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Abstract

Fraction number lines are widely recognized as
an effective tool for supporting students’ con-
ceptual understanding of rational numbers, yet
their abstract nature makes them challenging
for students to use and for teachers to eval-
uate reliably. This study introduces Visual
Translator (VT), an AI-based tool designed
to automatically diagnose students’ problem-
solving strategies and error types in handwrit-
ten fraction number line tasks. VT employs
object detection models trained on a curated
subset of 1,134 annotated student responses
from the ASSISTments Mathnet dataset, and
generates structured text descriptions of key vi-
sual elements, which can then be processed by
large language models (LLMs) for higher-level
reasoning. Preliminary results indicate that
VT outperforms GPT-4o and Grok in fraction
value identification (Precision = 0.611, Recall =
0.582), while achieving substantially higher ac-
curacy in location detection (mAP@50 = 0.88)
compared to Gemini-2.5 Pro (0.11). These
findings demonstrate the promise of combining
computer vision with generative AI to improve
automated diagnosis of students’ mathematical
strategies.

1 Introduction

Fractions represent a critical transition in mathe-
matics learning, serving as a bridge between whole
numbers and rational numbers and laying the foun-
dation for later understanding of proportional rea-
soning, algebra, and real numbers (Siegler et al.,
2011; Siegler and Pyke, 2013). However, decades
of research have shown that students frequently
struggle with fractions, often treating them as two
whole numbers rather than as magnitudes on a con-
tinuous scale (Ni and Zhou, 2005). To address
these difficulties, instructional researchers have
emphasized the use of number lines as a visual
and conceptual tool for representing fractions. A
number line highlights relative magnitude, density,

and equivalence of rational numbers, making it
particularly effective for developing conceptual un-
derstanding (Stewart et al., 2008). As such, num-
ber lines have been widely recommended in stan-
dards and curricula, including the Common Core
State Standards for Mathematics (Association et al.,
2010).

Despite their benefits, number lines also present
challenges for students. Siegler and colleagues
identified two primary strategies (Siegler et al.,
2011) used by students: segmentation strategies,
which involve partitioning the interval between
0 and 1, and numerical transformation strategies,
which involve mapping fractions onto known ref-
erence points. Errors commonly observed include
uneven segmentation, the use of incorrect units, or
misapplied transformations (Bright et al., 1988; La-
mon, 2007). These errors are not merely procedural
slips; they reflect deeper misconceptions about the
nature of rational numbers (Lamon, 2007). For
teachers, especially novice teachers, diagnosing
these misconceptions from handwritten number
line representations is both cognitively demanding
and time-consuming (Zhang et al., 2016). Con-
sequently, there is a pressing need for scalable
tools that can assist teachers in analyzing student
responses and identifying error types with accuracy
and consistency.

The rapid advancement of artificial intelligence
(AI) provides new opportunities to address this
need. Automated scoring systems have demon-
strated success in domains such as essay grading,
short-answer evaluation, and mathematical prob-
lem solving (Lockwood, 2014; Dikli, 2006). Re-
cent work has also explored the use of computer vi-
sion and large language models (LLMs) to interpret
drawn diagrams and models. For example, Lee and
Zhai reported limited success in using GPT-4o to
grade student-drawn science models, with accuracy
ranging from 0.2 to 0.6, highlighting the challenges
of reliably recognizing children’s handwritten and
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diagrammatic representations (Lee and Zhai, 2023).
Similarly, early experiments with GPT-4o and re-
lated multimodal models suggest that, while LLMs
excel in natural language reasoning, their image-
processing capabilities remain insufficient for fine-
grained educational diagnostics such as interpreting
number lines.

In this study, we evaluate VT against both
human-annotated ground truth and state-of-the-art
LLMs (GPT-4o, o3, Gemini-2.5, Grok) on two key
tasks: (a) recognizing handwritten fraction values,
and (b) detecting the locations of visual elements
on number lines. Our preliminary results show that
VT achieves substantially higher accuracy in loca-
tion identification (mAP@50 = 0.88 vs. 0.11 for
Gemini-2.5 Pro) and competitive accuracy in frac-
tion value recognition, outperforming GPT-4o and
Grok. Beyond empirical results, our contributions
are threefold:

• We manually labeled over one thousand stu-
dent responses featuring fraction number lines,
creating a domain-specific dataset with fine-
grained annotations of key visual elements
(ticks, endpoints, and handwritten values).

• We trained the Visual Translator (VT) on this
dataset, tailoring it specifically for fraction
number line tasks to detect and interpret key
visual information from students’ handwritten
solutions.

• We designed metrics to assess the accuracy
of models in capturing key visual information
in students’ work, and conducted extensive
experiments comparing VT with leading mul-
timodal LLMs, including GPT-4o, GPT-o3,
Gemini-2.5 Pro, and Grok-2.

2 VT Model

2.1 Data Preparation

The first step in developing the VT model was to
identify student responses containing fraction num-
ber lines. From the full MathNet dataset of 3.8 mil-
lion images, we initially filtered 139,000 fraction-
related items using keywords extracted from the
associated JSON metadata. From this subset, we
manually labeled a small number of images that
clearly contained number lines to serve as seed
data.

To expand the labeled dataset efficiently, we
trained a YOLOv8 model on the seed images to de-

Table 1: Statistics of Key Elements.

Key Elements Type Number of Instances
Fraction 8199

Tick 8385
0 2474
1 4447
2 2236
3 2054
4 2182
5 1732
6 2387
7 606
8 1204
9 476

tect number lines and applied it to additional candi-
date images. Predictions from the model were then
manually verified to confirm their relevance. This
iterative process, in which the model guides the se-
lection of images for human annotation, effectively
implements an active learning strategy, concentrat-
ing labeling effort on the most informative samples
and improving data collection efficiency.

After identifying 1,134 confirmed images fea-
turing 0–1 fraction number lines, we conducted
fine-grained annotations of key visual elements,
which are identified by our educational experts,
including tick marks, digits(0-9), and fractions. Fi-
nally, the dataset contains more than 8,000 fraction
labels, over 8,300 tick marks, and thousands of
digit labels (0–9). Detailed statistics of the labeled
dataset are summarized in Table 1. All annota-
tions were completed by our graduate assistants
using Roboflow1, a comprehensive platform for
data annotation, model training, and deployment.
Each key element was enclosed within a bound-
ing box of a distinct color and assigned a unique
label, as shown in Figure 1. The platform allows
export of labeled information into various formats,
including .txt, .json and other supported formats,
enabling users to directly download the annotation
files. These annotations serve as the foundation for
subsequent model training, evaluation, and auto-
mated diagnostic tasks.

Figure 1: An example for labeling work.

1https://roboflow.com
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2.2 Textual Description Generation
After preparing and annotating the dataset, the VT
model was trained to generate textual descriptions
of a student’s work from a given input image. For
each image, the model produces a description that
includes the key visual elements, their correspond-
ing labels, and spatial coordinates. Additionally,
the model identifies whether the number line is a
0–1 number line by detecting the presence of lead-
ing 0 and ending 1.

When a key element corresponds to a fraction,
the model further derives the fraction value from
the detected digits in the bounding box of a fraction.
Specifically, a post-processing clustering algorithm
groups digits associated with each fraction into two
sets, corresponding to the numerator and denomina-
tor. The final fraction value is then computed from
these clusters, ensuring accurate reconstruction of
the student’s intended fraction. Besides that, for a
detected fraction, it is linked to its corresponding
tick (if present) in the form of "F0-T1", where F0
denotes the first fraction and T1 denotes the sec-
ond tick. The indices of fractions (i.e., F0, F1, F2
. . . ) and ticks (T0, T1, T2 . . . ) were automatically
generated based on the left-to-right order of the
top-left coordinates of their bounding boxes.

Overall, this process provides a structured tex-
tual summary of the detected key elements in a stu-
dent’s response, including their spatial information
and numerical content. These textual summaries
serve as standardized inputs for downstream di-
agnostic tasks, enabling automated error analysis
and strategy classification. An example for textual
generation is shown in Figure 2.

Figure 2: A demo example for textual generation.

2.3 Model Development

We developed the VT model in the following
pipeline:

2.3.1 Key Element Detection
We trained an object detection model from the
YOLO series to identify ticks, digits, and frac-
tions. Training was conducted on the Roboflow
platform, which provides resources optimized for
small object detection in real-time. The labeled
dataset enabled the model to learn the visual ap-
pearance and spatial layout of key elements. Our
best-performing model achieved a mean Average
Precision at IOU 0.5 (mAP@50) of 0.88 on the
validation set, demonstrating high accuracy in de-
tecting fine-grained handwritten components.

2.3.2 Model Deployment
The trained VT model is deployed to detect key
elements—ticks, digits, and fractions—while re-
turning their corresponding labels and spatial co-
ordinates. The deployment is hosted on Roboflow
and accessible via an API, which allows external
systems to directly query the model. This design en-
ables smooth integration into various downstream
applications without requiring local installation or
complex setup.

2.3.3 Web-based Interface
To further enhance usability, we developed a web
application hosted on Hugging Face Spaces, of-
fering an interactive interface for educators and
researchers. Through this platform, users can:

• Upload an image of a student’s work.

• Visualize detection results superimposed on
the original image.

• Automatically reconstruct fraction values by
clustering detected digits into numerators and
denominators.

• Generate a textual summary of all identified
key elements along with their coordinates.

• Download the complete results as a JSON file
for integration into other pipelines.

The web service is hosted on Hugging Face Spaces
and can be accessed at MathNet VT Model Web
Platform. Access is granted via the invitation token
RU_MATHNET_VT.
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3 Evaluation

Unlike conventional object detection models, the
VT system is designed not only to detect visual
elements but also to generate structured textual
descriptions that capture the key information in stu-
dents’ handwritten number line tasks. While stan-
dard detection metrics such as mAP@50 provide
useful references, they are insufficient to directly
reflect performance on our educational task, where
the ultimate goal is to recover meaningful mathe-
matical content (e.g., fractions, their values, and
their associations with ticks).

To address this gap, we manually annotated addi-
tional ground truth information–including fraction
values ordered from left to right according to the
bounding box locations of fractions, as well as
the associations between fractions and their cor-
responding ticks–and developed a set of tailored
evaluation metrics that complement traditional ob-
ject detection measures. These metrics assess (i)
the accuracy of recognized fraction values and (ii)
the correctness of their associations with ticks. Fi-
nally, we designed a weighted composite score that
integrates our custom metrics with conventional
detection metrics. This composite score serves as
a more intuitive and holistic evaluation of the per-
formance of VT, balancing both visual detection
accuracy and the recovery of meaningful mathe-
matical content from student work.

3.1 Additional Ground Truth Construction

In addition to the bounding box annotations used
for model training, two further steps were con-
ducted to establish reliable ground truth:

• Fraction Value Annotation. Expert graduate
assistants manually read each student’s hand-
written work and labeled fraction values (e.g.,
1/8, 2/8, 3/8). These values were aligned with
bounding boxes to create a verified mapping
between visual regions and fraction numbers.

• Fraction–Tick Association. Fractions were
linked to their corresponding ticks (if present)
using index pairs (e.g., F0–T1), where indices
were assigned based on the left-to-right order
of their bounding boxes.

As illustrated in Figure 3, this multi-level an-
notation ensured that ground truth covered both
fraction recognition and structural relationships in
the number line.

Figure 3: Additional ground truth annotation.

3.2 Metrics for Fraction Value Identification
To evaluate fraction recognition, we designed two
complementary accuracy indices:

• Jac Index (Order-independent). Measures
the set overlap between predicted and ground-
truth fraction values, ignoring their order. It
reflects the completeness of detection.

• Seq Index (Order-sensitive). Measures the
length of the longest subsequence of correctly
predicted fractions that also appear in the cor-
rect order. This is stricter than the Jac Index,
as it penalizes out-of-order predictions.

In addition, we computed precision and recall for
fraction values:

Precision =
# of correctly detected fraction values

# of all detected fraction values

Recall =
# of correctly detected fraction values
# of all ground-truth fraction values

For example, assume the ground truth fractions
are 0/3, 1/3, 2/3, 3/3, If the model predicts 0/3, 3/3,
2/3, then three of the predicted fractions are correct
under the jac index metric. In this case, the model
achieves a precision of 1.0 (since three out of three
predictions are correct) and a recall of 0.75 (since it
misses one ground-truth fraction, 1/3). While under
the seq index, its precision is only 0.67 because 2/3
is out of the right order and its recall is 0.5 (since it
misses two ground-truth fractions, 1/3 and 2/3).

3.3 Metrics for Relationships between
Fractions and Ticks

In addition to evaluating individual fraction values
and key element locations, a crucial aspect of ana-
lyzing students’ number line work is capturing the
spatial and logical relationships between fractions
and their corresponding ticks. Correctly identify-
ing these relationships ensures that each fraction
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is accurately mapped to its intended position on
the number line, which is essential for subsequent
diagnostic analyses.

To assess this, we introduce relationship-specific
metrics that compare the associations generated by
VT with ground-truth annotations. Each fraction
in the ground truth is linked to a specific tick (if
present) using index pairs (e.g., F0–T1), where the
indices are determined based on the left-to-right
ordering of the top-left coordinates of their bound-
ing boxes. VT’s predicted fraction–tick pairs are
then matched against these ground-truth pairs. Ac-
curacy is calculated as the proportion of correctly
identified fraction–tick relationships over all anno-
tated pairs. In addition, we compute precision and
recall for these relationships to provide a more de-
tailed assessment of VT’s performance in capturing
fraction–tick associations The overall fraction–tick
score is summarized by its F1-score, which we will
introduce later.

3.4 Composite Score
To provide a single, interpretable measure of VT’s
overall performance, we designed a composite
score that integrates both elemental and relational
information extracted from student work. To ac-
count for both precision and recall, we adopt the
F1 score as a comprehensive performance metric,
which is computed as follows:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall

The textual description score is calculated as a
weighted average of these per-element F1 scores:

Textual Description Score =
∑

i

100 ∗ F1i ∗Wi

where i indexes the key element categories and Wi

denotes their user-defined weights and
∑

iWi = 1.
This formulation provides flexibility, as users can
assign greater importance to specific elements (e.g.,
fractions over digits) depending on instructional or
diagnostic needs. In addition, detailed per-element
results (precision, recall, and F1) are retained to
facilitate fine-grained analysis.

To achieve a comprehensive assessment, we inte-
grate the textual description score with the accuracy
of fraction–tick relationship detection. Specifically,
the final composite score is computed as:

Composite Score = Wft ∗ Fraction-Tick Score

+Wts ∗ Textual Description Score

where Wts is the weight ratio of textual descrip-
tion score, Wft is the weight ratio of fraction-tick
score and Wts + Wft = 1. Since fraction–tick
relationships depend on the accurate detection of
both fractions and ticks, missing either element di-
rectly leads to a missing relationship. Therefore,
it is advisable to assign a much higher weight Wts

than to Wft, e.g. Wts = 0.8 and Wft = 0.2. By
combining elemental accuracy and relational cor-
rectness into a single metric, this composite score
provides an interpretable and holistic evaluation of
VT’s effectiveness in extracting both low-level vi-
sual details and higher-order relational information
from student work.

4 Experiments

We conducted a series of experiments to evaluate
the effectiveness of VT in comparison with state-of-
the-art large language models (LLMs). Specifically,
we first benchmark VT against Grok-2, Gemini-Pro
2.5, GPT-4o, and GPT-o3 on the task of fraction
value detection, where accuracy serves as the eval-
uation metric. In addition, we assess the composite
score of VT and Gemini-Pro 2.5, as Gemini-Pro 2.5
is the only publicly available LLM known to sup-
port image segmentation, i.e., the ability to process
element-level bounding box coordinates.

4.1 Accuracy on Fraction Values Detection

To ensure fairness, the evaluation was conducted
on a set of 227 images sampled from both the vali-
dation and test datasets, none of which were used
to train VT. All models were tested under the same
experimental settings.

The results are shown in Table 2. Gemini-2.5
Pro achieved the highest precision and recall across
both the Jaccard index and sequential index met-
rics, demonstrating its strong capability in fraction
detection. However, VT consistently outperformed
GPT-4o and Grok-2,though its performance was
slightly lower than that of GPT-o3. Overall, all
models performed somewhat worse on the sequen-
tial index than on the Jaccard index, suggesting that
capturing the correct ordering of elements remains
a challenging aspect.

4.2 Comprehensive Evaluation

The comprehensive evaluation was performed on
a combined set of 177 images drawn from our val-
idation and test data. We evaluated both models
using our proposed composite score metric, with
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Table 2: Accuracy results on fraction values detection.

Model precision (jac index) recall (jac index) precision (seq index) recall (seq index)
Grok-2 0.320 0.387 0.243 0.293
GPT-4o 0.459 0.408 0.357 0.332

Gemini-2.5-pro 0.646 0.668 0.520 0.538
VT 0.560 0.499 0.446 0.403

GPT-o3 0.594 0.527 0.490 0.446

Table 3: Composite scores of VT and Gemini-2.5Pro

Model VT Gemini-2.5Pro
Composite score 66.8 15.8

Textual description score 73.0 18.1
Fraction-Tick score 41.9 6.2

the detailed results presented in Table 3, includ-
ing the composite score along with textual descrip-
tion score and fraction-tick score. The Textual
description score itself is a weighted average re-
flecting the accurate detection of key elements,
with weights defined as ’fraction’: 0.5, ’tick’: 0.4,
’one’: 0.05, ’zero’: 0.05. The final Composite score
is then calculated by combining the Textual de-
scription score (representing key element detection,
’ke’) and the Fraction-Tick score (representing re-
lationship between a fraction and its corresponding
tick, ’tick2frac’) with weights of Wke = 0.8 and
Wtick2frac = 0.2, respectively.

As illustrated in Table 3, our VT model demon-
strates a commanding lead across all metrics. VT
achieved a composite score of 66.8, which is more
than four times higher than the 15.8 scored by
Gemini-2.5Pro. This significant gap is consistent
across the sub-metrics: VT scored 73.0 on textual
description and 41.9 on fraction-tick relationships,
compared to Gemini-2.5Pro’s scores of 18.1 and
6.2.

The stark performance disparity underscores the
critical importance of domain-specific training for
specialized, high-precision tasks. While LLMs like
Gemini-2.5Pro possess extensive general knowl-
edge, they struggle to accurately parse the fine-
grained, structured information required by our task
without targeted fine-tuning. This outcome strongly
indicates that Large Language Models (LLMs) do
not serve as an infallible "oracle" or a universal
solution for all problems.

5 Conclusion

In this paper, we presented VT, a specialized vision-
language model designed to parse key semantic in-
formation from student-produced diagrams of frac-
tion number lines. Departing from conventional
object detection methods that focus primarily on
localization, VT generates a structured textual rep-
resentation that encapsulates not only elemental

components (e.g., digits, ticks, fractions) but also
their crucial relational associations. To facilitate a
rigorous and fair evaluation, we have contributed a
manually annotated dataset of over 1,000 student
drawings and proposed a suite of tailored metrics,
including accuracy on fraction values, fraction-tick
relationship metrics, and a weighted composite
score that provides a comprehensive assessment of
model performance. Our empirical results demon-
strate that VT significantly outperforms general-
purpose Large Language Models. This finding sug-
gests that while LLMs offer broad capabilities, they
are not a universal solution; for domain-specific
tasks requiring fine-grained interpretation of pri-
vate data, developing and training specialized mod-
els remains a necessary and effective approach for
robust information extraction.
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