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Abstract

This study evaluates GPT-4 for generating
and validating Q-matrices for TIMSS
mathematics items. Using expert mappings
as benchmarks, we examined prompt
design, temporal stability, and error
detection. The model showed strong
accuracy, substantial reliability, and
effective recovery of altered skills,
supporting its role as a scalable aid to
cognitive diagnosis.

1 Background

Identifying the cognitive skills required to solve
specific test items is a foundational task in
educational assessment. This function is not only
critical for ensuring the wvalidity of test
interpretations but is especially central to the
development and validation of Q-matrices in
Cognitive Diagnosis Models (CDMs; Rupp et al.,
2010).

A carefully constructed Q-matrix aligns each
assessment item with the exact constellation of
cognitive skills or knowledge components required
for its solution. When the identification of these
skills is flawed or incomplete, the resulting model
can  misrepresent  learners’  proficiencies,
undermining one of the principal strengths of
cognitive diagnostic models, their capacity to
deliver precise, actionable feedback. Consequently,
the delineation of content and associated skills
emerges as a critical, yet cognitively demanding,
dimension of assessment design. Against this
backdrop, large language models (LLMs), such as
GPT, present a promising avenue for augmenting
or supporting expert analysis, offering new
opportunities to enhance the rigor and efficiency of
Q-matrix development.

2  Purpose

This study evaluates GPT-4’s capacity to identify
skills and validate Q-matrices against a content
expert—designed gold standard across Number,
Algebra, Geometry, and Data and Chance. Q-
matrix design requires more than simple skill
matching, demanding analysis of interactions,
hierarchies, cognitive load, and item context. We
examine whether GPT-4 can meet these demands
as a scalable, cost-effective aid to expert
assessment design. This study addresses the
following research questions:

RQ1: What prompt strategies enable GPT-4 to
accurately map cognitive skills to test items?

RQ2: How stable are its Q-matrices across repeated
prompts?

RQ3: How does GPT-40’s performance vary across
different error types (skill addition and skill
swapping)?

3 Sample

This study uses the TIMSS 2007 Grade 7
Mathematics Released Items with an expert-
defined Q-matrix for 89 publicly available items
(Johnson et al., 2013) approved by NCES to
strengthen the generalizability and relevance of its
findings in large-scale educational research.

4 Methodology

A three-part framework was employed to refine
methods for generating and validating Q-matrix
skill mappings for TIMSS mathematics items.
First, two prompt templates were designed: one to
construct Q-matrix entries for all 89 items and
another to evaluate existing matrices for errors,
each targeting a distinct cognitive mapping task.
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Second, we assessed agreement on the number
of skills per item by comparing GPT estimates with
counts from the content expert gold standard. We
also tested four prompt configurations to gauge
their effect on Q-matrix accuracy, contrasting a full
version containing all optimization elements with
simplified versions that excluded skill descriptions,
expert-role instruction, or procedural constraints.

Third, we evaluated the reliability of a single
fixed prompt by generating 20 independent item-
by-skill mappings and measuring consistency
across runs. This framework offers a rigorous basis
for understanding how prompt design and
refinement influence the precision and diagnostic
quality of automated Q-matrix construction in
educational assessment research.

4.1 Prompt Design

We refined prompt structures with a subset of 10
TIMSS items, then applied the finalized versions to
all 89 items to generate Q-matrix entries. Because
submitting all items at once exceeded the token
limit, each was provided individually with its
prompt and image.

Two prompts were developed: one to generate
an independent Q-matrix and another for
validation. Both returned JSON-formatted outputs
containing the item identifier, the corresponding Q-
matrix entry, the number of skills identified, and a
brief rationale for each skill selection.

For wvalidation, a Q-matrix entry with an
intentional error was presented, and GPT was
asked to judge its accuracy and produce a corrected
mapping for the item. The validation output also
included a one-sentence explanation of the chosen
skills, and a one-sentence justification for agreeing
or disagreeing with the provided Q entry for the
item.

4.2 Testing Prompt Strategies

To evaluate the impact of wvarious prompt
optimization strategies, we compared GPT-
generated Q-matrices with and without these
enhancements, holding all other conditions
constant to isolate the effects of prompt structure.
Each prompt variant produced a distinct Q-matrix,
which was benchmarked against a content expert-
Q matrix.

Four prompt configurations were evaluated for
their effect on Q-matrix accuracy. (See Table 1)
The full prompt included all optimization elements
for constructing an 89-item, nine-skill matrix.

Other versions removed detailed skill descriptions,
omitted the instruction assigning an expert role, or
removed all the procedural constraints, which

Method Status Description
Used all prompt

Full Promot techniques to produce

(P1) p Kept All | the final version for an
89-item, 9-skill Q-
matrix.

Detailed descriptions
. . of each skill (Taken

Skill Details Removed | from the TIMSS

(P2) .
technical
documentation).
Onmitted the
instruction: “You are a

Providing a content expert in 7th-

Role (P3) Removed grade Mathematics
assessment in the
United States.”
Eliminated procedural
rules about task limits,

Procedural .

. content-domain

Constraints | Removed . .

(P4) mapping, leaving only
the high-level task
description.

Evaluation F1-score comparisons agamst

. expert-designed Q-matrix at the

Metrics .

skill level.

Table 1: Framework for Prompt Engineering
Strategies in Q-Matrix Generation.

provided guidance on selecting a primary skill,
adding additional skills, and interpreting graphs
and shapes, leaving only the core task
specification.

This evaluation framework allowed systematic
identification of prompt configurations and their
impact on accuracy and informing best practices.
Performance was assessed using F1 scores, with
precision and recall calculated at the overall and
skill level against the content expert-designed Q-
matrix.

4.3 Number of Required Skills

A Q-matrix maps assessment items to the
cognitive skills needed for their solution. After
defining skills from learning objectives, each
item is reviewed to determine how many are
required. Using the same expert-defined skills,
GPT estimated this count, and we compared its
results with expert judgments using intraclass
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correlation (ICC) to assess agreement on item
complexity. Treating each item—skill decision
(i.e., whether an item is linked to a given skill;
coded 0/1)

4.4 Repeated Prompt Reliability

LLMs can map assessment items to cognitive
skills, yet their outputs may fluctuate across
identical runs, raising concerns about the
reliability of Q-matrices in cognitive diagnostic
models. To evaluate this, we tested temporal
stability by administering the same prompt to
GPT twenty times and calculating
Krippendorft’s alpha (Krippendorft, 2018). This
statistic measures the degree of agreement
among multiple coders or iterations beyond
chance and accommodates various data types,
including nominal scales. It was appropriate here
because the entire binary skill vector (for
example, 100100000) was treated as a single
nominal category. This approach provided an
estimate of consistency across repeated
mappings and the robustness of GPT-generated
Q-matrices.

4.5 Q-Matrix Error Detection Using Add
and Swap Conditions

To assess GPT’s ability to detect and correct
errors in skill mappings, we used two procedures
called Add and Swap (Table 2). Both began with
the expert Q-matrix for each TIMSS item; 74 of
89 items involved a single skill, offering a clear
test case. GPT received the skill definitions,
learning objectives, detailed prompt, and a PNG
of the item.

In the Add condition, a randomly selected
extra skill was appended to the correct mapping
to create an altered entry. GPT evaluated
agreement or disagreement with the provided Q-
matrix entry, identified the appropriate skill
pattern for the item, and offered a rationale when
its judgment differed. In the Swap condition, one
correct skill was replaced with an unrelated
alternative, and GPT assessed the substitution,
stated agreement or disagreement, and proposed
the correct skill or set of skills.

GPT’s recommendations were compared with
the content-expert mappings, and accuracy was
assessed with F1 scores. Illustrative examples
and procedural details for both conditions are
presented in Table 2.

Condition | Purpose Procedure Mlustrative
Example

Add Evaluate GPT Example: For
GPT’s reviewed an | a geometry
ability to augmented | item, the
identify and | skill set expert
discard containing | selected only
unnecessary | one Skill 6. The
skills in Q- | unnecessary | Q-matrix
matrix element and | listed Skills 6
mappings. determined | and 1; GPT

whether to | removed Skill
retain or 1, retaining
remove it Skill 6 in line
before with the
producing expert

the final mapping.
mapping.

Swap Examine For each Example: In a
GPT’s (mostly number item,
capacity to | single-skill) | the correct
identify and | item, the Skill 1 was
correct an correct skill | swapped for
entirely was Skill 5; GPT
different swapped removed Skill
(incorrect) with an 5and
skill. unrelated reinstated

one; GPT Skill 1.
reviewed
the
materials
and
proposed
the
appropriate
skill(s).
Table 2: Procedures for Error Detection (Add and
Swap)
5 Results

This section presents findings on the accuracy,
reliability, and interpretability of Q-matrices
generated by GPT. We report performance across
prompt strategies, agreement on the number of
skills per item, detection of Q-Matrix errors, and
stability across repeated runs, highlighting how
prompt design influenced outputs.

5.1 Prompt Optimization

Each prompt produced a distinct Q-matrix, which
was evaluated against a content expert—designed
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Q-matrix using F1, precision, and recall. Table 1
summarizes the prompt-engineering strategies, and
Table 3 reports their effects on accuracy and partial
credit. The Full Prompt (P1) yielded the highest
performance, with an overall F1 of 0.83 and a
partial-credit mean of 0.82. P2 (No Skill Details)
achieved an F1 of 0.78 and a partial-credit mean of
0.76, while P3 (No Role Assignment) showed an
F1 0f 0.78 and a partial-credit mean of 0.81. P4 (No
Constraints) produced the largest decline, with an
F1 of 0.77 and a partial-credit mean of 0.80. F1
measured exact agreement, whereas partial-credit
scores reflected overlap; the two metrics were
similar because most items targeted a single skill.
The relatively high partial-credit scores for P3 and
P4 suggest that, although omitting these prompting
techniques preserved the identification of the
primary skill, it reduced the detection of secondary

Skill P1 P2 P3 P4
Skill 1: Whole 0.85 0.71 | 0.67 | 0.86
Numbers &
Integers

Skill 2:
Fractions,
Decimals &
Percents

Skill 3: Ratios
& Proportions
Skill 4: Patterns
Skill 5:
Expressions,
Equations &
Functions

Skill 6: Lines,
Angles and
Shapes

Skill 7:
Measurement
Skill 8:
Location &
Movement
Skill 9: Data
and Chance
Full Sample F1

Mean Partial-
Credit Score

0.91 091 092 | 0.95

0.81 0.80 | 0.80 | 0.67

0.67
0.96

1.00
1.00

0.86
0.96

0.50
0.88

0.77 0.74 | 0.78 | 0.88

0.88 0.50 | 0.67 | 0.80

0.68 0.55 | 0.55 | 0.60

0.93 0.80 | 0.81 | 0.81

0.83
0.82

0.78
0.76

0.78
0.81

0.77
0.80

Table 3: F1 Score & Partial Credit Score by Skill.

or supporting skills when key prompt elements
were excluded.

Across individual skills, the strongest accuracy
was observed for Expressions, Equations, and
Functions (F1 = 0.88-1.00) and Fractions,

Decimals, and Percents (F1 > 0.90 across all
prompts). Data and Chance also showed
consistently high performance (F1 = 0.80-0.93).
By contrast, Location and Movement had the
lowest scores (0.55-0.68), and Patterns displayed
substantial variation across prompts (0.50-1.00).
Measurement showed moderate sensitivity to
prompt design, ranging from 0.50 to 0.88. An F1
value of 1 indicates perfect agreement between the
prompt-generated Q-matrix and the content
expert—designed Q-matrix. These findings suggest
that skills such as Expressions, Equations, and
Functions and Fractions, Decimals, and Percents
are relatively stable across prompts, whereas skills
like Location and Movement and Patterns, which
often involve graphs and diagrams, are more
susceptible to changes in prompt constraints.

5.2 Number of Skills Agreement

A Q-matrix links assessment items to the cognitive
skills required for their solution. After defining
skills from the learning objectives, each item was
reviewed to determine the number of unique skills
involved—a task that is both challenging and
essential for accurate measurement. GPT analyzed
the items and estimated the total number of skills
required, and this estimate was compared with the
corresponding counts from the content expert—
designed Q-matrix. Agreement between GPT and
the content expert—designed Q-matrix was
evaluated using intraclass correlation (ICC) to
assess item complexity. Treating each item—skill
decision (0 = not linked, 1 = linked) as a subject
and the two raters (content expert—designed Q-
matrix and GPT; N = 2,047) as judges, single-rater
ICCs (ICC1/2/3) were 0.72 (95% CI [0.70, 0.74]).
When ratings were averaged, ICCs (ICC1k/2k/3k)
increased to 0.84 (95% CI [0.82, 0.85]). Since
many of the items involved only a single skill,
future work should examine Q-matrices containing
a larger proportion of items that require multiple
skills.

5.3 Temporal Stability of Q-Matrix Skill
Mappings

Large language models (LLMs) can map
assessment items to cognitive skills, but their
outputs may vary across identical runs, making
reliability a critical concern for Q-matrices in
cognitive diagnostic models (CDMs). To examine
temporal stability, we administered the same
prompt to GPT 20 times and computed
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Krippendorff’s alpha (Krippendorft, 2018). GPT
demonstrated strong consistency, with mean alphas
of 0.86 (exact match), 0.94 (Hamming distance),
and 0.93 (Jaccard similarity). Sixty-five of 89 items
(73%) were identical across runs, most remaining
items exceeded a = 0.80, and only a few showed
lower agreement (exact-match o as low as 0.11).
Items with the poorest reliability were multipart
questions in which extensive information was
presented on a single page, suggesting that reading
complex PNGs with many components may impair
repeatability. Item-level results can be provided
upon request.

5.4 Detecting Q-Matrix Error (Add and
Swap Conditions)

GPT showed strong performance in detecting and
correcting altered skill assignments in both the Add
and Swap conditions (Table 4). Accuracy was
highest for Expressions, Equations and Functions
and Data and Chance. Moderate scores, with F1
values ranging from 0.75 to 0.90, were observed
for Whole Numbers and Integers (Skill 1),
Fractions, Decimals and Percents (Skill 2), Ratios

Skill | Description Add Swap
| Whole Numbers & 0.85 0.86
Integers
) Fractions, Decimals, & 0.90 0.88
Percents
Ratios & Proportions 0.81 0.82
4 Patterns 0.61 0.67
Expressions,
> Equations, & Functions 0.96 0.97
6 Lines, Angles, & 0.77 078
Shapes
7 Measurement 0.75 0.82
Location & Movement | 0.55 0.56
9 Data and Chance 0.87 0.88
Overall F1 0.78 0.80

Table 4: Performance in Detecting and
Correcting Altered Skill Assignments.

and Proportions (Skill 3), Lines, Angles and Shapes
(Skill 6), and Measurement (Skill 7).

Lower accuracy emerged for Patterns (Skill 4)
and Location and Movement (Skill 8), where F1
scores were consistently below 0.70 across both
conditions. For Lines, Angles and Shapes,
performance was also slightly reduced, which may

reflect current challenges in interpreting graphs,
diagrams, and geometric figures. These areas may
benefit from  enhanced  visual-processing
capabilities or additional expert review to ensure
reliable skill detection. Overall, the findings
indicate that GPT can accurately identify and
correct altered skill assignments, particularly in
numerical and algebraic contexts, while tasks
involving geometry and spatial reasoning may
require refined prompts or closer collaboration
with human experts.

6 Conclusion

This study demonstrates that GPT-4 can
meaningfully support the cognitively demanding
task of Q-matrix construction and validation. When
provided with explicit skill definitions, structured
prompts, and item images, GPT achieved high
agreement with content expert mappings (F1 =
0.83) and substantial reliability across repeated
runs (o = 0.86). It also detected and corrected
injected errors in the add and swap conditions with
moderate to strong accuracy, particularly in
number and algebra content domains. Performance
declined for geometry and spatial-reasoning items,
suggesting that visual interpretation remains a
limiting factor. Items with heavy reading loads,
multi-part content presented on a single page, or
complex graphical information in PNG format also
showed weaker repeatability, indicating that such
features may challenge the model’s consistency.
Overall, these findings suggest that large language
models, when carefully prompted, can offer
scalable and replicable assistance in skill
identification, complementing rather than
replacing expert judgment. Future research should
focus on refining methods for items with extensive
text, multi-part layouts, or intricate visual elements
to improve performance in these areas.
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Appendix A: Skills, Content Domains

Skills Content
Domain
1 — Whole Numbers & Integers; Numbers
2 — Fractions, Decimals, &
Numbers
Percents
3 — Ratios & Proportions Numbers
4 — Patterns Algebra
5-— E)fpress10ns, Equations, & Algebra
Functions
6 — Lines, Angles, & Shapes Geometry
7 — Measurement Geometry
8 — Location & Movement Geometry
. o Data and
9 — Data Analysis & Probability Chance
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