Medical Item Difficulty Prediction Using Machine Learning
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Abstract

This study examines the prediction of medi-
cal exam item difficulty using NLP and ma-
chine learning. A dataset of 1,154 MOCA-
Peds items was represented with lexical fea-
tures, cohesion metrics (TAACO), blueprint
encodings, BioMedBERT embeddings, seman-
tic similarity, and unsupervised semantic in-
dicators. Regression models predicted IRTb
parameters with RMSE =~ 1.37 and R2 =~ .29,
a ~ 15% improvement over baseline. Ordinal
classifiers reached 30-34% accuracy, doubling
the baseline (17%), with ~68% adjacent ac-
curacy. Feature importance showed blueprint,
item structural features (number of options, op-
tion length), and semantic embeddings as the
strongest predictors. These findings demon-
strate the feasibility of difficulty prediction in
medical assessments and highlight the value
of combining domain-specific semantics with
latent difficulty signals for efficient test devel-
opment.

1 Introduction

Having an idea of the difficulty of items before
operational use supports efficient test construction,
helps to achieve target score precision, and reduces
the cost and security risks of pre-testing (Settles
et al., 2020). Previous work using text features
alone has shown mixed results, often only mod-
estly surpassing naive baselines (Stepanek et al.,
2023). Shared-task evidence suggests that trans-
formers can help when carefully tuned and com-
bined with complementary features (Yaneva et al.,
2024; Gombert et al., 2024). In medical licensing
contexts where items require specialized knowl-
edge and clinical reasoning, prediction of difficulty
has been particularly challenging (Ha et al., 2019).
We extend this literature by integrating different
categories of linguistic and semantic feature fami-
lies, including domain-specific biomedical embed-
dings (Gu et al., 2021), and by encoding content

blueprints, then evaluating both continuous and
ordinal formulations of difficulty.

2 Related Works

Early studies of automated item difficulty predic-
tion focused on surface-level text features such as
length, readability, and lexical counts, but these typ-
ically explained little variance (McNamara et al.,
2014, Stepének et al., 2023; Ha et al., 2019). With
the rise of NLP, transformer-based models achieved
top performance in the BEA 2024 Shared Task on
difficulty prediction (Gombert et al., 2024), while
methods using traditional linguistic/cohesion fea-
tures (including clinical embeddings and princi-
pal component features) also showed competitive
performance though generally lower than the top
transformer-based approaches (Yaneva et al., 2024;
Tack et al., 2024).

Medical assessments present unique challenges.
Ha et al., 2019 reported only modest gains over
baseline for medical MCQs, reiterating the impor-
tance of incorporating domain expertise. Domain-
specific embeddings like BioMedBERT (Gu et al.,
2021) provide richer representations of medical ter-
minology. Furthermore, content-based encodings
such as blueprints or cognitive-level taxonomies
(Anderson and Krathwohl, 2001) can serve as struc-
tured priors for difficulty. Our work extends these
lines by combining linguistic, semantic, and con-
tent features, evaluating both continuous prediction
of IRTb and ordinal classification into difficulty
bins.

3 Method
3.1 Data & Targets

We analyze 1,154 multiple-choice items from the
Maintenance of Certification Assessment for Pe-
diatrics (MOCA-Peds), a longitudinal, online as-
sessment that allows pediatricians to demonstrate
ongoing knowledge through periodic testing rather
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than a single high-stakes exam (Leslie et al., 2018).
Each item consists of a clinical stem and four or
five answer options (A-D or A-E). Every item has
a calibrated IRT difficulty parameter (b), which
serves as the outcome variable for the prediction.
In the regression setting, the task is to predict the
continuous IRTb value directly. In the classification
setting, items are grouped into five ordinal difficulty
categories by dividing the IRTb distribution into
quintiles, ranging from the easiest to the hardest
items. Because there are five equally sized bins,
random guessing of the algorithms would yield a
uniform-chance accuracy of 20% for predicting the
exact difficulty class.

3.2 Features

We construct five feature families:

Lexical features: Stem and option lengths (in
both characters and tokens), punctuation counts,
total number of options (4 and 5), and lexical over-
lap indices. Overlap was measured with Jaccard
similarity between the stem and the correct option,
and between the stem and the distractors.

TAACO cohesion features: Cohesion and read-
ability indices computed with the Tool for the Au-
tomatic Analysis of Cohesion - TAACO (Crossley
et al., 2016, 2019). These include lexical diversity,
referential overlap, connectives usage, and standard
readability metrics.

BioMedBERT semantic features: Mean-
pooled contextual embeddings of the stem and op-
tions from BioMedBERT (Gu et al., 2021). From
these embeddings, we derived cosine similarities
(stem—correct option and stem—distractors), disper-
sion among option embeddings (mean pairwise
cosine distance), and principal components of the
stem embeddings to provide lower-dimensional se-
mantic factors.

Blueprint encoding: Smoothed target encoding
of Level-2 content domains from the MOCA-Peds
blueprint. Each item’s category was assigned the
smoothed mean difficulty from training folds, pro-
viding a structured content-based prior.

Unsupervised difficulty features: Embedding-
derived features that do not use the target diffi-
culty, such as stem “uniqueness” relative to the
corpus, cluster-based indicators (cluster size, dis-
tance to centroid), and coherence/variance scores.
These are designed to capture latent difficulty sig-
nals without relying on calibrated b parameters.

3.3 Modeling & Validation

We approach difficulty prediction through two com-
plementary pipelines: regression for continuous
IRTb values and ordinal classification for quantile-
based difficulty bins. For both pipelines, we used a
nested cross-validation strategy. In the outer loop,
five folds of data ensured every item served once
as test data to estimate generalization error. Within
each training partition, randomized hyperparameter
search with inner cross-validation selected the best
model configuration. This setup prevents informa-
tion leakage between tuning and evaluation, which
produces a robust and unbiased performance esti-
mates (Varma and Simon, 2006; Arlot and Celisse,
2010). For regression, we combined interpretable
linear models with flexible non-linear methods.
Elastic Net and Ridge provided regularized linear
baselines (gtepa’mek et al., 2023), while Random
Forest and gradient boosting methods (XGBoost,
LightGBM, CatBoost) captured non-linear interac-
tions. Evaluation emphasized Root Mean Square
Error (RMSE), supplemented by Mean Absolute
Error (MAE), R?, and Spearman rank correlation
to reflect both the magnitude and the ranking of
difficulty. Calibration slopes were also inspected
to assess systematic under- or overestimation.

RMSE (Root Mean Square Error): average
magnitude of prediction errors, penalizing larger
errors more heavily.

MAE (Mean Absolute Error): average abso-
lute difference between predicted and true values.

R? (Coefficient of Determination): proportion
of variance in item difficulty explained by the
model.

Spearman’s p: correlation between predicted
and true rankings of item difficulty, reflecting how
well the model preserves ordering.

Calibration Slope: regression slope of observed
versus predicted difficulty; values close to 1 indi-
cate unbiased, well-scaled predictions.

For classification, we tested Logistic Regression,
SVMs, and Random Forest, consistent with prior
work on medical MCQ difficulty prediction (Ha
et al., 2019). We additionally evaluated gradient
boosting classifiers (XGBoost, LightGBM, Cat-
Boost), which have been shown to be competitive
in recent difficulty prediction tasks (Yousefpoori-
Naeim et al., 2024). We reported overall accuracy,
macro-F1, Ordinal Mean Absolute Error, Adjacent
Accuracy (crediting predictions within one diffi-
culty level), and Top-2 Accuracy. Such metrics are
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recommended in ordinal classification/assessment
prediction settings, though prior work uses subsets
of them (Ha et al., 2019; Gombert et al., 2024).

Accuracy: proportion of items where the pre-
dicted bin exactly matched the true bin.

Macro-F1: unweighted average of Fl-scores
across bins, combining precision and recall.

Ordinal MAE: mean absolute difference be-
tween predicted and true bin indices, capturing
distance on the ordered scale.

Adjacent Accuracy: percentage of predictions
that were exact or within one difficulty level.

Top-2 Accuracy: percentage of items where the
correct bin was among the model’s two highest-
scored predictions.

All models were implemented in standardized
Python pipelines with preprocessing, scaling, and
leakage-safe encoding. Embeddings were precom-
puted and cached to ensure efficiency, and fixed
seeds were used for reproducibility.

4 Results

4.1 Regression (predicting IRTb)

In the regression task, models were trained to pre-
dict continuous IRT b parameters directly from
item features. The baseline predictor, which al-
ways returned the mean item difficulty, yielded
RMSE ~ 1.63 and explained virtually none of the
variance (R? =~ 0). In contrast, all feature-based
models substantially outperformed this baseline.
As shown in Table 1, the best results were achieved
by Elastic Net and Random Forest, which attained
RMSE = 1.37 and explained about 28-29% of
variance (R? = 0.28-0.29). Both also showed mod-
erate rank-order correlations with true difficulty
(p = 0.45), indicating that they not only approxi-
mated difficulty values but also captured relative
ordering among items. Gradient boosting meth-
ods (LightGBM and CatBoost) performed nearly
as well, with RMSE ~ 1.37 and R? ~ 0.288. Ridge
regression was slightly weaker (R? =~ 0.276), while
XGBoost lagged behind with the highest RMSE
(= 1.40) and the lowest explained variance (R? =
0.26).

Calibration analysis confirmed that model pre-
dictions were well aligned with observed values:
Random Forest achieved a slope close to 1.0, while
Elastic Net slightly underestimated extreme dif-
ficulties (slope ~ 1.1). In practical terms, given
the observed range of b values (= -5 to +5), the
error reduction from 1.63 to 1.37 translates into

roughly a 15% gain in predictive precision from
the baseline.

4.2 Ordinal classification (5 difficulty bins)

For the 5-class ordinal classification task, mod-
els substantially outperformed the baselines. The
majority-class baseline reached only 17.2% ac-
curacy, while a uniform random predictor would
achieve ~20% accuracy by chance.

As shown in Table 2, the Random Forest classi-
fier achieved the strongest performance with 34.5%
accuracy, approximately double the majority-class
baseline. Its Macro-F1 (0.35) was aligned with
accuracy, reflecting fairly uniform performance
across difficulty bins. The ordinal-specific met-
rics confirmed its usefulness: the Ordinal Mean
Absolute Error was 1.14 (vs. 1.48 for baseline),
and Adjacent Accuracy reached 68%, indicating
that two-thirds of predictions were either exact or
within one difficulty level. The Top-2 accuracy
of 54% further shows that the true class was fre-
quently among the two highest-scored bins.

LightGBM and XGBoost followed closely (over-
all accuracy ~0.34 and ~0.34 respectively), while
SVM (RBF kernel) and Logistic Regression trailed
modestly (=0.30-0.32 overall accuracy). Impor-
tantly, even the weaker models still exceeded base-
line performance, confirming that item features
contain reliable ordinal difficulty signals.

4.3 Feature Importance

We examined feature importance across regression
and classification models. Figure 1 show us that for
Random Forest regression, the strongest predictors
were the blueprint encoding, the number of answer
options, and the length of option E. Each accounted
for around 10% of the model’s explanatory vari-
ance, confirming that both content area and item
format influence difficulty.

Embedding-based features also played a key role.
Several principal components from BioMedBERT
stem embeddings and stem—distractor cosine simi-
larities ranked among the top predictors, indicating
that semantic complexity and distractor plausibility
strongly shaped difficulty. In contrast, cohesion
indices from TAACO and traditional readability
measures contributed little when richer semantic
and content features were available.

For the ordinal classification Random For-
est, the same pattern emerged: option E length
and blueprint encoding dominated, followed by
embedding-derived factors and unsupervised simi-
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Table 1: Cross-validated regression results (5-fold outer CV). Lower RMSE is better.

Model RMSE MAE R? Spearman p Calib. slope

Elastic Net 1.3719 1.0759  .2881 0.4584 1.10

Random Forest 1.3685 1.0744  .2916 0.4464 0.98

LightGBM 1.3715 1.0763  .2885 0.4577 1.12

CatBoost 1.3717 1.0752  .2882 0.4530 1.07

Ridge 1.3838 1.0852  .2757 0.4400 0.96

XGBoost 1.3976  1.1034 2612 0.4174 1.04

Baseline (mean)  1.6262 1.2685 ~0.00 ~0.00 —

Table 2: Ordinal classification results (5-fold outer CV).

Model Accuracy Macro-F1 Ordinal-MAE Adjacent Acc. Top-2 Acc.
Random Forest 345 347 1.136 679 .538
LightGBM .343 .338 1.187 .657 555
XGBoost .337 .335 1.156 .677 .536
SVM (RBF) 322 324 1.174 .666 .538
Logistic Reg. .309 .296 1.247 .638 .524
Baseline (maj.) 172 .150 1.478 .546 .382

larity features (e.g., stem—nearest neighbor cosine
distance). This shows that difficulty is not just a
function of surface text complexity but is rooted in
the interaction of content domain, item structure,
and semantic relationships among options.

5 Discussion

Our models achieved modest but meaningful pre-
dictive power: regression explained about 28-29%
of variance in IRTb, and ordinal classification
reached 34% accuracy with 68% adjacent accuracy.
These gains over baseline suggest that automated
difficulty prediction can support item development,
though the strength of the predictions remains lim-
ited.

Importantly, our results are consistent with prior
studies. Stepanek et al., 2023 reported similar
variance explained when predicting reading com-
prehension item difficulty, and Ha et al., 2019
found only modest gains for medical MCQs. Re-
cent BEA-2024 shared-task findings (Yaneva et al.,
2024; Gombert et al., 2024; Tack et al., 2024;
Yousefpoori-Naeim et al., 2024) likewise show that
even transformer-based systems reach only moder-
ate correlations, underscoring a common ceiling in
this line of work.

The drivers of prediction in our study, which are
option structure, blueprint encoding, and biomedi-
cal embeddings, mirror some of those highlighted
in other research (Ha et al., 2019; Tack et al.,
2024). Readability and cohesion features offer little
contribution once richer, domain-specific features
are available. This points to why the ceiling per-
sists: difficulty depends not just on text but also

on broader context, reasoning steps, and examinee
knowledge, factors not fully captured by textual
features.

From a practical perspective, these models are
best used for screening and triage: flagging poten-
tially too-easy or too-hard items, or giving item
writers feedback about content areas and option
structures. They are unlikely to replace psychome-
tric calibration (at least not yet), but can reduce
workload and guide review.

Looking ahead, progress will likely come from
incorporating richer modalities (stimuli, visuals),
domain-adapted embeddings, and design-aware
features that better align with the cognitive pro-
cesses behind item difficulty. Until then, automated
prediction should be seen as an assistive tool that
complements, rather than substitutes the current
process.

6 Conclusion

This study shows that predicting the difficulty of
medical multiple-choice items is feasible when
models combine diverse linguistic, semantic, and
content-informed features. By integrating domain-
specific biomedical embeddings and blueprint en-
codings alongside lexical and cohesion measures,
our models achieved measurable improvements
over baselines in both continuous and ordinal for-
mulations of difficulty. Importantly, the results
highlight that difficulty prediction is not driven by
surface text length alone but by deeper signals of
what the item is about and how it is structured.
The practical implication is that automated pre-
diction can serve as a support tool in item devel-
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Top 10 Features — Regression (Permutation Importance)
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Top 10 Features — Ordinal Classification (Feature Importance)
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Figure 1: Top 10 predictive features identified by importance analysis. Left: Regression models predicting
continuous IRTb. Right: Ordinal classification models predicting difficulty bins.

opment pipelines, sorting items for expert review,
guiding test assembly, and reducing reliance on
costly pretesting. At the same time, the modest
explanatory power and the prominence of dataset-
specific signals (such as Option E length) remind us
that these models should complement, not replace,
expert judgment and psychometric validation.

Future work should extend these methods to
larger and more diverse item pools, explore fine-
tuned transformer models, and incorporate addi-
tional sources of difficulty such as cognitive com-
plexity ratings (Bloom’s taxonomy) or multimedia
elements. Taken together, the findings provide evi-
dence that machine learning can play a constructive
role in modern test development, enhancing effi-
ciency while respecting the central role of human
expertise.

7 Limitations and future work

This study was limited by the use of a single dataset
of 1,154 MOCA-Peds items, which may constrain
generalizability. Some highly ranked predictors,
such as Option E length, applied to only a small
fraction of items (88/1154) and may reflect dataset-
specific patterns rather than universal drivers of
difficulty. In addition, the models considered only
text and blueprint features, without incorporating
multimedia content or group-level differences.

Future work should validate these findings
across larger and more diverse item banks, explore
explicit cognitive-level annotations, and investigate
fine-tuned transformer models trained on exam text.
Embedding difficulty prediction into item develop-
ment workflows to provide real-time feedback to
item writers is a promising application.
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