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Abstract

We developed and validated a scalable LLM-
based labeler for classifying student cognitive
engagement in GenAI tutoring conversations.
Higher engagement levels predicted improved
next-item performance, though further research
is needed to assess distal transfer and to disen-
tangle effects of continued tutor use from true
learning transfer.

1 Introduction

Student engagement is a key predictor of learning
outcomes, but not all engagement is equally bene-
ficial. Behavioral engagement (e.g., time-on-task,
number of tasks completed) captures participation,
whereas cognitive engagement refers to the quality
of mental effort devoted to sense-making. Theory
and evidence consistently link cognitively produc-
tive behaviors–such as self-explaining, elaborat-
ing, and drawing inferences–to superior learning,
beyond surface-level participation alone (Sinatra
et al., 2015; Greene and Azevedo, 2010).

Measuring cognitive engagement at
scale remains challenging. Conventional
learning-analytics behavioral measures (e.g.,
time on task, retry rates) are convenient and
can correlate with learning outcomes. But they
provide limited insight into the metacognitive and
inferential processes that underpin knowledge
abstraction, integration and transfer (Winne,
2020). By contrast, text-based GenAI tutoring
produces rich discourse traces of students’ ques-
tions, explanations, and reasoning. These traces
enable rubric-guided text mining—including
LLM-as-judge approaches—to operationalize
cognitive engagement directly within authentic
tutoring conversations.

The present research has two main aims:

1. At-scale labeling. To develop and validate a
reliable and scalable procedure for labeling

student cognitive engagement in GenAI math
tutoring conversations.

2. Impact evaluation. To measure the impact
of different levels of sustained cognitive en-
gagement on learning outcomes, focusing on
near transfer to subsequent performance on
the same skill. (Distal transfer to mixed-skill
practice or assessments is of interest but out
of scope.)

2 Background

The ICAP framework for cognitive engagement.
The ICAP framework is a central account of how
the depth of cognitive engagement shapes learn-
ing. This framework outlines four levels of en-
gagement—Interactive » Constructive » Active »
Passive—and predicts deeper learning as learners
progress from passive activities (e.g., listening,
reading) to active behaviors (e.g., highlighting/un-
derlining, copying steps, selecting answers), to con-
structive generation (e.g., self-explaining, making
inferences, creating concept maps/diagrams), and
ultimately to interactive co-construction of knowl-
edge with a peer (e.g., dialogue where partners
question, explain, and build on each other’s contri-
butions) (Chi and Wylie, 2014).

A central prediction of the ICAP framework
is that constructive engagement facilitates robust
knowledge abstraction and transfer. The interactive
level refers to dyads in which both peers engage
constructively, generating and amplifying learning
benefits for both participants. This contrasts with,
for instance, a passive-constructive dyad, in which
one partner generates constructive ideas while the
other primarily listens or affirms without recipro-
cally elaborating or extending the reasoning. In the
latter case, the constructive participant might ben-
efit from the dialogue, but the passive participant
is predicted to benefit minimally, if at all (Chi and
Menekse, 2015).
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The ICAP framework was initially introduced to
characterize the affordances of learning activities
(Chi, 2009) and has since been used extensively to
analyze engagement in peer-to-peer contexts (e.g.,
(Vosniadou et al., 2023; Stump et al., 2017; Chi
et al., 2017; Hsiao et al., 2022; Chi et al., 2018)).
Empirical applications typically (a) compare activ-
ity types hypothesized to induce different engage-
ment levels, or (b) use labor-intensive, human cod-
ing of classroom observations/transcripts to iden-
tify ICAP behaviors in situ. These approaches clar-
ified which activities tend to promote deeper learn-
ing, but they pose two limitations for large-scale
analytics: the unit of analysis is often coarse (activ-
ity episodes rather than specific turns of talk), and
expert-level human annotation does not scale.

Adapting ICAP to student–tutor GenAI con-
versations. Text-based GenAI tutoring changes
both the data available for analysis and the inter-
actional context. On the data side, it produces
detailed discourse traces—student turns and tutor
responses—that can be examined at the level of
individual contributions rather than entire activi-
ties. This granularity makes it possible to apply
rubric-guided text mining approaches to authentic
tutoring conversations, enabling scalable labeling
methods (e.g., LLM-as-judge).

On the interactional side, GenAI tutoring differs
fundamentally from peer collaboration. Whereas
the ICAP framework’s notion of interactive engage-
ment emphasizes co-construction among peers of
similar ability, GenAI tutoring is structured as a
novice–expert dialogue. The GenAI tutor is, by
design, a constructive partner with expert-level do-
main knowledge. What varies is how the learner
contributes to the dialogue.

Although much attention has been given to tutor
behaviors—such as eliciting reasoning, correcting
misconceptions, and calibrating when to provide or
withhold information (VanLehn, 2011; Koedinger
et al., 2012; Graesser et al., 2012; Chi et al.,
2001)—the more fundamental issue for whether
and how much learners benefit from intelligent tu-
toring may be how learners engage in these dia-
logues: whether they participate passively, actively,
or constructively.

Present approach and study roadmap. Study 1
adapts the ICAP framework for the student–GenAI
tutor setting by developing and validating a rubric-
guided, LLM-as-judge procedure for labeling stu-
dent cognitive engagement at scale. Study 2 then

examines how within-learner variation in cogni-
tive engagement relates to learning, as measured
by near transfer to subsequent performance on the
next item attempt on the same skill (knowledge
component). These analyses use student panel data
(multiple tutoring conversations and correspond-
ing item attempts per learner) and employ models
with rich fixed effects to remove confounds due to
time-invariant aspects of student ability, variation
in skill difficulty, and local practice context.

3 Study 1: At-scale labeling

3.1 Methods

Operationalization. We extended the ICAP
framework to student–tutor (novice-expert) dia-
logues by classifying student contributions as pas-
sive, active, or constructive (see Table 1 for a sum-
mary of operational definitions of these levels). In
brief, passive turns reflect perfunctory acknowl-
edgments of the tutor’s information (e.g., yes/no
answers) or answer-mining behavior. Active turns
typically involve the learner mechanically follow-
ing procedural guidance from the tutor without
contributing new information. And constructive
turns involve the learner adding new information
by asking targeted questions, explaining reasoning,
making inferences, or engaging in other behaviors
that deepen the conversation and show ownership
of learning.

Expert coding. Two human experts applied this
rubric to a non-random coverage sample of con-
versations (n = 106), selected to reflect a di-
verse range of student and tutor discourse behav-
iors. While each student turn in a conversation
can be classified independently, the expert-labeling
effort focused on holistically classifying the domi-
nant pattern of student cognitive engagement across
their turns in a conversation (see examples in Table
A1). After the experts labeled the conversations, we
measured inter-rater reliability, resolved disagree-
ments, and refined the rubric until high agreement
was achieved.

LLM-as-judge labeling. We then converted the
final rubric to an LLM-as-judge prompt (Table A2)
and used OpenAI’s Batch API (model snapshot
= gpt-4o-2024-05-13) to machine-label both the
human-labeled threads and a larger random set. We
iterated on the prompt (e.g., few-shot examples,
instruction refinements) until suitable human/LLM
agreement was reached.
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PASSIVE ACTIVE CONSTRUCTIVE INTERACTIVE
The Tutor fully drives
the conversation, with the
Learner passively follow-
ing along, guessing, min-
ing for the answer, or
providing perfunctory
inputs (e.g., ‘yes’, ‘no’,
‘idk’, ‘help’)

The Tutor drives the con-
versation, but the Learner
is actively involved.
This often looks like the
Learner mechanically
following the Tutor’s
procedural guidance
but without contribut-
ing new information or
without demonstrating
deeper exploration /
questioning.

The Learner takes own-
ership of the problem
solving by asking tar-
geted questions, explain-
ing their thinking, mak-
ing inferences, general-
izations or connections to
other material, or gener-
ally building on the Tu-
tor’s guidance.

Only applies in peer-
to-peer situations
where learners are co-
constructing knowledge.
Does not apply when
learners interact with an
(ostensibly) “all knowing”
other / GenAI tutor.

Table 1: Operational definitions of student cognitive engagement in GenAI tutoring conversations (adapted from
ICAP framework).

Inter-rater agreement
For human-human and human–LLM rater pairs

N threads Both raters agree
Counts

Krippendorff’s α
TP TN FP FN

Human expert #1 vs. #2
Passive 107 93% 16 83 2 6 0.755

Active 107 85% 28 63 12 4 0.667

Constructive 107 88% 40 54 4 9 0.754

Human expert #1 vs. LLM-judge
Passive 344 90% 142 167 23 12 0.796

Active 344 87% 84 214 25 21 0.688

Constructive 344 94% 56 266 6 16 0.796

Table 2: Summary of human/human and human/LLM-judge agreement.

3.2 Results

Inter-rater agreement is shown in Table 2. Over-
all agreement exceeded 84% for both human/hu-
man and human/LLM pairs. Krippendorff’s alpha
ranged from 0.67 to 0.80, where values above 0.6
indicate good agreement and above 0.8 indicate
very strong agreement. Human/LLM agreement
was slightly higher than human/human agreement,
suggesting the LLM judge performed comparably
to human experts, if not slightly better.

3.3 Discussion

The LLM-as-judge approach for labeling student
cognitive engagement from tutoring discourse tran-
scripts achieved expert-level agreement while out-
putting structured data and rationales. This en-
ables both high-throughput labeling and down-
stream analytics (e.g., linking cognitive engage-
ment to outcomes), complementing traditional

learning-analytics pipelines that rely on click-
stream data and behavioral measures.

4 Study 2: Impact evaluation

4.1 Data and samples

The global sample from which we derived our
causal impact analysis samples is summarized in
Table 3. Specifically, we curated Khan Academy
platform telemetry data and school district adminis-
trative data for students in six US public school
districts who had access to Khanmigo – Khan
Academy’s GenAI tutor – for the 2024-2025 SY.
The platform data were limited to students (n =
9,129) with non-zero use of Khanmigo as a math
tutor during the Fall and early Spring semesters
(2024-08-01 to 2025-03-01). For these students,
we curated question performance for all Khan
Academy math items attempted during the eligi-
bility window, totalling nearly 9 million question
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attempts, along with the conversation text of all
Khanmigo threads that took place on those items
(about 200K threads). We ran all of the tutoring
conversations through a series of machine label-
ers – including the cognitive engagement labeler
described above – to extract discourse features.1

4.2 Within-learner panel creation

To estimate near transfer while controlling for prior
skill knowledge, we required sustained (multi-turn)
threads and at least one prior and one subsequent
attempt on the same knowledge component. We
created two learner-level panels: Panel 1 includes
learners with at least one qualifying thread in each
of Passive/Active/Constructive; Panel 2 includes
learners with qualifying threads in at least two of
the three levels. This yields roughly 200 learn-
ers/5k threads (Panel 1) and 2k learners/35k threads
(Panel 2).

Table 4 presents a descriptive summary of the
panels. The rate of Constructive threads is low –
an inherent property of these data. The analysis
threads are by definition ‘sustained’ / multi-turn
conversations: on average, there are 5 back-and-
forth turns between the learner and the GenAI Tutor.
The vast majority (>90%) of threads started before
the learner attempted the math question (i.e., non-
punitive pre-submission help); hence we expect
answer correctness to be biased upwards on these
items. Further, there is a non-zero rate (variable by
student cognitive engagement) at which the Tutor
(undesirably) reveals the final answer to the prob-
lem, which further biases correctness upwards. For
knowledge transfer analysis, we examine learner
performance on the next skill item. Ideally, that
next item would not involve use of the Tutor. De-
riving a sample with that restriction is not feasible
with these data (given that about two-thirds of treat-
ment items are followed by Tutor use). We adjust
for this property of the data in the causal impact
analyses; but there remains a limitation that what
appears to be a treatment effect that generalizes to
future performance could be explained (in part, or
in full) by the future Tutor use.

1Other labelers included deterministic labelers for linguis-
tic complexity, reading ease, and sentiment; an LLM-judge
labeler for whether the tutor revealed the final answer without
the student doing the work first; and an embedding-based ma-
chine labeler for the Tutor’s degree of repetitiveness during a
dialogue.

4.3 Statistical methods
To examine whether deeper cognitive engagement
is associated with improved learning, we modeled
student performance on the next item practiced
within the same skill. Specifically, we fit a fixed
effects logistic regression:

logit Pr(Ys,k,i+1 = 1) = β1 Engagements,k,i+

αstudent(s)+

αskill(k)+

αnext_item_had_tutor(s,k,i+1)+

αprev_item_had_tutor(s,k,i−1)+

αprev_item_credited(s,k,i−1)+

αincoming_skill_mastery(s,k)+

αtutoring_conversation_length(i)+

εs,i

(1)

This specification models the probability that
learner (s) answers the subsequent item (i+ 1) on
the same skill (k) correctly as a function of their
observed engagement with the GenAI tutor on the
current item (i). The key treatment variable is the
level of cognitive engagement (Passive, Active, or
Constructive) exhibited by the student during the
tutoring exchange. By estimating a logistic regres-
sion with an extensive set of fixed effects (α terms),
the model seeks to isolate within-student, within-
skill variation in performance that is plausibly at-
tributable to differences in cognitive engagement
level.

The inclusion of student fixed effects (αstudent)
accounts for all stable (time-invariant) learner char-
acteristics that might otherwise confound the esti-
mates, such as baseline ability, motivation, or de-
mographic background. Skill fixed effects (αskill)
absorb persistent differences in the inherent diffi-
culty of skills, ensuring that comparisons are not
biased by heterogeneity in task complexity. Addi-
tional item-level controls capture contextual fea-
tures of practice: whether the previous or subse-
quent item involved tutor use, whether the prior
item was credited as correct, the learner’s incom-
ing mastery estimate for the skill, and the num-
ber of conversational interactions within the thread.
Together, these fixed effects substantially reduce
between-student and between-skill variation, nar-
rowing the identifying variation to comparisons
within the same learner–skill trajectory.

The implicit assumption of this modeling ap-
proach is that, conditional on the fixed effects and
included controls, variation in observed engage-
ment level is orthogonal to other unobserved deter-
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N
students

N question
attempts

N question
attempts

with tutor use

% attempts
with tutor use

%
off topic

%
passive

%
active

%
constructive

Total 9,129 8,853,983 211,229 2.4 5.5 72.2 21.6 0.7

By district
District 1 5,834 7,971,201 173,806 2.2 5.9 74.5 19.1 0.5
District 2 1,987 268,099 12,516 4.7 4.3 62.5 32.1 1.2
District 3 257 128,332 7,403 5.8 2.5 60.7 35.5 1.3
District 4 500 108,028 6,743 6.2 1.2 63.4 33.9 1.4
District 5 216 211,523 6,202 2.9 7.1 61.5 30.0 1.3
District 6 335 166,800 4,559 2.7 1.7 58.0 35.4 5.0

Table 3: Summary of the global sample and by-district breakdown.

Thread Characteristics Surrounding Context

% Correct Tutor Use

ICAP Level Learners Threads
%

of Total
Threads

Skills
In a

Completed
Task

Median
Position
in Task

Median
Thread
Length

Median
User
Word
Count

Thread
Started
Before

Question
Attempt

Tutor
Revealed

Final
Answer

Prev
Item

Current
Item

Next
Item

Prev
Item

Current
Item

Next
Item

Panel 1: Each student has all three P/A/C levels
Passive 191 2,257 47% 705 70% 2 5 1.0 94% 20% 71% 74% 74% 57% 100% 64%
Active 191 2,215 46% 689 80% 2 5 4.0 94% 13% 76% 83% 79% 59% 100% 66%
Constructive 191 375 8% 271 82% 3 5 10.5 95% 6% 80% 87% 82% 61% 100% 62%

Total 191 4,847 100% 954 75% 2 5 2.0 94% 16% 74% 79% 77% 58% 100% 65%

Panel 2: Each student has at least two of the three P/A/C levels
Passive 2,116 23,278 68% 1,221 65% 2 5 1.0 93% 18% 69% 70% 69% 51% 100% 61%
Active 2,158 10,548 31% 1,158 74% 2 5 4.0 93% 11% 72% 81% 75% 53% 100% 61%
Constructive 253 503 1% 343 81% 3 5 9.2 92% 7% 79% 82% 81% 56% 100% 57%

Total 2,168 34,329 100% 1,362 68% 2 5 1.5 93% 15% 70% 73% 71% 52% 100% 61%

Table 4: Descriptive summary of analysis samples (Panel 1: learners with all three engagement levels; Panel 2:
learners with at least two engagement levels). Includes thread characteristics, tutor interaction patterns, correctness,
and tutor use on adjacent items.

minants of performance on the next item. In other
words, after holding constant learner ability, skill
difficulty, prior correctness, and local tutoring con-
text, remaining differences in next-item correctness
are attributed to differences in engagement mode.
While this strengthens the rigor of inference rela-
tive to pooled or random-effects models (Angrist &
Pischke, 2009), the design remains observational:
unmeasured time-varying factors such as transient
motivation, fatigue, or classroom context could still
bias estimates.

4.4 Results

The regression results are reported in Table 5. We
show cumulative stepwise addition of fixed effects
to highlight how the treatment estimates changed
as the amount of within-variation was controlled.
Figure 1 shows the estimated marginal contrasts for
the full/saturated regression model for each sample
after converting the log-odds estimates to proba-
bilities. We observe a significant stair-step effect:

learners are more likely to answer the next skill
item correctly (by 4-5 percentage points) after a
sustained Active tutoring conversation, relative to
sustained Passive, and even more likely ( 10ppt)
after sustained Constructive.

Note that while the results trended toward Con-
structive > Active, the estimate for this contrast
was not statistically significant. The base rate of
constructive threads is very low, resulting in an im-
precise measure, as seen in the wide confidence
intervals in Figure 1.

4.5 Discussion

Our analyses indicate that constructive cognitive en-
gagement with a GenAI tutor is associated with sub-
stantively better performance on subsequent skill
practice, compared to passive engagement, high-
lighting the promise of scalable, log-based evalu-
ation of tutor effects. Still, given the nonrandom
treatment, low base rates, and outcome scope, we
temper causal claims and detail limitations and
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Table 5: Fixed-effect logistic regression results for the impact of cognitive engagement on knowledge transfer (i.e.,
correctness on next item within skill).

Student Panel 1 Student Panel 2

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Sustained Active
0.29 ***
[0.14, 0.44]

0.30 **
[0.07, 0.52]

0.27 *
[0.05, 0.49]

0.27 *
[0.05, 0.49]

0.24 *
[0.02, 0.46]

0.20 +
[-0.03, 0.43]

0.20
[-0.05, 0.45]

0.30 ***
[0.23, 0.37]

0.32 ***
[0.25, 0.40]

0.29 ***
[0.22, 0.36]

0.28 ***
[0.21, 0.35]

0.27 ***
[0.20, 0.35]

0.24 ***
[0.17, 0.32]

0.27 ***
[0.19, 0.34]

Sustained Constructive
0.51 **

[0.18, 0.84]
0.67 *

[0.13, 1.21]
0.65 *

[0.11, 1.18]
0.63 *

[0.10, 1.17]
0.61 *

[0.08, 1.15]
0.55 +

[-0.01, 1.10]
0.72 +

[-0.02, 1.46]
0.49 ***
[0.21, 0.77]

0.71 ***
[0.35, 1.08]

0.67 ***
[0.31, 1.04]

0.65 ***
[0.28, 1.02]

0.63 ***
[0.26, 1.00]

0.57 **
[0.19, 0.94]

0.61 **
[0.21, 1.01]

Model statistics
Num. Obs. 4,706 3,408 3,408 3,408 3,408 3,408 3,403 33,098 32,022 32,022 32,022 32,022 32,022 32,015
R2 0.069 0.178 0.199 0.202 0.232 0.232 0.240 0.087 0.145 0.163 0.164 0.168 0.198 0.199
R2 Adj. 0.000 -0.105 -0.085 -0.083 -0.054 -0.054 -0.058 -0.007 -0.001 0.017 0.018 0.021 0.051 0.050
R2 Within 0.004 0.004 0.004 0.004 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.002 0.002 0.002
R2 Within Adj. 0.003 0.003 0.003 0.003 0.002 0.001 0.001 0.002 0.003 0.003 0.002 0.002 0.002 0.002
RMSE 0.41 0.41 0.40 0.40 0.40 0.39 0.39 0.43 0.42 0.41 0.41 0.41 0.40 0.40

Fixed effects included (stepwise)
FE: student (kaid) X X X X X X X X X X X X X
FE: skill_id X X X X X X X X X X X X
FE: next_item_on_skill_used_km X X X X X X X X
FE: prev_item_on_skill_used_km X X X X X X
FE: prev_item_on_skill_is_credited X X X X
FE: skill_fpm_level_before X X X X
FE: n_interactions X X

Notes: + p < .10, ∗ p < .05, ∗∗ p < .01, ∗ ∗ ∗ p < .001. Each cell shows the coefficient (top) and 95% CI (bottom).
Highlighted columns are fully saturated specifications, per Equation 1.

Figure 1: Estimated marginal contrasts from fixed ef-
fects regressions for the probability of answering the
next skill item correct following ’sustained’ Active or
Constructive cognitive engagement relative to Passive
engagement.

threats to validity.
Observational design. The treatment is learn-

ers’ observed engagement level, not random assign-
ment. Despite rich fixed effects that account for
time-invariant within-learner and within-skill prop-
erties, unobserved confounds remain possible (e.g.,
transient motivation).

Subsequent tutor use. About two-thirds of
treated items are followed by tutor use on the next
item. Models adjust for this, but residual bias is
plausible; what looks like transfer may partly re-
flect continued support.

Base-rate imbalance. Constructive threads are
rare (<1%), limiting precision and external validity
across subgroups/skills.

Outcome scope. We evaluated near transfer
(next item on the same skill). Whether gains persist
to mixed-skill practice or distal assessments is left
for future work.

5 Conclusions

We developed a rubric-grounded LLM-as-judge
that can validly classify cognitive engagement in
GenAI tutor conversations at scale, enabling new
forms of learning analytics that attend to the qual-
ity of student thinking. In large-scale field data,
sustained Active and especially Constructive en-
gagement were associated with higher odds of
success on the next item in the same skill (near
transfer), even after rigorous controls. Future work
should test whether these effects extend to distal
outcomes and persist without continued tutor sup-
port. Improving tutor designs to increase construc-
tive moves is a promising path to better learning
with GenAI tutors.
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Target math
problem for
conversations
below.

Correct answers
= A, C, and E.

Student cognitive
engagement

Role Text

Active

The learner
makes a generic
help request
(passive) and then
mechanically
follows the tutor’s
procedural
guidance.

Student help

Tutor Let’s solve this together! First, what do you notice about the relationship
between the pounds of bananas and their total cost in the table? How can we
use this to find the missing values?

Student find the total cost of 1 pound
Tutor Great idea! Using the table, can you calculate how much 1 pound of bananas

costs?
Student $0.49
Tutor That’s correct! Each pound costs $0.49. How can you use the cost per pound

to find the total cost for different numbers of pounds?
Student multiply
Tutor Exactly! By multiplying the cost per pound ($0.49) by the number of pounds,

you can find the total cost. Can you try this for the options given and see
which ones fit the pattern?

Student 2 x $0.49 is 0.98
Tutor Great job! You found that 2 pounds cost $0.98. Now, try using the same

method to calculate the total cost for the other options. Which ones match
the pattern?

Constructive

The learner
summarizes the
problem, follows
the tutor’s
guidance, errs on
the first substep,
gets feedback,
retries while
explaining their
reasoning, and
then solves the
problem.

Student The table says 3 pounds would be $1.47. 5 pounds cost $2.45 and 9 pounds
cost $4.41. But we have to find the proportional relationship.

Tutor You’re doing well! To find the proportional relationship, calculate the cost
per pound by dividing the total cost by the number of pounds for each given
data point. What do you find when you do this?

Student So if I divide all of the pounds by the cost it would be 2.04 but we have to
find the actual cost every banana.

Tutor It looks like there might be a small mix-up. To find the cost per pound, you
should divide the total cost by the number of pounds, not the other way
around. Try calculating it again using this method. What do you find?

Student If I divide each of the costs by the number of pounds, it is exactly 0.49
Tutor Great! Now that you know the cost per pound is $0.49 per pound, you can

use this to check which options maintain this consistent cost. Which options
do you think match this cost per pound?

Student So A C E would be exactly like $0.49 because when I divide all of them it
would be $0.49

Tutor You’ve got it! Options A, C, and E all maintain the consistent cost of $0.49
per pound. Great work on verifying the proportional relationship! If you
have any more questions, feel free to ask.

Table A1: Example student-tutor conversations.
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Instructions
You are a Critic evaluating a Student’s cognitive engagement during a back-and-forth conversation with a Tutor. Your task is to
assess the Student’s cognitive engagement in the conversation, using the rubric provided. Think before you respond. Read the
entire conversation first; then use the rubric to provide a holistic judgment of the student’s contributions to the conversation. You
must output your evaluation as a nested JSON object as defined below.

Cognitive Engagement Rubric
Level: Constructive – The Student is actively and constructively involved in the conversation. The Student takes ownership of
problem-solving by asking targeted questions about the content, building on the Tutor’s guidance, explaining their thinking,
and/or making inferences, generalizations or connections to other material.
Rating: 8–10
Indicators:

• High-specificity help requests: The Student asks targeted questions that deepen conceptual understanding of the problem
(e.g., “Why do we use a negative sign in this equation?”, “How is a diamond different from a square?”).

• Substantive responses: The Student builds on the Tutor’s responses with further explanation, reasoning, or
problem-solving steps (e.g., “I see, we multiply here because it’s a percentage increase, not an absolute number.”).

• Deep engagement with feedback: The Student revises their approach, while also asking follow-up questions or
explaining how they modified their thinking (e.g., “I see why my approach didn’t work—so I should have used the
distributive property?”).

• Deep ownership of learning: The Student actively guides the conversation by asking insightful questions, proposing
alternative methods, or pointing out potential mistakes (e.g., “Could we also solve this using substitution?”).

Level: Active . . .

Level: Passive . . .

Level: Off-topic . . .

How to Use the Rubric:
The rubric defines behavioral indicators for four levels of cognitive engagement (off topic, passive, active, and constructive)
along a numeric scale from 1–10. Determine which level best describes the Student’s contributions to the conversation. And then
determine a numeric rating based on how well the conversation fits that level. The numeric ratings are not 1:1 with the levels: for
example, the Passive range is from 2–4 and Active is from 5–7. These numeric ranges allow room to distinguish conversations
where the Student is, for instance, exclusively Passive (rating=2) from conversations where the Student demonstrates a mixture
of Passive and Active contributions (which could be rated 3–5 depending on the mixture).

Output Format:
You must output a nested JSON object where the key is “icap” for the ICAP Framework, and the value is an object containing:

1. rating: An integer rating (1–10).

2. evidence: A numbered list of instances from the Student’s behavior in the conversation that justify the rating.

3. off_topic_count: An integer denoting the number of Student turns that are best classified as “off topic”.

4. passive_count: An integer denoting the number of Student turns that are best classified as “passive”.

5. active_count: An integer denoting the number of Student turns that are best classified as “active”.

6. constructive_count: An integer denoting the number of Student that are best classified as “constructive”.

If a type of engagement doesn’t occur, still include its object: e.g., “constructive_count: 0”. The sum total of passive_count,
active_count, and constructive_count values must equal (NEVER EXCEED) the total number of Student turns in the
conversation.

Output Example:

{
"icap": {

"rating ": 5,
"evidence ": "(1) Student provides surface -level answers. (2) Student follows

steps mechanically with no elaboration or reflection .",
"off_topic_count ": 0,
"passive_count ": 1,
"active_count ": 3,
"constructive_count ": 0

}
}

Example Scenarios [redacted few-shot prompting]

Table A2: Complete rubric and instructions for the LLM-as-judge engagement evaluator.48


