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Abstract

School district boundaries in the United States
are not just lines on a map; they are mecha-
nisms that perpetuate deep-seated educational
inequities by directly linking school funding
to local property wealth. We present a com-
putational framework for optimizing district
boundaries to improve resource equity while
reducing racial and economic segregation. This
study designs a novel two-stage algorithmic
process that uses maximally compact plan ini-
tialization from spatial clustering and iterative
refinement using Markov Chain Monte Carlo
(MCMC) optimization. This hybrid approach
can reduce required iterations by more than
90%, relative to traditional methods, and allows
systematic variation of different numbers of
districts. Hard constraints including contiguity,
minimum enrollment thresholds, and infrastruc-
ture capacity limits are still enforced. Optimiza-
tion targets three Theil indices measuring prop-
erty tax capacity disparities, racial segregation,
and economic segregation. Across 42 states,
results show average state-level improvements
of 66.6% in tax-base equality, 47.6% reduction
in racial segregation, and 65.0% decrease in
economic segregation.

1 Introduction

Public school district borders determine both ed-
ucational access and taxing jurisdictions, directly
impacting resources available to students. Because
a significant portion of school district funding is
derived from local property taxes, these bound-
aries create systematic disparities that correlate
with racial and economic segregation. While states
compensate through progressive funding formulas,
high-wealth districts can more easily raise addi-
tional local revenue (Kenyon and Munteanu, 2021).
As a result, these school systems can easily increase
their budgets beyond what lower-wealth districts
can match. Nationwide, property taxes reportedly
comprised 65% of local revenues in 2021, but can

be much higher in some states (Common Core of
Data (CCD), n.d). Given the connection between
property values and neighborhood affordability, the
students that lose out tend to be those from low-
income backgrounds.

The problem also has a troubling racial dimen-
sion. This funding system is layered on top of gen-
erations of policies and government practices that
have created and entrenched racial and economic
segregation in housing markets (Kuhn et al., 2018).
At different phases of America’s past and present,
this has included redlining and racially discrim-
inatory mortgage lending; court enforcement of
racially restrictive covenants; government-funded
construction of segregated housing developments;
exclusionary zoning policies; and unfair property
assessment, among other forms of discrimination.
These factors have shaped both the racial compo-
sition of neighborhoods and the property values in
the taxing jurisdictions from which school districts
raise local dollars.

The result is a map of highly segregated resi-
dential communities that demonstrate stark eco-
nomic divides (Reardon and Weathers, 2024). Left
unmitigated, the legacies of discriminatory poli-
cies have the potential to intersect to create, shape,
and enforce new patterns of segregation (Reardon
and Owens, 2014). This problem is further reified
by the ways in which school district borders func-
tion: both as geographic areas that are home to
district students, and as the taxing jurisdictions that
yield their local funding (Stadler and Abbott, 2024).
Because these boundaries determine the students
served by a district and the local funding available
for its schools, they function to separate students
from resources—and from each other.

Furthermore, students from low-income back-
grounds, and with other needs and challenges have
demonstrably higher funding needs than students
from high-income families (Jackson et al., 2015;
Jackson and Mackevicius, 2024). While state aid
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can and should be used as a tool to provide addi-
tional support to students with higher needs, this
goal is undermined when these funds are eaten up
in pursuit of achieving basic funding parity with
high wealth districts. This burdens state education
budgets with compensating for existing inequity,
rather than achieving equity (Gartner, 2023). Given
the high degree of alignment between segregated
school districts, patterns of residential segregation
in the communities they serve, and funding divides,
one option is to consider drawing better school
district borders.

2 Theoretical Development

This paper presents the first national-scale com-
putational framework for school redistricting by
adapting methods from legislative redistricting. We
draw on MCMC methods used to efficiently ex-
plore high-dimensional solution spaces for bound-
ary realignment (McCartan and Imai, 2023; Fifield
et al., 2014), but introduce additional constraints
not often considered in legislative contexts, includ-
ing property tax capacity, infrastructure limitations,
and multi-dimensional segregation measures.

Our work builds upon a small but growing body
of literature that has explored educational bound-
ary optimization from different but complementary
perspectives. The framework designed by Gillani
(2023) found that intradistrict segregation could be
reduced while maintaining travel times. However,
this approach is not designed to address the interdis-
trict dynamics where nearly two-thirds of all racial
segregation occurs (Owens, 2016). Simko (2024)
advanced this line of inquiry through a detailed
case study of New Jersey, highlighting the impor-
tance of crossing district lines to integrate school
systems. These valuable analyses centered on de-
mographic integration, with logistical constraints
like student capacity and travel times, while keep-
ing the number of districts constant. Our research
extends this conversation by shifting both the ge-
ographic scale and the central objective. We also
expand the solution space, exploring configurations
that vary district counts from 25% to 175% of cur-
rent levels, in doing so, significantly expanding
potential equity gains.1

This study adopts fiscal equity as a central opti-
mization goal, a dimension not observed in prior

1For some, the immediate reaction may be that such
changes are unrealistic. However, our core approach posits
that considering drastic changes to district counts is necessary
to unlock the full potential for equity gains.

demographic-focused studies. The primary contri-
bution of this approach is the integration of parcel-
level property tax assessment data, which allows
us to directly model the tax base of each poten-
tial district. To complement this, we also incor-
porate Small Area Income and Poverty Estimates
(SAIPE), creating a multi-dimensional economic
profile of each proposed district. By constructing
boundaries around both fiscal equity and demo-
graphic balance, our model is designed to create
districts with equitable and sustainable local rev-
enue capacity, a vital consideration given that prop-
erty taxes constitute, on average, 40% of all district
funding (CCD n.d.).

Although changing school district boundaries
can be politically challenging, policymakers may
be unaware of the extent of existing divides or
the degree to which they can be mitigated. Fur-
ther, there is compelling evidence of efficiency sav-
ings from consolidating districts (Duncombe and
Yinger, 2007; Dodson and Garrett, 2008). In light
of this, several states, including Arkansas, Penn-
sylvania, and New Jersey have recently undertaken
efforts to examine the feasibility of district mergers
and other boundary changes. This algorithmic ap-
proach provides an objective framework to supply
legislators with evidence of the potential benefits
of redistricting, including fiscal savings, deconcen-
trated poverty, and integrated school systems.

3 Problem Formulation

Optimization of school district boundaries repre-
sents a high-dimensional combinatorial problem
where geographic units are assigned to districts
while satisfying multiple objectives and constraints.
Unlike legislative redistricting, school redistricting
must simultaneously consider property tax capac-
ity, demographic integration, and infrastructure ca-
pacity. This section formalizes the mathematical
framework underlying our optimization approach.

3.1 Multi-Objective Optimization Framework

Census tracts serve as atomic geographic units that
must be assigned to districts. Let G = {1, 2, ..., n}
represent the set of tracts in a state, and let D =
{1, 2, ..., k} represent the set of districts, where k
varies systematically. Each tract i ∈ G must be
assigned to exactly one district d ∈ D, creating a
partition of the geographic space.

Optimization seeks to minimize an objective
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function combining three equity dimensions:

f(D) = w1Tval(D) +w2Tracial(D) +w3Tecon(D)
(1)

where Tval measures disparities in per-pupil prop-
erty tax capacity, Tracial captures multigroup racial
segregation, and Tecon quantifies economic segre-
gation based on binary poverty status. Default
weights are set to w1 = 3.0, w2 = 1.0, and
w3 = 1.0, reflecting a priority on addressing dis-
parities in property tax capacity while maintaining
focus on integration objectives.

3.2 Mathematical Formulation of Theil
Indices

3.2.1 Theil’s T for Disparities in Property Tax
Capacity

The Theil T-index captures inequality in assessed
property values per pupil across districts:

Tfunding =
∑

i

(
pi ·

xi
µ

· log
(
xi
µ

))
(2)

where:

• pi = ni/N , the proportion of total students in
district i

• ni = number of children in district i

• N = total children in the state

• xi = assessed property value per pupil in dis-
trict i

• µ = state mean assessed value per pupil

This formula directly measures the capacity to raise
local revenue, as property assessments form the tax
base for school funding. The index equals zero
when all districts have identical per-pupil property
values, and increases with greater inequality.

3.2.2 Multigroup Theil’s H for Racial
Segregation

For racial integration, we employ the multigroup
entropy-based Theil H-index:

Tracial = (Estate − Eweighted)/Estate (3)

where:

• Estate = −∑
r(πr · log(πr)), the entropy of

racial composition at state level

• πr = proportion of racial group r in total state
enrollment

• Eweighted =
∑

i(pi · Ei), the enrollment-
weighted average of district entropies

• Ei = −∑
r(πir ·log(πir)), the entropy within

district i

• πir = proportion of group r in district i

The index ranges from 0 (perfect integration, where
every district mirrors state demographics) to 1
(complete segregation). This multigroup formu-
lation avoids the limitations of binary indices and
captures the full complexity of racial composition.

3.2.3 Binary Theil’s H for Economic
Segregation

Economic segregation uses a similar entropy-based
approach with two groups:

Teconomic = (Estate − Eweighted)/Estate (4)

Applied to binary poverty status, as defined by
SAIPE, this measure captures the concentration
of economic disadvantage across districts. The bi-
nary formulation is appropriate, given the policy
relevance of poverty thresholds for federal program
eligibility.

3.3 Constraint Specifications
1. Geographic Contiguity: Each district d must

form a connected component under rook adja-
cency (shared edges, not just vertices).

2. Minimum Population Threshold: Each dis-
trict must contain at least m children, where
m = 0.5 × min (current district resident
school-aged population in each state).

3. Infrastructure Capacity: For each district d:∑
(children in tracts assigned to d) ≤ 1.25×∑
(capacity d).

4 Data Architecture

4.1 Geographic Foundation
Census tracts serve as the geographic units for our
simulation approach, providing a standardized na-
tionwide framework with sufficient granularity to
capture local-level variation. We use 2020 census
tract boundaries from the Census Bureau, approx-
imately 80,000 tracts. These polygons define our
building blocks for spatial optimization.

Tract adjacency relationships are established us-
ing rook contiguity, including only shared tract
boundaries rather than vertices. The resulting adja-
cency matrix forms the foundation for contiguity
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constraint checking and move generation during op-
timization. Disconnected components (e.g., islands,
water boundaries) are connected via minimum dis-
tance stitching between nearest tract centroids to
ensure graph connectivity.

4.2 Property Valuation Data

Property valuation data is provided by the Center
for Geospatial Solutions at the Lincoln Institute
of Land Policy, pre-aggregated at the relevant ge-
ographic units of analysis. This dataset provides
total assessed property values for each unit from
the most recent year available, which directly de-
termine local education revenue capacity. Unlike
market values or sale prices, assessed values reflect
the actual tax base available to districts.2

4.3 Demographic Data

4.3.1 Demographic Composition
Demographic data come from two primary sources.
Racial and ethnic composition for five categories
(White non-Hispanic, Black, Native American,
Asian, and Hispanic/Latino) are obtained from
the American Community Survey 5-year estimates
(2018–22) for the population ages 5–17. Economic
status, specifically child poverty rates, are derived
from the Census Bureau’s Small Area Income and
Poverty Estimates (SAIPE) program. This ap-
proach captures all school-age children regardless
of enrollment status.

Our methodology is designed to be robust to
the noise introduced to tract-level counts by the
Census’s Disclosure Avoidance System (DAS). As
documented by Kenny and et al. (2021), this noise
is non-systematic for census tracts. By aggregating
multiple tracts to form each simulated district, our
models leverage the law of large numbers, substan-
tially diminishing the effects of random error at our
scale of analysis.

4.3.2 Enrollment Capacity Estimation
School capacity constraints are derived from the
historical maximum enrollment for each school
from the past decade, bounding practical capac-
ity without new construction.3 This sets an upper

2Our model optimizes for the potential tax base (assessed
property value) rather than actual tax revenues, as we do not
incorporate current tax rates. The assumption is that a large-
scale reorganization would likely necessitate a recalibration
of tax rates, making the underlying tax base the more stable
and relevant metric for long-term fiscal capacity.

3Enrollment data are used only as a proxy for existing
infrastructure capacity. We geocode schools to census tracts

bound for the number of children that can be as-
signed to a simulated district, ensuring that redis-
tricting respects facility constraints.

4.4 Data Integration
4.4.1 School District Mapping
Existing school district boundaries require careful
processing due to the complex structure of Ameri-
can educational governance. We include only dis-
tricts with assessment, demographic, and poverty
status data for more than 75 percent geographic
coverage by the underlying census tracts.4 Simi-
larly, states with less than 75 percent geographic
coverage are excluded from our analysis. Those
included have on average, 92.6 percent coverage.

Where elementary and secondary districts over-
lap, elementary districts are assigned to their cor-
responding unified or secondary district to avoid
double-counting. In cases where only elementary
or secondary districts exist, we use those bound-
aries and their corresponding data directly. This
process yields approximately 10,500 school dis-
tricts with sufficient demographic, property assess-
ment, and spatial data for analysis.

5 Algorithmic Framework

The optimization framework employs a two-stage
approach: spatial clustering for initialization, simu-
lated annealing for refinement, followed by system-
atic variation across district counts. This section
details the technical implementation of each stage
and the mechanisms for constraint enforcement.

5.1 Stage 1: SKATER Initialization
Optimization begins with SKATER (Spatial
’K’luster Analysis by Tree Edge Removal), which
generates geographically coherent initial district
configurations through constrained graph partition-
ing (AssunÇão et al., 2006). By starting from
maximally compact configurations rather than ran-
dom assignments, we reduce the required iterations
for convergence from hundreds of thousands (typi-
cal in redistricting literature) to approximately 2.5

and use the maximum historical enrollment for each school
to estimate available seats. School-age children counts from
the census are used for demographic and population metrics.
We multiply the capacity estimate by 1.25 as a conservative
buffer, recognizing that not all resident children enroll in pub-
lic schools.

4Coverage here refers to the spatial overlap of census tracts
containing the necessary data (property assessment, demo-
graphic, and poverty) with existing school district boundaries.
A small number of states and some rural areas exhibit higher
rates of missing data and are thus excluded.
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times the number of census tracts in each state.
This reduction in computational expense allows
us to complete the first school system redistricting
analysis that is national in scope.

SKATER constructs a minimum spanning tree
from the tract adjacency graph using edge weights
based on scaled geographic coordinates. Each re-
sulting partition forms a contiguous district, elim-
inating the need for post-hoc contiguity repair
that plagues random initialization approaches often
used in MCMC optimization.

5.1.1 Capacity Repair Mechanism
When SKATER produces initial configurations that
violate the capacity constraint, a repair mechanism
attempts to restore feasibility before optimization.
For each violating district, tracts are evaluated for
reassignment to neighboring districts with available
capacity. The repair process attempts up to 50
chained explorations of 2,000 iterations each.

5.1.2 Status Quo Fallback Strategy
In cases where the SKATER initialization does
not satisfy our constraints, and the chained repair
strategy is unable to resolve the issue, we imple-
ment a fallback initialization approach. The system
instead starts the optimization engine from the con-
figuration of census tracts most similar to the status
quo configuration of school districts. Because cen-
sus tracts are not conterminous with existing school
districts, we assign each tract to its geographic ma-
jority overlap district. This fallback mechanism
ensures that the optimization can proceed, resolv-
ing the issue of invalid starting points.

5.2 Stage 2: MCMC Optimization

Following SKATER initialization, MCMC-based
simulated annealing refines boundaries to minimize
our previously defined objective function, optimiz-
ing on our criteria while maintaining all constraints.
At each iteration, the algorithm selects a tract for
potential reassignment. Border tracts are identified
and preferentially selected, as they represent the
only tracts that can change districts while main-
taining contiguity. The selected tract is proposed
for reassignment to a randomly chosen adjacent
district.

The algorithm starts with a high temperature, its
willingness to accept worse solutions, and it grad-
ually becomes more selective over time, reducing
this acceptance rate by 1 percent after each step,
using the cooling formula T (t+1) = T (t)× 0.99.

Figure 1: Example plans generated by each model in
and around Cincinnati.

Beginning with acceptance to any move (T0 = 1.0),
the process continues until it has made 2.5 times as
many successful changes as there are geographic
units in the redistricting plan. Each move validates
compliance with the constraints outlined in section
3.3.

5.3 Three Model Variants

The algorithmic framework is applied to two dis-
tinct redistricting models and a programmatic
county-level merge, each offering different trade-
offs between optimization flexibility and implemen-
tation feasibility.

5.3.1 Model 1: Blank-Slate Redistricting
(Tract-Level Optimization)

This model uses census tracts as atomic units,
providing maximum flexibility to create optimal
boundaries. This model can completely reconfig-
ure districts without regard to existing boundaries.
It establishes the theoretical frontier for equity im-
provements.

5.3.2 Model 2: County-Based Redistricting
This model implements a programmatic, county-
based consolidation, assigning all tracts within
each county to a single district. The constraints
of section 3.3 are relaxed for illustrative purposes.
This simulation serves as a baseline to show what
simple administrative consolidation achieves ver-
sus algorithmic optimization.

5.3.3 Model 3: Redistricting by Merger
(Optimized District Consolidation)

This model uses existing school districts as atomic
units, preserving current boundaries while allowing
mergers. The same SKATER-optimization frame-
work operates on a district adjacency graph rather
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than tract-level data. This provides more politically
feasible solutions that maintain district identities
while still pooling resources.

Both optimization models undergo systematic
variation of current district counts. Each produces
tract-to-district assignments with complete Theil
index calculations, enabling direct comparison of
equity impacts. The tract-level model demonstrates
maximum theoretical improvements. The con-
solidation model balances feasibility with equity
gains.5 The county benchmark validates the value
of optimization over simple administrative bound-
aries. Figure 2 compares the per pupil tax base
equity improvements in Maryland.

Figure 2: Per pupil tax base equity improvements in
Maryland across models.

6 Output Specification

Each configuration for each model includes com-
plete unit-to-district assignment vectors alongside a
comprehensive metric suite: the three Theil indices
(tax capacity, race, and poverty status), Polsby-
Popper compactness scores, and additional met-
rics. This structure enables systematic comparison
across varied numbers of districts, revealing that
changing district count can improve resource dis-
tribution. The format remains consistent across all
three models, which facilitates direct comparison
of their relative performance.

6.1 Pareto Frontier Construction
Rather than selecting a single "optimal" solution,
we identify the set of Pareto-efficient configura-
tions that represent different trade-offs among com-

5A potential critique is that aggregating smaller geographic
units (like tracts or districts) into larger ones will mathemati-
cally reduce measured segregation by definition, as it averages
over local variations. While this is true, the magnitude of the
reduction achieved through our optimization far exceeds what
would be expected from simple aggregation, demonstrating
the value of purposeful boundary drawing.

peting objectives. A proposal is included only if
no other configuration performs better on all objec-
tives simultaneously. The Pareto selection evalu-
ates across four criteria: minimizing the three Theil
indices and maximizing geographic compactness
(Polsby-Popper).

The frontier reveals critical trade-offs that can-
not be resolved through optimization alone. Some
configurations achieve significant funding equity
but maintain racial segregation, while others in-
tegrate diverse populations at the cost of funding
disparities.

6.2 Configuration Selection

While the Pareto frontier presents all efficient op-
tions, practical implementation requires selecting a
single configuration. Normalized scores are com-
bined using policy-determined weights that reflect
our optimization metrics and compactness. The
default weights prioritize tax base equity while
maintaining focus on integration objectives and ge-
ographic coherence. The weighted score for each
configuration equals the sum of each normalized
measure multiplied by its corresponding weight.
The configuration with the lowest weighted score
is selected as the recommended plan for each state.
This selection is performed only among Pareto-
efficient configurations, ensuring the chosen plan
is not dominated by any alternative.

The framework’s key strength is its flexibility to
accommodate different policy priorities. Stakehold-
ers can adjust weights to explore how different pri-
orities affect optimal configurations. This approach
transforms a complex multi-objective optimization
problem into a structured decision process. Rather
than claiming to identify a single "best" solution,
we provide a menu of high-quality options and a
transparent mechanism for selection based on ex-
plicit policy priorities.

7 Results and Conclusion

Our strategic boundary optimization across 42
states reveals substantial potential for improving
educational equity. Figure 3 demonstrates that the
three models demonstrate that purposeful redraw-
ing of district lines can significantly reduce prop-
erty tax disparities in every state while simultane-
ously decreasing racial and economic segregation
between districts.6 As referenced in Table 1, the

6Figures detailing Theil improvements across states for
racial and economic segregation can be found in Appendix A.
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Figure 3: Theil Index improvement for property tax disparities across 42 states. This figure spans the full width of
the page to show detail across all states.

Model Property Tax
Equity Improvement

Racial Integration
Improvement

Economic Integration
Improvement

Blank-Slate Redistricting 66.6% 47.6% 65.0%
County-Based Redistricting 39.0% 40.7% 57.2%
Redistricting by Merger 63.0% 48.2% 54.6%

Table 1: Equity Improvements by Redistricting Model. Note: Applied to 42 states. County-based results reflect 37
states that would see boundary changes.

Blank-Slate approach achieves average improve-
ments of 66.6% in tax-base equality, 47.6% re-
duction in racial segregation, and 65.0% decrease
in economic segregation. Most notably, these im-
provements can be achieved purely through bound-
ary changes, without any student or family having
to move. The Merger model offers a potentially
more politically feasible alternative, keeping dis-
trict identities intact while still delivering meaning-
ful improvements.

While our local search approach cannot guar-
antee global optimality, the framework provides
policymakers with concrete evidence of redistrict-
ing’s potential benefits. The primary barrier to im-
plementation remains political feasibility, as com-
munities maintain strong attachments to existing

districts. Additionally, using rook contiguity rather
than actual road networks and historical enrollment
maximums for capacity estimates may not capture
all practical constraints like transportation barriers
or current infrastructure conditions. Future work
could address these limitations by incorporating
dynamic demographic modeling, actual transporta-
tion networks, and mechanisms to predict post-
redistricting property value adjustments.

Despite these constraints, this study establishes
the first national-scale framework for school redis-
tricting. By demonstrating that significant equity
improvements are technically achievable across di-
verse state contexts, we provide an objective foun-
dation for policy discussions about using bound-
ary change as a tool for educational equity. The
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flexibility of our multi-objective optimization ap-
proach allows stakeholders to explore trade-offs
transparently, transforming a complex challenge
into a structured decision process grounded in em-
pirical evidence.
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Figure 4: Theil Index improvement for racial segregation across 42 states.

Figure 5: Theil Index improvement for economic segregation across 42 states.
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