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Abstract

Transfomer-based models like BERT have in-
creasingly been employed for automated essay
scoring, as their high-dimensional representa-
tions of text are effective at capturing complex
patterns in language. However, transformer-
based representations are opaque and difficult
to trace to the underlying human-defined con-
structs being assessed. This paper investigates
the ability of LLMs to generate scores accord-
ing to a rubric constructed from academic stan-
dards and evaluates the utility of these scores as
features in a supervised regression model. We
show that this produces a model that is reliable,
construct-relevant, and interpretable. We evalu-
ate this approach on six narrative writing items
and find that, even with only 5 features, models
can achieve QWKs exceeding 0.8, while also
giving a concise and interpretable score expla-
nation.

1 Background

Prior to advances in deep learning, the prevailing
approach for Automated Essay Scoring (AES), re-
lied on pairing supervised machine learning (ML)
with a set of manually-crafted features (Attali and
Burstein, 2006) that aimed for construct relevance.
Feature engineering consisted of extracting linguis-
tic phenomena which could serve as proxies for the
underlying construct or assessed skill. For example,
type-token ratio was used to capture vocabulary
richness and semantic similarity measures approxi-
mated human ratings of essay cohesion (Graesser
et al., 2004). In some cases, features may come
from other models trained to predict a subtrait score
(Somasundaran et al., 2018).

Advancements in NLP and ML have rapidly
evolved the state-of-the art in automated essay scor-
ing (AES). The shift toward dense language repre-
sentations including semantic vectors (Deerwester
et al., 1990), word embeddings (Mikolov et al.,
2013a,b), and contextual embeddings (Peters et al.,
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2018) have yielded steady gains in AES perfor-
mance (Foltz et al., 1999; Alikaniotis et al., 2016),
typically measured using metrics like Quadratic
Weighted Kappa (QWK). Transformers (Vaswani
et al., 2017) and especially variants of BERT (De-
vlin et al., 2019) are now considered the de-facto
approach for training AES systems (Mayfield and
Black, 2020; Wang et al., 2022; Wang, 2024; El-
massry et al., 2025). However, these approaches
are complex with features that are not directly in-
terpretable and which number in the hundreds or
thousands. Modern, deep-learning AES systems
are effectively “black-box” solutions.

A growing body of research has applied explain-
able AI (xAl) to AES, including approaches such as
attention visualization (Yang et al., 2020), multiple
instance learning (Hellman et al., 2020) and post
hoc explanation methods like LIME (Ribeiro et al.,
2016), which surface links between regions of the
text and model outputs. However, interpreting these
explanations often requires subjective inference to
connect model decisions to the constructs being
assessed, and may lack direct construct relevance.
The capacity for reasoning exhibited by Large Lan-
guage Models (LLMs) presents new possibilities
for explainability. LLMs can be prompted to gener-
ate auxiliary information such as rationalization of
score (Li et al., 2023) or corresponding feedback
(Stahl et al., 2024). While impressive, querying
LLMs to provide justifications for their scoring de-
cisions introduces the risk of self-referential expla-
nations.

This work approaches explainability through the
lens of subtrait scoring wherein the scored con-
struct is broken down into sub-components with
their own scores (Andrade-Lotero et al., 2025). Our
framework is most similar to TRATES (Eltanbouly
et al., 2025) which predicts rubric elements via
LLM generation. Unlike TRATES, we limit the
features of our models to only construct-relevant
subtrait scores. By pairing LLM-generated subtrait
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scores with linear regression, we can not only pro-
duce “dead simple” explainability, but also help
build trust in the use of LLMs for essay scoring.

2 Aims

The primary aim of this study is to explore how
using LLM-outputs as input features to train auto-
mated scoring models provides a straightforward
path toward interpretable scores. Specifically, we
explore the ability of LLMs to produce subtrait
scores aligned to components of academic stan-
dards defining grade-level expectations, such as
those set by Common Core State Standards Initia-
tive (2010). We build, evaluate, and inspect sim-
ple linear models using the LLM-produced subtrait
scores as features.

This work is part of an overarching goal to de-
velop a collection of models that can assess subtraits
and/or skills in support of a wide variety of writing
items and rubrics (Andrade-Lotero et al., 2025). In
this work we focus on assessing Common Core stan-
dards because the standards are decomposed into
elements that align well with our notion of subtrait;
however, nothing about the approach we illustrate
here is limited to using standards.

Our specific research questions are as follows:

* How can we leverage academic standards to
generate subtrait scores via an LLM?

* How does the performance of models trained
with LLM-generated subtrait scores as features
compare to operational models?

* Is an explainable linear regression model
with only a handful of subtrait features op-
erationally viable?

* Can the use of a simple, transparent linear
regression model enhance the interpretability
and trustworthiness of the LLM features?

3 Data

The experiment dataset consists of 6 eighth grade
writing prompts administered as part of state-
run, year-end summative assessments. Written re-
sponses and corresponding human scores come
from the train and test data used to build and eval-
uate the operational scoring models. Responses
flagged with codes such as blank, gibberish, pas-
sage copy or off-topic are excluded from this dataset.
The scoring process is such that there are a mini-
mum of 2 ratings per response in the model-building

Human Deployed model

Prompt 1 0.940 0.918
Prompt 2 0.914 0.899
Prompt 3 0.897 0.893
Prompt4  0.912 0.903
Prompt 5 0.888 0.886
Prompt 6 0.936 0.934

Table 1: Quadratic weighted kappa representing human-
human agreement and human-machine agreement for
operationally deployed models.

data set, with a third resolution rating as needed.
We model the final score, that is, the score assigned
as the end-result of the human scoring process for
the item. The items in our experiment have high hu-
man agreement and extremely strong operationally
deployed models, as shown in Table 1.

We focus on narrative writing items, as scoring in
this genre is often perceived as subjective and multi-
dimensional. Explainable models add transparency
to this subjective process by linking assessment of
narrative elements to the score. Additionally, nar-
rative elements are not well captured by surface
level features like n-grams or word count. This
presents an opportunity to highlight how the deeper
semantics of LLMs can flexibly accommodate a
wide variety of subtraits.

We aim to take a uniform sample across score
points and use 66% of the data for training and the
remainder for testing, for a total of 1125 responses
per score point. However, responses at the highest
score points were underrepresented in the popula-
tion for some prompts, and in these cases a uniform
distribution is not possible. The score distribution
for the experimental dataset appears in Table 2. Ad-
ditionally, it was not possible to extract subtrait fea-
tures from for every response, as in some cases the
LLM returned malformed JSON or raised content
filters. The response counts of the final train-test
partitions for the 3 LLMs we use in our experiments
appear in Table 3.

4 Method

As our goal is explainability, we wish to build the
simplest, most interpretable model possible using
the outputs from the LLM. As discussed below,
we construct an LLM query with scoring instruc-
tions and a rubric based on the Common Core stan-
dard for 8th-grade narrative writing (Common Core
State Standards Initiative, 2010).
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Train Test
0 1 2 3 4  Total 0 1 2 3 4 Total
Prompt1 150 150 150 150 117 717 75 75 75 75 58 358
Prompt2 150 150 150 150 51 651 75 75 75 75 25 325
Prompt3 150 150 150 121 286 599 75 75 75 60 14 299
Prompt4 150 150 150 150 68 668 75 75 75 715 35 335
Prompt5 150 150 150 103 43 59 75 75 75 52 23 300
Prompt6 150 150 150 148 150 748 75 75 75 74 5 374
Total 900 900 900 822 457 3979 450 450 450 411 230 1991
Table 2: Score distribution of the training and test sets.
Original Sample GPT-40 Mini Llama3.1 8B Gemma 7B
Train Test Train  Test Train Test Train  Test
Prompt 1 717 358 690 343 717 358 692 347
Prompt 2 651 325 643 323 651 325 640 322
Prompt 3 599 299 589 292 599 299 582 284
Prompt 4 668 335 645 328 668 335 655 327
Prompt 5 596 300 583 298 596 300 577 290
Prompt 6 748 374 743 372 748 374 733 367
Total 3979 1991 3893 1956 3979 1991 3879 1937

Table 3: Number of responses in Train/Test partitions. It was not possible to obtain LLM-based features from
GPT-40 Mini or Gemma 7B for all responses due to content-filters and the LLM returning improper JSON. Therefore,
the samples for some of the models tested are non-identical.

The LLM provides feature values in the form of
subtrait scores, which we use to train and evalu-
ate highly-interpretable linear regression models.
The models predict the operational score using
LLM-generated subtrait scores as features. We do
not have ground-truth annotations for the subtrait
scores.

4.1 LLM-generated features

The feature space centers around “subtrait scoring”,
wherein finer-grained scores reflect performance on
a facet of a larger trait. Following the approach de-
tailed in Andrade-Lotero et al. (2025), we query an
LLM to score an essay given a rubric. To maintain
consistency between items, we use standards-based
rubrics instead of the items’ original trait rubric. As
we aim to make an assessment grounded in the Com-
mon Core standard for the narrative genre, we con-
struct a 5-point rubric from the standard elements
of CCSS.ELA-LITERACY.W.8. 3, that is, the Com-
mon Core standard for 8th grade narrative writing.
The standard reads “Write narratives to develop
real or imagined experiences or events using ef-
fective technique, relevant descriptive details, and

well-structured event sequences.” The standard is
further decomposed into the 5 standard elements
that appear in Table 4, which we treat as subtraits.

We use an LLM to construct a rubric from these
standard elements. Specifically, we embed each
of the standard elements into instructions to create
criteria for 5 score points, query Claude Haiku 3.5
(Anthropic, 2024) with the instructions, and manu-
ally verify the result. We choose a score range from
0 to 4 to reflect the original range on which the re-
sponses were scored. Example system instructions
to create rubrics appear in Figure 1 and an example
rubric appears in Figure 2 in the Appendix.

To produce subtrait scores, we submit the re-
sponse and the rubric to 3 LLMs. We choose
OpenAI’s GPT-40-Mini (OpenAl, 2024) and also
two open-source models of similar size: Gemma 7B
(DeepMind, 2024), and Llama 3.1 8B (Meta, 2024).

The LLM query to produce subtrait scores in-
cludes an instruction to provide feedback. This
likely has a positive effect on the output given that
eliciting reasoning is known to improve LLM re-
sults (see for example, Huang and Chang, 2023);
however, we set aside an examination of this effect
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W.8.3.A

Engage and orient the reader by establishing a context and point of view and introducing a

narrator and/or characters; organize an event sequence that unfolds naturally and logically.

Use narrative techniques, such as dialogue, pacing, description, and reflection, to develop

Use a variety of transition words, phrases, and clauses to convey sequence, signal shifts, and

Use precise words and phrases, relevant descriptive details, and sensory language to capture

W.8.3.B

experiences, events, and/or characters.
Ww.8.3.C

show the relationships among experiences and events.
W.8.3.D

the action and convey experiences and events.
W.8.3.E

Provide a conclusion that follows from and reflects on the narrated experiences or events.

Table 4: 8th grade narrative writing standard elements.

for future work. The prompt appears in Figure 3 in
the Appendix.

4.2 Model training, evaluation, and
explanation.

As our overarching goal is intepretability, we train
a non-negative ridge regression model with L2 reg-
ularization for each item-LLM model pair, using
cross-validation within the training set to tune the
regularization parameter. Ridge regression is used
instead of simple linear regression to minimize the
effects of multicollinearity between subtrait scores,
and the coefficients are required to be positive for
ease of interpretability.

Models are evaluated on quadratic weighted
kappa (Cohen, 1968), and we examine the coef-
ficients for each of the 5 subtraits for the purpose
of explaining the models.

5 Results

The quadratic weighted kappa for the 6 prompts
and the 3 LLMs appear in Table 5. All models
were able to predict the human score, with aver-
age test QWKs of 0.81, 0.78, and 0.59 for GPT-40-
Mini, Llama 3.1 8B, and Gemma 7B, respectively.
GPT-40-Mini had the best overall performance, but
we are particuarly encouraged that an open source
model with few parameters such as LLama 3.1 8B
is viable. We note that there is only a 3-point dif-
ference between GPT-40-Mini and LLama 3.1 8B,
compared to the 22-point difference between GPT-
40-Mini and Gemma 7B.

5.1 Explainability

With respect to explainability, the simplest ap-
proach with a non-negative linear model is to exam-
ine the relative weights, normalized to 1 to make

them more intuitively interpretable. This tells us
what percentage of the final score is due to each of
subtrait scores from the LLM. As we have 6 prompts
and 3 models per prompt, we present the means and
standard deviations of the relative weights in Ta-
ble 6. The relative weights for all the individual
models appear in Table 8 in the Appendix.

The ability to inspect the relative weights is what
we regard as the main benefit of this approach. We
can see, for example, that the GPT and Llama mod-
els place more weight on establishing context, the
use of narrative techniques, and the fluidity of tran-
sitions; and less weight on linguistic descriptiveness
and the quality of the conclusion. We hypothesize
that this is related to the models’ superior perfor-
mance, and we highlight that the weights can be
subject to examination by a subject matter expert
(SME) in writing who may not have a great deal of
expertise in machine learning.

The weights of the Gemma 7B model are par-
ticularly illustrative. The model weights linguistic
descriptiveness very heavily at almost half of the
score, and the conclusion quality is hardly part of
the model at all. This might raise validity concerns
for an SME scrutinizing the model and could serve
as an early and easily interpretable cautionary sig-
nal before moving forward with such a model.

5.2 LLM comparison

Gemma 7B’s lack of parity with the other two mod-
els in terms of the predictiveness of its subtrait
scores is striking. Furthermore, we note that the
standard deviations of the per-prompt models are
double those of GPT-40-Mini and Llama 3.1 8B,
as shown in Table 6. This suggests that the subtrait
scores produced from Gemma 7B are less stable
than those of the other two models.
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Train Test
GPT-40 Mini Llama3.1 8B Gemma 7B GPT-40 Mini Llama3.1 8B Gemma 7B
Prompt 1 0.802 0.786 0.629 0.843 0.799 0.654
Prompt 2 0.770 0.742 0.616 0.761 0.718 0.603
Prompt 3 0.815 0.781 0.468 0.852 0.791 0.467
Prompt 4 0.794 0.788 0.411 0.815 0.801 0.417
Prompt 5 0.767 0.734 0.593 0.775 0.782 0.617
Prompt 6 0.830 0.815 0.618 0.831 0.804 0.712
Table 5: Quadratic weighted kappa for models trained on subtrait features from 3 LLMs.
W.8.3.A W.8.3.B W.8.3.C W.8.3.D W.8.3.E

Context  Narrative Tech. Transitions Descriptiveness Conclusion

GPT-40 Mini  0.24 (0.05) 0.34 (0.05) 0.17 (0.06) 0.08 (0.06) 0.16 (0.04)

Llama3.1 8B  0.13 (0.07) 0.30 (0.02) 0.30 (0.05) 0.15 (0.03) 0.13 (0.04)

Gemma 7B 0.19 (0.12) 0.17 (0.10) 0.16 (0.11) 0.47 (0.13) 0.01 (0.01)

Table 6: Mean and standard deviation of model weights across 6 prompts per LLM, where the standard deviations
are in parenthesis. The weights are normalized to 1 within each model for intuitive interpretation.

GPT vs. GPTvs. Gemma vs.

Llama Gemma vs. Llama

W.8.3.A 0.711 0.545 0.550
W.8.3.B 0.758 0.575 0.603
W.8.3.C 0.678 0.408 0.489
W.8.3.D 0.688 0.573 0.562
WS8.3.E 0.679 0.428 0.462

Table 7: Pearson correlations for pairwise comparisons
of subtrait scores produced by the 3 LLMs.

When we examine the Pearson correlations of
the subtrait scores for each pairing of models in Ta-
ble 7, we find that the subtrait scores from GPT-4o-
Mini are highly correlated with the subtrait scores
from Llama 3.1 8B, and less correlated with the
subtrait scores from less performant Gemma 7B.
We take this as evidence that GPT-40-Mini and
Llama 3.1 8B are assessing the same or similar
subtraits, whereas Gemma 7B is responding to the
rubrics and responses in a significantly different
way.

6 Discussion

The successful models have a QWK that hovers
around 0.80, roughly 10 points under the opera-
tionally deployed models. We find this an encour-
aging result, particularly given the high level of per-
formance optimizations that go into achieving the

maximum possible QWKs in operational scoring.
The optimizations make the model more complex,
and therefore less interpretable. We are able to
achieve a viable, transparently explainable model,
with just 5 features. Furthermore, a comparison of
the train and test QWKs in Table 5 indicates that
there is no overfitting.

The simplicity and transparency of the models
allows for a straight-forward look into the subtraits.
While we do not have ground-truth annotations
for the subtrait scores, we are reassured by how
well the weights from the most successful models
match with our intuitions with respect to construct
relevance. Both GPT-40-Mini and Llama 3.1 8B
weighted the subtrait feature W.8.3.B as high-
est. This is the standard element that, to us, re-
flects the heart of the narrative genre: “use narra-
tive techniques, such as dialogue, pacing, descrip-
tion, and reflection, to develop experiences, events.
and/or characters.” A lower-weighted feature in
these models was W. 8. 3.D, “use precise words and
phrases, relevant descriptive details, and sensory
language...”

According to the most successful models, it is of
highest importance that readers are able to under-
stand who the characters are, what happens to them,
and what they do; and it is of lesser importance how
vividly these things are described. This aligns with
our intuitions: a vivid description matters less if
readers cannot understand what happened.
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In contrast, the least successful model weights
W.8.3.D the highest, at almost half of the score.
Furthermore, it hardly assesses the quality of the
conclusion at all.

It may happen that our intuitions about the rel-
ative importance of the standard elements of the
narrative genre are underinformed, but we would
like to emphasize that being able to inspect and
reflect upon the weights of a simple linear model
gives us useful tools to scrutinize the LLM out-
put. In the case at hand, the tools would lead us to
abandon Gemma 7B, given that we have evidence
to suggest that the outputs from GPT-40-Mini and
Llama 3.1 8B are more trustworthy with respect to
construct relevance.

A final note is that the weights themselves can
be useful in downstream tasks. For example, feed-
back systems can use the weights in algorithms to
select the most valuable feedback to display to the
student. One could also build models of the scores
assigned by individual raters and use the weights to
understand rater behavior, revealing, for example,
that one rater places more emphasis on descriptive-
ness whereas another places more emphasis on the
quality of the conclusion.

7 Conclusion and future work

We present a method to build, evaluate, and in-
spect simple explainable models on the basis of
subtrait-scores from LLMs, where the rubric cri-
teria for the subtrait scores are derived from the
Common Core Standard elements for 8th grade nar-
rative writing. The models using subtrait scores
from GPT-40-Mini and Llama 3.1 8B are able to
predict the holistic scores with a QWK of approxi-
mately 0.80, which we find particularly noteworthy
because the standard-based rubrics were not what
the humans used during scoring. We are encour-
aged that Llama 3.1 8B, an open source model,
performs to within 3 points of the GPT model, and
that its subtrait scores are highly correlated with
GPT’s.

The models we present are generally 10-points
under the QWK for the operational models;
nonetheless, at 0.80 QWK, we find that these sim-
ple, transparent, linear regression models with only
5 features may be operationally viable.

We find that the model weights from GPT-4o-
Mini and Llama 3.1 8B are in alignment with
our own intuitions about the narrative construct,
whereas the weights from Gemma 7B are not. On

the basis of this evidence, together with the raw
model performance, we find that we can trust the
LLM output of GPT-40-Mini and Llama 3.1 8B
much more than Gemma 7B. We take this example
as an illustration of how this approach allows an
inspection of the model by an SME in writing who
may not have a great deal of expertise in machine
learning, and as a means of understanding how the
output of one LLM may differ from others overall.

We would like to better understand the impact of
subtrait score accuracy on these regression models.
Our previous study on subtraits found low to mod-
est agreement between human ratings of subtrait
scores and LLM-produced ones (Andrade-Lotero
et al., 2025). As we did not have human-labeled
narrative subtrait scores, we can not speak to the
accuracy of the LLM-generated scores. In future
work, we would like to work with subject matter
experts to validate the accuracy and to understand
if the resulting weights align with their expert judg-
ment.

This LLM-plus-regression approach also pro-
vides a framework for not only for explaining auto-
mated scores, but human ones as well. By modeling
individual raters, we can glean insights into sources
of rater disagreement. We save exploration of this
topic for future research.

Lastly, we are encouraged by the possibilities
this framework presents for operationalizing AES
models in both high stakes and formative settings.
The direct interpretability of features allows for im-
proved monitoring and transparency. As reliabil-
ity of LLM subtrait assessment improves, this ap-
proach opens opportunities to enable scoring for
more complex constructs and writing behaviors.

8 Limitations

The first limitation to note is that we neither have
ground-truth annotations of the subtrait scores nor
an in-depth understanding of the subtrait scores
produced by the LLM. While the high QWK and
alignment of the model weights with our intuitions
is highly suggestive, we have not provided strong
empirical evidence with respect to the degree to
which the LLM is accurately applying the rubric.
Related to this, we make a large assumption that our
features are indeed construct-relevant and have not
explored the impact of including distractor features.

Another important limitation is that the data is
from one genre and one grade level. It is not known
how well our results generalize to other grades and
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genres. Similarly, the human agreement is unusu-
ally high, suggesting a strong clear signal in the
response text itself. It may be that LLMs are less
able to assess responses of a more ambiguous na-
ture.

The final limitation is that there were small differ-
ences in the datasets used to extract subtrait scores
to train and evaluate the 3 LLMs because the sets
of responses that the LLMs were able to process
successfully were not identical (shown in Table 3).
We believe that our sample size is large enough to
overcome this limitation; but nonetheless, the clean-
est experiment would make comparisons using data
sets that are absolutely identical.
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Appendix

You are an expert in academic standards with deep knowledge of assessment and
rubric design. You will be given a standard_id along with information about the
standard as well as parameters for the output like min_score and max_score. Your
job is to interpret the standard and provide a set of criteria for each score
point that will help to assess the level of student writing with respect to the
standard.

Please provide the criteria in a clear and concise manner, ensuring that

they are:

1. specific to the standard

2. relevant to the grade level of the students.

3. appropriate for the type of writing being assessed

4. written in a way that guides an LLM to evaluate a student's response in a
reliable and consistent manner.

5. (This is very important) the criteria are written to ensure non- overlapping
behaviors to encourage the LLM to use the full score range.

Figure 1: System instructions that were used to create subtrait rubrics from the narrative standard elements. Additional
instructions had to do with JSON formatting; definitions of the keys and values; specifications for the min and max
score points, grade, and genre; and encouragements to use the full score range.

W.8.3.A W.8.3.B W.8.3.C W.8.3.D W.83.E

Context Narrative Tech. Transitions Descriptiveness Conclusion

GPT-40 Mini  Prompt 1 0.231 0.285 0.157 0.129 0.198
Prompt 2 0.276 0.381 0.084 0.096 0.163

Prompt 3 0.172 0.304 0.243 0.151 0.131

Prompt 4 0.323 0.310 0.112 0.076 0.178

Prompt 5 0.257 0.418 0.214 0.000 0.111

Prompt 6 0.199 0.371 0.215 0.022 0.193

Llama3.1 8B Prompt 1 0.075 0.290 0.302 0.183 0.150
Prompt 2 0.193 0.272 0.248 0.152 0.135

Prompt 3 0.127 0.275 0.340 0.169 0.090

Prompt 4 0.015 0.325 0.347 0.155 0.159

Prompt 5 0.217 0.326 0.236 0.134 0.088

Prompt 6 0.130 0.300 0.305 0.085 0.180

Gemma 7B Prompt 1 0.228 0.068 0.172 0.532 0.000
Prompt 2 0.000 0.257 0.218 0.525 0.000

Prompt 3 0.124 0.107 0.311 0.458 0.000

Prompt 4 0.181 0.131 0.025 0.663 0.000

Prompt 5 0.336 0.326 0.033 0.304 0.000

Prompt 6 0.279 0.138 0.202 0.347 0.033

Table 8: Relative weights of LLM-generated subtrait features in regression models. We observe a fair amount of
consistency in the weights across prompts within models, and similar weights between GPT-40-Mini and Llama3.1
8B. We also observe that Gemma 7B’s assessment of the conclusion did not offer a unique contribution to the
prediction of the score.
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{
||4u: {

"criteria": [
"Exceeds Expectations",
"Masterfully establishes a complex and engaging narrative context",
"Provides a highly sophisticated and nuanced introduction of narrator and/or
characters",
"Creates an exceptionally clear and compelling point of view",
"Organizes events with remarkable logical flow and natural progression',
"Demonstrates advanced narrative techniques that immediately capture the
reader's interest"

]
}!
n Il: {
"criteria": [
"Meets Expectations",
"Effectively establishes a clear narrative context",
"Introduces narrator and/or characters with sufficient detail",
"Presents a distinct and appropriate point of view",
"Organizes events in a logical and coherent sequence",
"Provides a solid foundation for the narrative that guides the reader's
understanding"
]
},
n u: {
"criteria": [
"Approaching Expectations",
"Provides a basic narrative context with some gaps or lack of clarity",
"Partially introduces narrator and/or characters with minimal details",
"Demonstrates an inconsistent or somewhat unclear point of view",
"Attempts to organize events, but the sequence may have some minor logical
inconsistencies",
"Shows an emerging understanding of narrative introduction"
]
}’
n ll: {
"criteria": [
"Below Expectations",
"Offers a minimal or confusing narrative context",
"Provides little to no introduction of narrator and/or characters",
"Lacks a clear or coherent point of view",
"Events are poorly organized or difficult to follow",
"Struggles to establish a meaningful narrative foundation"
]
}5
n u: {
"criteria": [
"Insufficient",
"No discernible narrative context",
"No introduction of narrator or characters",
"No identifiable point of view",
"No coherent event sequence",
"Fails to create any meaningful narrative structure"
]
}

Figure 2: Example rubric for the W.8.3. A standard element subtrait.
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Assess the student's ability to effectively introduce a narrative by
establishing a clear context, point of view, and characters. Evaluate how well
the writer sets up the story and creates a logical, natural progression of
events. Consider the sophistication of the narrative setup, the clarity of
the introduction, and the coherence of the event sequence.

Return the chosen score_point as well as up to three small excerpts from the
response as evidence, without any modification or additional reasoning. The
excerpts should only be subsets of the original response text. It is okay to
return fewer than the max amount of excerpts, if some aren't good relative
to the others. Also, don't return the same excerpt twice. If the student got
the highest score_point, you should provide feedback summarizing what they
did well. If they did not get the highest score_point, you should give
feedback with a high level suggestion on how to improve. Feedback should be
worded to communicate with a student in grade 8 and limited to the specific
criteria in the rubric. You should not mix in unrelated analyses Return only
JSON containing the score_point, optional feedback, and each optional excerpt.

You should specifically evaluate the response based only on the following
scorepoint criteria:
//{Rubric appears herel}

Score and provide feedback for this response:
//{Response text appears here.}

Figure 3: Prompt that was used to elicit subtrait assessments from 3 LLMs.
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