
Proceedings of the Artificial Intelligence in Measurement and Education Conference (AIME-Con) – Volume 2: Works in Progress, pages 66–70
October 27-29, 2025 ©2025 National Council on Measurement in Education (NCME)

 

 
 

Abstract 

This study compares machine learning, text 

embeddings, and large language models 

(LLMs) for generating synthetic responses 

to field test items for a social-emotional 

assessment that uses Likert-scale 

responses. Using accuracy metrics and item 

response theory (IRT) calibration, results 

show that machine learning and 

embeddings more closely mirror student 

data than LLMs. Findings highlight 

synthetic data’s promise while 

underscoring the need for continued 

validation. 

1 Introduction and Background 

Developing high quality assessment items 

requires rigorous field testing, yet this process is 

time consuming and costly. Traditional calibration 

using item response theory (IRT) typically requires 

hundreds of examinees per item to estimate 

difficulty, discrimination, and guessing parameters 

with acceptable precision. This burden is 

particularly challenging in educational settings 

where Likert-type surveys are widely used. Such 

instruments tend to measure sensitive or hard-to-

predict constructs (e.g., social-emotional skills, 

behavioral ratings) and must often pass district 

level approval for wording and focus, further 

slowing the process of field-testing. These 

constraints underscore the need for alternative 

strategies that can accelerate item validation 

without compromising psychometric rigor. 

Synthetic data has emerged as a promising 

solution for assessment developers. By generating 

artificial responses that approximate the 

distributions and relationships found in real 

datasets, researchers can reduce reliance on large-

scale human field trials. Psychometric research 

demonstrates that large language models (LLMs) 

can serve as synthetic respondents, producing item 

parameter estimates that correlate highly with those 

derived from human data, though often with 

narrower variability (Liu et al., 2025). These 

findings suggest that artificial respondents may 

augment or partially substitute for actual student 

responses in item development. 

Although LLMs provide one pathway for 

generating synthetic responses, they are not the 

only approach under investigation. A more 

traditional starting point has been machine learning 

(ML), which relies on historical student response 

data to predict responses to new items. However, 

ML models often struggle with unseen items, since 

new questions cannot be calibrated until sufficient 

student data is available. To address this limitation, 

researchers have explored text-aware methods that 

incorporate semantic information from item 

content. For example, Khan et al. (2025) 

introduced Text-LENS, which integrates text 

embeddings from a transformer encoder. This 

approach matched baseline ML performance on 

known items but substantially outperformed it 

when predicting responses to novel items (Khan et 

al., 2025). Such embedding-based methods offer a 

middle ground, more flexible than conventional 

ML yet more efficient than large-scale LLM 

simulations. 

LLM-based approaches, in contrast, provide a 

different kind of advantage. By simulating students 

across ability levels, LLMs can produce synthetic 

response distributions that reflect difficulty trends 

and distractor functioning (Benedetto et al., 2024; 

Shridhar et al., 2023). While not perfect substitutes, 

these models allow test developers to “pre-pilot” 

items at scale, discarding poor candidates before 

committing resources to costly field testing. 

ML, text embedding, and LLM approaches 

reveal a spectrum of tradeoffs. ML methods that 

rely on prior response patterns may be most 
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effective when field testing items that are 

structurally and conceptually like those previously 

administered. Text embedding may provide 

flexibility when items target new constructs within 

an existing domain, enabling models to generalize 

without extensive retraining. LLMs, while 

computationally intensive, may be necessary when 

item pools are entirely new or when the goal is to 

approximate the variability and reasoning patterns 

of real student responses. The choice among 

methods may depend on the purpose of item 

development as well as the need to balance 

efficiency, fidelity, and generalizability in the 

context of field testing. 

2 Study Purpose 

The purpose of this study is to compare three 

approaches: ML, text embedding, and LLMs, in 

generating synthetic responses to 10 field test items 

from the Devereux Student Strengths Assessment 

(DESSA), a standardized self-report of social-

emotional competence. We evaluate the accuracy 

of the synthetic responses by comparing and 

calibrating them with IRT to compare estimated 

item parameters and thresholds to those derived 

from actual student data. 

3 Methods 

3.1 Sample 

The sample consists of student data (N = 3,982) 

from an administration of the DESSA high school 

student self-report form (Robitaille et al., 2025). 

Students responded to 40 scored items and 10 field 

test items using a five-point Likert scale ranging 

from 0 (Never) to 4 (Almost Always). The 

demographic information of the sample is 

summarized in Table 1. 

3.2 Measures 

The DESSA (Robitaille et al., 2025) is a 50-item, 

standardized, norm-referenced self-report behavior 

rating scale for students in 9th – 12th grades that 

yields T-scores (M=50, SD=10) that are reported 

into three descriptive categories, “Need for 

Instruction”, “Typical”, or “Strength”. The DESSA 

measures six social emotional competencies, 

Optimistic Thinking, Self-Awareness, Social 

Awareness, Responsible Decision Making, 

Relationship Skills, and Self-Management. 

 

Category Group N % 

Gender Female 1995 50.10 

Male 1987 49.90 

Grade 9th 1180 29.63 

10th 1139 28.60 

11th 883 22.17 

12th 780 19.59 

Race/ 

Ethnicity 

American 

Indian 
49 1.23 

Asian 214 5.37 

Black 1068 26.82 

Hispanic 910 22.85 

Hawaiian 6 .15 

White 1947 48.90 

Other 159 3.99 

Region Midwest 203 5.10 

Northeast 970 24.36 

South 2764 69.41 

West 45 1.1 

Table 1. Demographic Information of the Sample. 

 

3.3 Approach 

We compared three methods for generating 

synthetic responses to the 10-field test items from 

the DESSA. First, we trained a Random Forest 

classifier on real student responses, using stratified 

sampling to balance classes. The model was fit to 

training data (n = 3,186; ~80% of the dataset) and 

then used to predict synthetic responses for the test 

set (n = 796; ~20% of the dataset). Accuracy was 

tracked both at the macro level and for each item. 

Next, we used embeddings derived from the 

item text and response options to inform 

predictions. These embeddings were incorporated 

into a predictive model that mapped semantic 

similarity and structural features to likely student 

responses. As with the ML approach, predictions 

were generated for the 10 field-test items, with 

evaluation against actual student responses. 

Finally, we used FLAN-T5, an instruction-tuned 

transformer model, to simulate student responses. 

The model was prompted with DESSA item stems 

and Likert response options, framed as if it were a 

high school student completing a social-emotional 

self-report survey. Prompts included general 

instructions to reflect variability in responses rather 

than always producing the same option to 

approximate realistic distributions. In addition, we 
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applied Low-Rank Adaptation (LoRA) fine-tuning 

on the training data, using real student responses to 

field-test items as supervised pairs, which allowed 

the model to better align with the rating scale and 

item content. 

 

3.4 Graded Response Model 

The Graded Response Model (GRM; Samejima, 

1968), was employed to analyze polytomous 

scored items intended to measure varying levels of 

a latent trait. The GRM is appropriate for items 

with ordered categorical response options, such as 

those found in Likert-type scales. The probability 

of endorsing a response category is calculated as 

the difference between cumulative logistic 

functions across thresholds. Item calibration and 

model estimation were conducted using the mirt 

package in R (Chalmers, 2012), facilitating a 

robust evaluation of item functioning and trait 

estimation. 

To evaluate the fidelity of synthetic response 

data generated for field items, the Pearson 

correlation coefficient was computed between the 

student-generated and synthetic response vectors 

(Cohen, 1988). To evaluate and compare item 

parameter estimates derived from synthetic data 

generation methods, a free calibration was 

conducted using the actual response dataset. From 

this calibration, forty item parameters were 

extracted and designated as anchor items. These 

parameters were fixed across three separate 

calibration conditions. The remaining ten field-test 

items were calibrated independently using 

synthetic response data. This procedure ensured 

that all item parameters were aligned on a common 

measurement scale, allowing for valid comparisons 

across different synthetic methods. 

4    Results 

 

We first examined the accuracy of synthetic 

responses generated by each approach. At the 

macro level, ML achieved the highest test accuracy 

(.62), followed closely by text embeddings (.61), 

while the LLM approach showed lower 

performance (.55). These differences were 

consistent across most items, with the ML and text 

embedding models producing comparable results, 

and the LLM yielding weaker alignment with 

observed student responses. 

At the micro level, item-specific test accuracies 

further illustrated these trends (see Table 2). 

Machine learning predictions for individual field 

test items ranged from .50 to .71, with higher 

accuracy observed for items Q15 (“respect a 

person’s right to have a different opinion?”) and 

Q35 (“make others feel welcome or included?”). 

Text embedding results were similar, with item 

accuracies ranging from .48 to .71, again showing 

strength on items Q15 and Q35, but lower 

performance on Q25 (“recognize your 

emotions?”), and Q50 (“have a teacher or other 

adult at school you can talk to?”).  

LLM performance was consistently lower 

across items, with test accuracies clustering in the 

.49 to .63 range. Across all ten items, both ML and 

text embedding methods maintained consistent 

predictive performance, whereas the LLM tended 

to underpredict or misalign with actual student 

response patterns (Figure 1).  

 

Item ML Text Embed LLM 

 Train Test Train Test Train Test 

7 1.00 0.63 0.88 0.61 0.57 0.56 
10 1.00 0.62 0.90 0.61 0.54 0.54 
15 1.00 0.71 0.89 0.71 0.52 0.48 

20 1.00 0.66 0.87 0.64 0.61 0.62 

25 1.00 0.53 0.86 0.53 0.53 0.53 

30 1.00 0.62 0.87 0.59 0.57 0.57 

35 1.00 0.67 0.87 0.65 0.62 0.59 

40 1.00 0.62 0.87 0.60 0.63 0.62 

45 1.00 0.67 0.89 0.66 0.53 0.49 

50 1.00 0.50 0.86 0.48 0.49 0.49 

Table 2. Item level accuracies across ML, text 

embedding and LLM approaches. 

 

 

Figure 1: Accuracy levels per item across ML, text-

embedding and LLM approaches. 
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4.1     IRT Calibration 

To assess whether synthetic responses could 

recover psychometric characteristics of the DESSA 

field test items, we calibrated the 10 field items 

under a GRM using synthetic data from each 

method and compared the resulting discrimination 

and threshold parameters with those obtained from 

real student responses (Table 3). 

 

Statistic Method Mean SD Bias RMSE r 

a  Actual 1.86 0.36        

 ML 3.16 0.63 1.30 1.86 0.76 

 Text 3.02 0.57 1.16 1.43 0.88 

 LLM 5.06 0.01 3.21 10.41 -0.33 

b1 Actual -2.64 0.49    

 ML -2.59 0.41 0.05 0.06 0.87 

 Text -2.47 0.43 0.17 0.06 0.93 

 LLM -2.32 0.03 0.32 0.33 -0.02 

b2 Actual -1.67 0.48    

 ML -1.84 0.53 -0.17 0.05 0.95 

 Text -1.73 0.51 -0.07 0.01 0.98 

 LLM -1.65 0.01 0.02 0.21 -0.07 

b3 Actual -0.38 0.35    

 ML -0.41 0.39 -0.03 0.00 0.99 

 Text -0.42 0.40 -0.04 0.01 0.98 

 LLM -0.30 0.01 0.08 0.12 0.36 

b4 Actual 0.88 0.31    

 ML 0.87 0.30 -0.01 0.01 0.92 

 Text 0.81 0.30 -0.08 0.02 0.91 

 LLM 0.73 0.01 -0.15 0.10 0.48 

Table 3. Estimation of Graded Response Model Item 

parameters (10 field items). 

 

Across items, the ML and text embedding 

approaches showed broadly similar 

correspondence with actual parameters; neither 

consistently outperformed the other. By contrast, 

the LLM simulations exhibited weaker alignment 

with thresholds from actual student data and 

greater instability across items, echoing their lower 

classification accuracy. Overall while all three 

methods produced plausible synthetic responses, 

the ML and embedding approaches better 

preserved psychometric fidelity relative to the 

LLM. 

5   Conclusion 

This investigation highlights both the promise 

and the limitations of synthetic data for 

accelerating assessment development. Across the 

three synthetic data approaches applied to the 

DESSA field items, conventional machine learning 

slightly outperformed the text-embedding model, 

and both exceeded the LLM in aligning with 

observed student responses and IRT-derived item 

parameters. These findings indicate that ML and 

embeddings can plausibly support early item 

evaluation and calibration, while current LLM 

outputs appear less reliable for parameter recovery 

for assessments like the DESSA. Continued 

investigation on novel field test items aligned with 

different purposes (e.g., similar items for new 

constructs within the same domain) will inform 

when to use different approaches to generate 

synthetic data. Overall, synthetic approaches hold 

promise for reducing reliance on costly field 

testing, but continued investigation, with larger 

item sets, additional benchmarks, and rigorous IRT 

comparisons, is needed before they can be used 

with confidence in operational assessment. 
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