@inproceedings{muntean-betts-2025-addressing,
title = "Addressing Few-Shot {LLM} Classification Instability Through Explanation-Augmented Distillation",
author = "Muntean, William and
Betts, Joe",
editor = "Wilson, Joshua and
Ormerod, Christopher and
Beiting Parrish, Magdalen",
booktitle = "Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress",
month = oct,
year = "2025",
address = "Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States",
publisher = "National Council on Measurement in Education (NCME)",
url = "https://aclanthology.org/2025.aimecon-wip.24/",
pages = "197--203",
ISBN = "979-8-218-84229-1",
abstract = "This study compares explanation-augmented knowledge distillation with few-shot in-context learning for LLM-based exam question classification. Fine-tuned smaller language models achieved competitive performance with greater consistency than large mode few-shot approaches, which exhibited notable variability across different examples. Hyperparameter selection proved essential, with extremely low learning rates significantly impairing model performance."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="muntean-betts-2025-addressing">
<titleInfo>
<title>Addressing Few-Shot LLM Classification Instability Through Explanation-Augmented Distillation</title>
</titleInfo>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Muntean</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joe</namePart>
<namePart type="family">Betts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Ormerod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalen</namePart>
<namePart type="family">Beiting Parrish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>National Council on Measurement in Education (NCME)</publisher>
<place>
<placeTerm type="text">Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-218-84229-1</identifier>
</relatedItem>
<abstract>This study compares explanation-augmented knowledge distillation with few-shot in-context learning for LLM-based exam question classification. Fine-tuned smaller language models achieved competitive performance with greater consistency than large mode few-shot approaches, which exhibited notable variability across different examples. Hyperparameter selection proved essential, with extremely low learning rates significantly impairing model performance.</abstract>
<identifier type="citekey">muntean-betts-2025-addressing</identifier>
<location>
<url>https://aclanthology.org/2025.aimecon-wip.24/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>197</start>
<end>203</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Addressing Few-Shot LLM Classification Instability Through Explanation-Augmented Distillation
%A Muntean, William
%A Betts, Joe
%Y Wilson, Joshua
%Y Ormerod, Christopher
%Y Beiting Parrish, Magdalen
%S Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con): Works in Progress
%D 2025
%8 October
%I National Council on Measurement in Education (NCME)
%C Wyndham Grand Pittsburgh, Downtown, Pittsburgh, Pennsylvania, United States
%@ 979-8-218-84229-1
%F muntean-betts-2025-addressing
%X This study compares explanation-augmented knowledge distillation with few-shot in-context learning for LLM-based exam question classification. Fine-tuned smaller language models achieved competitive performance with greater consistency than large mode few-shot approaches, which exhibited notable variability across different examples. Hyperparameter selection proved essential, with extremely low learning rates significantly impairing model performance.
%U https://aclanthology.org/2025.aimecon-wip.24/
%P 197-203
Markdown (Informal)
[Addressing Few-Shot LLM Classification Instability Through Explanation-Augmented Distillation](https://aclanthology.org/2025.aimecon-wip.24/) (Muntean & Betts, AIME-Con 2025)
ACL