@inproceedings{schultz-etal-2025-examining,
title = "Examining decoding items using engine transcriptions and scoring in early literacy assessment",
author = "Schultz, Zachary and
Young, Mackenzie and
Dugdale, Debbie and
Lottridge, Susan",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-wip.23/",
pages = "191--196",
ISBN = "979-8-218-84229-1",
abstract = "We investigate the reliability of two scoring approaches to early literacy decoding items, whereby students are shown a word and asked to say it aloud. Approaches were rubric scoring of speech, human or AI transcription with varying explicit scoring rules. Initial results suggest rubric-based approaches perform better than transcription-based methods."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schultz-etal-2025-examining">
<titleInfo>
<title>Examining decoding items using engine transcriptions and scoring in early literacy assessment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zachary</namePart>
<namePart type="family">Schultz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mackenzie</namePart>
<namePart type="family">Young</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debbie</namePart>
<namePart type="family">Dugdale</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Susan</namePart>
<namePart type="family">Lottridge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84229-1</identifier>
</relatedItem>
<abstract>We investigate the reliability of two scoring approaches to early literacy decoding items, whereby students are shown a word and asked to say it aloud. Approaches were rubric scoring of speech, human or AI transcription with varying explicit scoring rules. Initial results suggest rubric-based approaches perform better than transcription-based methods.</abstract>
<identifier type="citekey">schultz-etal-2025-examining</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-wip.23/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>191</start>
<end>196</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Examining decoding items using engine transcriptions and scoring in early literacy assessment
%A Schultz, Zachary
%A Young, Mackenzie
%A Dugdale, Debbie
%A Lottridge, Susan
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84229-1
%F schultz-etal-2025-examining
%X We investigate the reliability of two scoring approaches to early literacy decoding items, whereby students are shown a word and asked to say it aloud. Approaches were rubric scoring of speech, human or AI transcription with varying explicit scoring rules. Initial results suggest rubric-based approaches perform better than transcription-based methods.
%U https://aclanthology.org/2025.aimecon-wip.23/
%P 191-196
Markdown (Informal)
[Examining decoding items using engine transcriptions and scoring in early literacy assessment](https://aclanthology.org/2025.aimecon-wip.23/) (Schultz et al., AIME-Con 2025)
ACL