@inproceedings{mattox-etal-2025-talking,
title = "Talking to Learn: A {S}o{TL} Study of Generative {AI}-Facilitated Feynman Reviews",
author = "Mattox, Madeline Rose and
Hutchins, Natalie and
Jirout, Jamie J",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-wip.14/",
pages = "117--124",
ISBN = "979-8-218-84229-1",
abstract = "Structured Generative AI interactions have potential for scaffolding learning. This Scholarship of Teaching and Learning study analyzes 16 undergraduate students' Feynman-style AI interactions (N=157) across a semester-long child-development course. Qualitative coding of the interactions explores engagement patterns, metacognitive support, and response consistency, informing ethical AI integration in higher education."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mattox-etal-2025-talking">
<titleInfo>
<title>Talking to Learn: A SoTL Study of Generative AI-Facilitated Feynman Reviews</title>
</titleInfo>
<name type="personal">
<namePart type="given">Madeline</namePart>
<namePart type="given">Rose</namePart>
<namePart type="family">Mattox</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Hutchins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jamie</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Jirout</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84229-1</identifier>
</relatedItem>
<abstract>Structured Generative AI interactions have potential for scaffolding learning. This Scholarship of Teaching and Learning study analyzes 16 undergraduate students’ Feynman-style AI interactions (N=157) across a semester-long child-development course. Qualitative coding of the interactions explores engagement patterns, metacognitive support, and response consistency, informing ethical AI integration in higher education.</abstract>
<identifier type="citekey">mattox-etal-2025-talking</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-wip.14/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>117</start>
<end>124</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Talking to Learn: A SoTL Study of Generative AI-Facilitated Feynman Reviews
%A Mattox, Madeline Rose
%A Hutchins, Natalie
%A Jirout, Jamie J.
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84229-1
%F mattox-etal-2025-talking
%X Structured Generative AI interactions have potential for scaffolding learning. This Scholarship of Teaching and Learning study analyzes 16 undergraduate students’ Feynman-style AI interactions (N=157) across a semester-long child-development course. Qualitative coding of the interactions explores engagement patterns, metacognitive support, and response consistency, informing ethical AI integration in higher education.
%U https://aclanthology.org/2025.aimecon-wip.14/
%P 117-124
Markdown (Informal)
[Talking to Learn: A SoTL Study of Generative AI-Facilitated Feynman Reviews](https://aclanthology.org/2025.aimecon-wip.14/) (Mattox et al., AIME-Con 2025)
ACL
- Madeline Rose Mattox, Natalie Hutchins, and Jamie J Jirout. 2025. Talking to Learn: A SoTL Study of Generative AI-Facilitated Feynman Reviews. In Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress, pages 117–124, Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States. National Council on Measurement in Education (NCME).