western Asia 7.10% 99.50%
Sub-Saharan Africa 6.75% 99.51%
South-eastern Asia 6.29% 99.69%

Table 6: Proportion of test takers from major sub-regions (> 5%), and the True Negative Rate (TNR) in each group.

Sub-region Proportion TNR@1%FPR (Cheating Ring Identification)

Eastern Asia 35.66% 99.22%
Southern Asia 15.63% 99.05%
Northern America 13.42% 99.40%
Western Asia 12.24% 99.64%
Latin America and the Caribbean 11.34% 98.94%
South-eastern Asia 6.18% 99.06%
Western Europe 6.01% 99.51%

Table 7: Proportion of pairs from major sub-regions (> 5%), and the True Negative Rate (TNR) in each group. Note
that since each pair involves two test sessions, which may come from different groups, a single pair can be counted
more than once. As a result, the sum of the proportions may exceed 100%.

Hastings, André Kenji Horie, Geoff LaFlair, Manqian
Liao, Chenhao Niu, and Yong-Siang Shih. 2025a.
Duolingo English Test: Security and score integrity.
Duolingo research report, Duolingo.

William Belzak, Chenhao Niu, and Angel Ortmann Lee.
2025b. When machines mislead: Human review of
erroneous AI cheating signals. Artificial intelligence
in measurement and education conference.

Jill Burstein, Geoffrey T. LaFlair, Kathleen Yancey,
Alina A. von Davier, and Rotem Dotan. 2025. Re-
sponsible ai for test equity and quality: The duolingo
english test as a case study. In Earl M. Tucker,
Eleanor Armour-Thomas, and Edmund W. Gordon,
editors, Handbook for Assessment in the Service of
Learning, Volume I: Foundations for Assessment in
the Service of Learning. University of Massachusetts
Amherst Library Press.

David R Cox. 1958. The regression analysis of binary
sequences. Journal of the Royal Statistical Society:
Series B (Methodological), 20(2):215–232.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equal-
ity of opportunity in supervised learning. Advances
in neural information processing systems, 29.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Mahmut Kaya and Hasan Şakir Bilge. 2019. Deep
metric learning: A survey. Symmetry, 11(9):1066.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boosting
decision tree. In Advances in neural information
processing systems 30.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. Advances in neural infor-
mation processing systems, 25.

Colin Lea, Rene Vidal, Austin Reiter, and Gregory D
Hager. 2016. Temporal convolutional networks: A
unified approach to action segmentation. In Euro-
pean conference on computer vision, pages 47–54.
Springer.

Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie
Li, Wenjie Zhang, and Xuemin Lin. 2019. Ap-
proximate nearest neighbor search on high dimen-
sional data—experiments, analyses, and improve-
ment. IEEE Transactions on Knowledge and Data
Engineering, 32(8):1475–1488.

115

https://duolingo-papers.s3.us-east-1.amazonaws.com/reports/DET_Security_Report.pdf
https://www.aclanthology.org/N19-1423
https://www.aclanthology.org/N19-1423
https://www.aclanthology.org/N19-1423


Weixin Liang, Mert Yuksekgonul, Yining Mao, Eric
Wu, and James Zou. 2023. Gpt detectors are biased
against non-native english writers. Patterns, 4(7).

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Ben Naismith, Ramsey Cardwell, Geoffrey T. LaFlair,
Steven Nydick, and Masha Kostromitina. 2025.
Duolingo English Test: Technical manual. Duolingo
research report, Duolingo.

Chenhao Niu, Kevin P. Yancey, Ruidong Liu,
Mirza Basim Baig, André Kenji Horie, and James
Sharpnack. 2024. Detecting LLM-assisted cheating
on open-ended writing tasks on language proficiency
tests. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing:
Industry Track, pages 940–953, Miami, Florida, US.
Association for Computational Linguistics.

Yong-Siang Shih, Manqian Liao, Ruidong Liu, and
Mirza Basim Baig. 2024. Human-in-the-loop
AI for cheating ring detection. arXiv preprint
arXiv:2403.14711.

Kihyuk Sohn. 2016. Improved deep metric learning
with multi-class n-pair loss objective. Advances in
neural information processing systems, 29.

Giuseppe Stragapede, Paula Delgado-Santos, Ruben
Tolosana, Ruben Vera-Rodriguez, Richard Guest, and
Aythami Morales. 2024. Typeformer: Transformers
for mobile keystroke biometrics. Neural Computing
and Applications, 36(29):18531–18545.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Jay R Young, Randall S Davies, Jeffrey L Jenkins, and
Isaac Pfleger. 2019. Keystroke dynamics: establish-
ing keyprints to verify users in online courses. Com-
puters in the Schools, 36(1):48–68.

Nan Zheng, Aaron Paloski, and Haining Wang. 2011.
An efficient user verification system via mouse move-
ments. In Proceedings of the 18th ACM conference
on Computer and communications security, pages
139–150.

116

https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://duolingo-papers.s3.amazonaws.com/other/technical_manual/DET_technical_manual_2025_07.pdf
https://doi.org/10.18653/v1/2024.emnlp-industry.70
https://doi.org/10.18653/v1/2024.emnlp-industry.70
https://doi.org/10.18653/v1/2024.emnlp-industry.70
https://arxiv.org/abs/2403.14711
https://arxiv.org/abs/2403.14711

