@inproceedings{bruno-becker-2025-explainable,
title = "Explainable Writing Scores via Fine-grained, {LLM}-Generated Features",
author = "Bruno, James V and
Becker, Lee",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-wip.19/",
pages = "155--165",
ISBN = "979-8-218-84229-1",
abstract = "Advancements in deep learning have enhanced Automated Essay Scoring (AES) accuracy but reduced interpretability. This paper investigates using LLM-generated features to train an explainable scoring model. By framing feature engineering as prompt engineering, state-of-the-art language technology can be integrated into simpler, more interpretable AES models."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bruno-becker-2025-explainable">
<titleInfo>
<title>Explainable Writing Scores via Fine-grained, LLM-Generated Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="given">V</namePart>
<namePart type="family">Bruno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lee</namePart>
<namePart type="family">Becker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84229-1</identifier>
</relatedItem>
<abstract>Advancements in deep learning have enhanced Automated Essay Scoring (AES) accuracy but reduced interpretability. This paper investigates using LLM-generated features to train an explainable scoring model. By framing feature engineering as prompt engineering, state-of-the-art language technology can be integrated into simpler, more interpretable AES models.</abstract>
<identifier type="citekey">bruno-becker-2025-explainable</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-wip.19/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>155</start>
<end>165</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Explainable Writing Scores via Fine-grained, LLM-Generated Features
%A Bruno, James V.
%A Becker, Lee
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84229-1
%F bruno-becker-2025-explainable
%X Advancements in deep learning have enhanced Automated Essay Scoring (AES) accuracy but reduced interpretability. This paper investigates using LLM-generated features to train an explainable scoring model. By framing feature engineering as prompt engineering, state-of-the-art language technology can be integrated into simpler, more interpretable AES models.
%U https://aclanthology.org/2025.aimecon-wip.19/
%P 155-165
Markdown (Informal)
[Explainable Writing Scores via Fine-grained, LLM-Generated Features](https://aclanthology.org/2025.aimecon-wip.19/) (Bruno & Becker, AIME-Con 2025)
ACL
- James V Bruno and Lee Becker. 2025. Explainable Writing Scores via Fine-grained, LLM-Generated Features. In Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress, pages 155–165, Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States. National Council on Measurement in Education (NCME).