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Abstract 

This study evaluates GPT-4 for generating 
and validating Q-matrices for TIMSS 
mathematics items. Using expert mappings 
as benchmarks, we examined prompt 
design, temporal stability, and error 
detection. The model showed strong 
accuracy, substantial reliability, and 
effective recovery of altered skills, 
supporting its role as a scalable aid to 
cognitive diagnosis. 

1 Background  

Identifying the cognitive skills required to solve 
specific test items is a foundational task in 
educational assessment. This function is not only 
critical for ensuring the validity of test 
interpretations but is especially central to the 
development and validation of Q-matrices in 
Cognitive Diagnosis Models (CDMs; Rupp et al., 
2010).  

A carefully constructed Q-matrix aligns each 
assessment item with the exact constellation of 
cognitive skills or knowledge components required 
for its solution. When the identification of these 
skills is flawed or incomplete, the resulting model 
can misrepresent learners’ proficiencies, 
undermining one of the principal strengths of 
cognitive diagnostic models, their capacity to 
deliver precise, actionable feedback. Consequently, 
the delineation of content and associated skills 
emerges as a critical, yet cognitively demanding, 
dimension of assessment design. Against this 
backdrop, large language models (LLMs), such as 
GPT, present a promising avenue for augmenting 
or supporting expert analysis, offering new 
opportunities to enhance the rigor and efficiency of 
Q-matrix development. 

2 Purpose  

This study evaluates GPT-4’s capacity to identify 
skills and validate Q-matrices against a content 
expert–designed gold standard across Number, 
Algebra, Geometry, and Data and Chance. Q-
matrix design requires more than simple skill 
matching, demanding analysis of interactions, 
hierarchies, cognitive load, and item context. We 
examine whether GPT-4 can meet these demands 
as a scalable, cost-effective aid to expert 
assessment design. This study addresses the 
following research questions: 
RQ1: What prompt strategies enable GPT-4 to 
accurately map cognitive skills to test items?  
RQ2: How stable are its Q-matrices across repeated 
prompts? 
RQ3: How does GPT-4o’s performance vary across 
different error types (skill addition and skill 
swapping)? 

3 Sample   

This study uses the TIMSS 2007 Grade 7 
Mathematics Released Items with an expert-
defined Q-matrix for 89 publicly available items 
(Johnson et al., 2013) approved by NCES to 
strengthen the generalizability and relevance of its 
findings in large-scale educational research. 

4 Methodology 

A three-part framework was employed to refine 
methods for generating and validating Q-matrix 
skill mappings for TIMSS mathematics items. 
First, two prompt templates were designed: one to 
construct Q-matrix entries for all 89 items and 
another to evaluate existing matrices for errors, 
each targeting a distinct cognitive mapping task. 
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Second, we assessed agreement on the number 
of skills per item by comparing GPT estimates with 
counts from the content expert gold standard. We 
also tested four prompt configurations to gauge 
their effect on Q-matrix accuracy, contrasting a full 
version containing all optimization elements with 
simplified versions that excluded skill descriptions, 
expert-role instruction, or procedural constraints. 

Third, we evaluated the reliability of a single 
fixed prompt by generating 20 independent item-
by-skill mappings and measuring consistency 
across runs. This framework offers a rigorous basis 
for understanding how prompt design and 
refinement influence the precision and diagnostic 
quality of automated Q-matrix construction in 
educational assessment research. 

4.1 Prompt Design    

We refined prompt structures with a subset of 10 
TIMSS items, then applied the finalized versions to 
all 89 items to generate Q-matrix entries. Because 
submitting all items at once exceeded the token 
limit, each was provided individually with its 
prompt and image.  

Two prompts were developed: one to generate 
an independent Q-matrix and another for 
validation. Both returned JSON-formatted outputs 
containing the item identifier, the corresponding Q-
matrix entry, the number of skills identified, and a 
brief rationale for each skill selection.  

For validation, a Q-matrix entry with an 
intentional error was presented, and GPT was 
asked to judge its accuracy and produce a corrected 
mapping for the item. The validation output also 
included a one-sentence explanation of the chosen 
skills, and a one-sentence justification for agreeing 
or disagreeing with the provided Q entry for the 
item.  

4.2 Testing Prompt Strategies 

To evaluate the impact of various prompt 
optimization strategies, we compared GPT-
generated Q-matrices with and without these 
enhancements, holding all other conditions 
constant to isolate the effects of prompt structure.  
Each prompt variant produced a distinct Q-matrix, 
which was benchmarked against a content expert-
Q matrix.  

Four prompt configurations were evaluated for 
their effect on Q-matrix accuracy. (See Table 1) 
The full prompt included all optimization elements 
for constructing an 89-item, nine-skill matrix. 

Other versions removed detailed skill descriptions, 
omitted the instruction assigning an expert role, or 
removed all the procedural constraints, which 

provided guidance on selecting a primary skill, 
adding additional skills, and interpreting graphs 
and shapes, leaving only the core task 
specification.  

This evaluation framework allowed systematic 
identification of prompt configurations and their 
impact on accuracy and informing best practices. 
Performance was assessed using F1 scores, with 
precision and recall calculated at the overall and 
skill level against the content expert-designed Q-
matrix. 

4.3 Number of Required Skills 

A Q-matrix maps assessment items to the 
cognitive skills needed for their solution. After 
defining skills from learning objectives, each 
item is reviewed to determine how many are 
required. Using the same expert-defined skills, 
GPT estimated this count, and we compared its 
results with expert judgments using intraclass 

Method Status Description 

Full Prompt 
(P1) Kept All 

Used all prompt 
techniques to produce 
the final version for an 
89-item, 9-skill Q-
matrix. 

Skill Details 
(P2) Removed 

Detailed descriptions 
of each skill (Taken 
from the TIMSS 
technical 
documentation). 

Providing a 
Role (P3) Removed 

Omitted the 
instruction: “You are a 
content expert in 7th-
grade Mathematics 
assessment in the 
United States.” 

Procedural 
Constraints 
(P4) 

Removed 

Eliminated procedural 
rules about task limits, 
content-domain 
mapping, leaving only 
the high-level task 
description. 

Evaluation 
Metrics 

F1-score comparisons against 
expert-designed Q-matrix at the 
skill level. 

Table 1:  Framework for Prompt Engineering 
Strategies in Q-Matrix Generation. 

 

 

224



3 
 
 

correlation (ICC) to assess agreement on item 
complexity. Treating each item–skill decision 
(i.e., whether an item is linked to a given skill; 
coded 0/1) 

4.4 Repeated Prompt Reliability 

LLMs can map assessment items to cognitive 
skills, yet their outputs may fluctuate across 
identical runs, raising concerns about the 
reliability of Q-matrices in cognitive diagnostic 
models. To evaluate this, we tested temporal 
stability by administering the same prompt to 
GPT twenty times and calculating 
Krippendorff’s alpha (Krippendorff, 2018). This 
statistic measures the degree of agreement 
among multiple coders or iterations beyond 
chance and accommodates various data types, 
including nominal scales. It was appropriate here 
because the entire binary skill vector (for 
example, 100100000) was treated as a single 
nominal category. This approach provided an 
estimate of consistency across repeated 
mappings and the robustness of GPT-generated 
Q-matrices. 

4.5 Q-Matrix Error Detection Using Add 
and Swap Conditions 

To assess GPT’s ability to detect and correct 
errors in skill mappings, we used two procedures 
called Add and Swap (Table 2). Both began with 
the expert Q-matrix for each TIMSS item; 74 of 
89 items involved a single skill, offering a clear 
test case. GPT received the skill definitions, 
learning objectives, detailed prompt, and a PNG 
of the item.  

In the Add condition, a randomly selected 
extra skill was appended to the correct mapping 
to create an altered entry. GPT evaluated 
agreement or disagreement with the provided Q-
matrix entry, identified the appropriate skill 
pattern for the item, and offered a rationale when 
its judgment differed. In the Swap condition, one 
correct skill was replaced with an unrelated 
alternative, and GPT assessed the substitution, 
stated agreement or disagreement, and proposed 
the correct skill or set of skills.  

GPT’s recommendations were compared with 
the content-expert mappings, and accuracy was 
assessed with F1 scores. Illustrative examples 
and procedural details for both conditions are 
presented in Table 2. 

 

5 Results 

This section presents findings on the accuracy, 
reliability, and interpretability of Q-matrices 
generated by GPT. We report performance across 
prompt strategies, agreement on the number of 
skills per item, detection of Q-Matrix errors, and 
stability across repeated runs, highlighting how 
prompt design influenced outputs. 

5.1 Prompt Optimization 

Each prompt produced a distinct Q-matrix, which 
was evaluated against a content expert–designed 

Condition Purpose Procedure Illustrative 
Example 

Add Evaluate 
GPT’s 
ability to 
identify and 
discard 
unnecessary 
skills in Q-
matrix 
mappings. 

GPT 
reviewed an 
augmented 
skill set 
containing 
one 
unnecessary 
element and 
determined 
whether to 
retain or 
remove it 
before 
producing 
the final 
mapping. 

Example: For 
a geometry 
item, the 
expert 
selected only 
Skill 6. The 
Q-matrix 
listed Skills 6 
and 1; GPT 
removed Skill 
1, retaining 
Skill 6 in line 
with the 
expert 
mapping. 

Swap Examine 
GPT’s 
capacity to 
identify and 
correct an 
entirely 
different 
(incorrect) 
skill. 

For each 
(mostly 
single-skill) 
item, the 
correct skill 
was 
swapped 
with an 
unrelated 
one; GPT 
reviewed 
the 
materials 
and 
proposed 
the 
appropriate 
skill(s). 

Example: In a 
number item, 
the correct 
Skill 1 was 
swapped for 
Skill 5; GPT 
removed Skill 
5 and 
reinstated 
Skill 1. 

Table 2: Procedures for Error Detection (Add and 
Swap) 
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Q-matrix using F1, precision, and recall. Table 1 
summarizes the prompt-engineering strategies, and 
Table 3 reports their effects on accuracy and partial 
credit. The Full Prompt (P1) yielded the highest 
performance, with an overall F1 of 0.83 and a 
partial-credit mean of 0.82. P2 (No Skill Details) 
achieved an F1 of 0.78 and a partial-credit mean of 
0.76, while P3 (No Role Assignment) showed an 
F1 of 0.78 and a partial-credit mean of 0.81. P4 (No 
Constraints) produced the largest decline, with an 
F1 of 0.77 and a partial-credit mean of 0.80. F1 
measured exact agreement, whereas partial-credit 
scores reflected overlap; the two metrics were 
similar because most items targeted a single skill. 
The relatively high partial-credit scores for P3 and 
P4 suggest that, although omitting these prompting 
techniques preserved the identification of the 
primary skill, it reduced the detection of secondary 

or supporting skills when key prompt elements 
were excluded. 

Across individual skills, the strongest accuracy 
was observed for Expressions, Equations, and 
Functions (F1 = 0.88–1.00) and Fractions, 

Decimals, and Percents (F1 > 0.90 across all 
prompts). Data and Chance also showed 
consistently high performance (F1 = 0.80–0.93). 
By contrast, Location and Movement had the 
lowest scores (0.55–0.68), and Patterns displayed 
substantial variation across prompts (0.50–1.00). 
Measurement showed moderate sensitivity to 
prompt design, ranging from 0.50 to 0.88. An F1 
value of 1 indicates perfect agreement between the 
prompt-generated Q-matrix and the content 
expert–designed Q-matrix. These findings suggest 
that skills such as Expressions, Equations, and 
Functions and Fractions, Decimals, and Percents 
are relatively stable across prompts, whereas skills 
like Location and Movement and Patterns, which 
often involve graphs and diagrams, are more 
susceptible to changes in prompt constraints. 

5.2 Number of Skills Agreement  

A Q-matrix links assessment items to the cognitive 
skills required for their solution. After defining 
skills from the learning objectives, each item was 
reviewed to determine the number of unique skills 
involved—a task that is both challenging and 
essential for accurate measurement. GPT analyzed 
the items and estimated the total number of skills 
required, and this estimate was compared with the 
corresponding counts from the content expert–
designed Q-matrix. Agreement between GPT and 
the content expert–designed Q-matrix was 
evaluated using intraclass correlation (ICC) to 
assess item complexity. Treating each item–skill 
decision (0 = not linked, 1 = linked) as a subject 
and the two raters (content expert–designed Q-
matrix and GPT; N = 2,047) as judges, single-rater 
ICCs (ICC1/2/3) were 0.72 (95% CI [0.70, 0.74]). 
When ratings were averaged, ICCs (ICC1k/2k/3k) 
increased to 0.84 (95% CI [0.82, 0.85]). Since 
many of the items involved only a single skill, 
future work should examine Q-matrices containing 
a larger proportion of items that require multiple 
skills. 

5.3 Temporal Stability of Q-Matrix Skill 
Mappings  

Large language models (LLMs) can map 
assessment items to cognitive skills, but their 
outputs may vary across identical runs, making 
reliability a critical concern for Q-matrices in 
cognitive diagnostic models (CDMs). To examine 
temporal stability, we administered the same 
prompt to GPT 20 times and computed 

Skill  P1 P2 P3 P4 
Skill 1: Whole 
Numbers & 
Integers 

0.85 0.71 0.67 0.86 

Skill 2: 
Fractions, 
Decimals & 
Percents 

0.91 0.91 0.92 0.95 

Skill 3: Ratios 
& Proportions 

0.81 0.80 0.80 0.67 

Skill 4: Patterns 0.67 1.00 0.86 0.50 
Skill 5: 
Expressions, 
Equations & 
Functions 

0.96 1.00 0.96 0.88 

Skill 6: Lines, 
Angles and 
Shapes 

0.77 0.74 0.78 0.88 

Skill 7: 
Measurement 

0.88 0.50 0.67 0.80 

Skill 8: 
Location & 
Movement 

0.68 0.55 0.55 0.60 

Skill 9: Data 
and Chance 

0.93 0.80 0.81 0.81 

Full Sample F1 0.83 0.78 0.78 0.77 
Mean Partial-
Credit Score 

0.82 0.76 0.81 0.80 

Table 3:  F1 Score & Partial Credit Score by Skill. 
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Krippendorff’s alpha (Krippendorff, 2018). GPT 
demonstrated strong consistency, with mean alphas 
of 0.86 (exact match), 0.94 (Hamming distance), 
and 0.93 (Jaccard similarity). Sixty-five of 89 items 
(73%) were identical across runs, most remaining 
items exceeded α = 0.80, and only a few showed 
lower agreement (exact-match α as low as 0.11). 
Items with the poorest reliability were multipart 
questions in which extensive information was 
presented on a single page, suggesting that reading 
complex PNGs with many components may impair 
repeatability. Item-level results can be provided 
upon request.  

5.4 Detecting Q-Matrix Error (Add and 
Swap Conditions) 

GPT showed strong performance in detecting and 
correcting altered skill assignments in both the Add 
and Swap conditions (Table 4). Accuracy was 
highest for Expressions, Equations and Functions 
and Data and Chance. Moderate scores, with F1 
values ranging from 0.75 to 0.90, were observed 
for Whole Numbers and Integers (Skill 1), 
Fractions, Decimals and Percents (Skill 2), Ratios 

and Proportions (Skill 3), Lines, Angles and Shapes 
(Skill 6), and Measurement (Skill 7).  

Lower accuracy emerged for Patterns (Skill 4) 
and Location and Movement (Skill 8), where F1 
scores were consistently below 0.70 across both 
conditions. For Lines, Angles and Shapes, 
performance was also slightly reduced, which may 

reflect current challenges in interpreting graphs, 
diagrams, and geometric figures. These areas may 
benefit from enhanced visual-processing 
capabilities or additional expert review to ensure 
reliable skill detection. Overall, the findings 
indicate that GPT can accurately identify and 
correct altered skill assignments, particularly in 
numerical and algebraic contexts, while tasks 
involving geometry and spatial reasoning may 
require refined prompts or closer collaboration 
with human experts. 

6 Conclusion  

This study demonstrates that GPT-4 can 
meaningfully support the cognitively demanding 
task of Q-matrix construction and validation. When 
provided with explicit skill definitions, structured 
prompts, and item images, GPT achieved high 
agreement with content expert mappings (F1 = 
0.83) and substantial reliability across repeated 
runs (α ≈ 0.86). It also detected and corrected 
injected errors in the add and swap conditions with 
moderate to strong accuracy, particularly in 
number and algebra content domains. Performance 
declined for geometry and spatial-reasoning items, 
suggesting that visual interpretation remains a 
limiting factor. Items with heavy reading loads, 
multi-part content presented on a single page, or 
complex graphical information in PNG format also 
showed weaker repeatability, indicating that such 
features may challenge the model’s consistency. 
Overall, these findings suggest that large language 
models, when carefully prompted, can offer 
scalable and replicable assistance in skill 
identification, complementing rather than 
replacing expert judgment. Future research should 
focus on refining methods for items with extensive 
text, multi-part layouts, or intricate visual elements 
to improve performance in these areas. 
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Appendix A: Skills, Content Domains 
 

 

 

Skills Content 
Domain 

1 – Whole Numbers & Integers;  Numbers 
2 – Fractions, Decimals, & 
Percents Numbers 

3 – Ratios & Proportions Numbers 
4 – Patterns Algebra 
5 – Expressions, Equations, & 
Functions Algebra 

6 – Lines, Angles, & Shapes Geometry 
7 – Measurement Geometry 
8 – Location & Movement Geometry 

9 – Data Analysis & Probability Data and 
Chance 
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