@inproceedings{wang-etal-2025-automated,
title = "Automated Diagnosis of Students' Number Line Strategies for Fractions",
author = "Wang, Zhizhi and
Zhang, Dake and
Li, Min and
Tao, Yuhan",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-wip.21/",
pages = "178--184",
ISBN = "979-8-218-84229-1",
abstract = "This study aims to develop and evaluate an AI-based platform that automatically grade and classify problem-solving strategies and error types in students' handwritten fraction representations involving number lines. The model development procedures, and preliminary evaluation results comparing with available LLMs and human expert annotations are reported."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2025-automated">
<titleInfo>
<title>Automated Diagnosis of Students’ Number Line Strategies for Fractions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhizhi</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dake</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuhan</namePart>
<namePart type="family">Tao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84229-1</identifier>
</relatedItem>
<abstract>This study aims to develop and evaluate an AI-based platform that automatically grade and classify problem-solving strategies and error types in students’ handwritten fraction representations involving number lines. The model development procedures, and preliminary evaluation results comparing with available LLMs and human expert annotations are reported.</abstract>
<identifier type="citekey">wang-etal-2025-automated</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-wip.21/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>178</start>
<end>184</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automated Diagnosis of Students’ Number Line Strategies for Fractions
%A Wang, Zhizhi
%A Zhang, Dake
%A Li, Min
%A Tao, Yuhan
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84229-1
%F wang-etal-2025-automated
%X This study aims to develop and evaluate an AI-based platform that automatically grade and classify problem-solving strategies and error types in students’ handwritten fraction representations involving number lines. The model development procedures, and preliminary evaluation results comparing with available LLMs and human expert annotations are reported.
%U https://aclanthology.org/2025.aimecon-wip.21/
%P 178-184
Markdown (Informal)
[Automated Diagnosis of Students’ Number Line Strategies for Fractions](https://aclanthology.org/2025.aimecon-wip.21/) (Wang et al., AIME-Con 2025)
ACL
- Zhizhi Wang, Dake Zhang, Min Li, and Yuhan Tao. 2025. Automated Diagnosis of Students’ Number Line Strategies for Fractions. In Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress, pages 178–184, Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States. National Council on Measurement in Education (NCME).