@inproceedings{adegoke-etal-2025-medical,
title = "Medical Item Difficulty Prediction Using Machine Learning",
author = "Adegoke, Hope Oluwaseun and
Du, Ying and
Dwyer, Andrew",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-wip.22/",
pages = "185--190",
ISBN = "979-8-218-84229-1",
abstract = "This project aims to use machine learning models to predict a medical exam item difficulty by combining item metadata, linguistic features, word embeddings, and semantic similarity measures with a sample size of 1000 items. The goal is to improve the accuracy of difficulty prediction in medical assessment."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="adegoke-etal-2025-medical">
<titleInfo>
<title>Medical Item Difficulty Prediction Using Machine Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hope</namePart>
<namePart type="given">Oluwaseun</namePart>
<namePart type="family">Adegoke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ying</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Dwyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84229-1</identifier>
</relatedItem>
<abstract>This project aims to use machine learning models to predict a medical exam item difficulty by combining item metadata, linguistic features, word embeddings, and semantic similarity measures with a sample size of 1000 items. The goal is to improve the accuracy of difficulty prediction in medical assessment.</abstract>
<identifier type="citekey">adegoke-etal-2025-medical</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-wip.22/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>185</start>
<end>190</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Medical Item Difficulty Prediction Using Machine Learning
%A Adegoke, Hope Oluwaseun
%A Du, Ying
%A Dwyer, Andrew
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84229-1
%F adegoke-etal-2025-medical
%X This project aims to use machine learning models to predict a medical exam item difficulty by combining item metadata, linguistic features, word embeddings, and semantic similarity measures with a sample size of 1000 items. The goal is to improve the accuracy of difficulty prediction in medical assessment.
%U https://aclanthology.org/2025.aimecon-wip.22/
%P 185-190
Markdown (Informal)
[Medical Item Difficulty Prediction Using Machine Learning](https://aclanthology.org/2025.aimecon-wip.22/) (Adegoke et al., AIME-Con 2025)
ACL
- Hope Oluwaseun Adegoke, Ying Du, and Andrew Dwyer. 2025. Medical Item Difficulty Prediction Using Machine Learning. In Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress, pages 185–190, Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States. National Council on Measurement in Education (NCME).