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Abstract

This study compares machine learning, text
embeddings, and large language models
(LLMs) for generating synthetic responses
to field test items for a social-emotional
assessment  that uses  Likert-scale
responses. Using accuracy metrics and item
response theory (IRT) calibration, results
show that machine learning and
embeddings more closely mirror student
data than LLMs. Findings highlight
synthetic data’s promise while
underscoring the need for continued
validation.

Introduction and Background

Developing high quality assessment items
requires rigorous field testing, yet this process is
time consuming and costly. Traditional calibration
using item response theory (IRT) typically requires
hundreds of examinees per item to estimate
difficulty, discrimination, and guessing parameters
with acceptable precision. This burden is
particularly challenging in educational settings
where Likert-type surveys are widely used. Such
instruments tend to measure sensitive or hard-to-
predict constructs (e.g., social-emotional skills,
behavioral ratings) and must often pass district
level approval for wording and focus, further
slowing the process of field-testing. These
constraints underscore the need for alternative
strategies that can accelerate item validation
without compromising psychometric rigor.

Synthetic data has emerged as a promising
solution for assessment developers. By generating
artificial responses that approximate the
distributions and relationships found in real
datasets, researchers can reduce reliance on large-
scale human field trials. Psychometric research
demonstrates that large language models (LLMs)
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can serve as synthetic respondents, producing item
parameter estimates that correlate highly with those
derived from human data, though often with
narrower variability (Liu et al., 2025). These
findings suggest that artificial respondents may
augment or partially substitute for actual student
responses in item development.

Although LLMs provide one pathway for
generating synthetic responses, they are not the
only approach under investigation. A more
traditional starting point has been machine learning
(ML), which relies on historical student response
data to predict responses to new items. However,
ML models often struggle with unseen items, since
new questions cannot be calibrated until sufficient
student data is available. To address this limitation,
researchers have explored text-aware methods that
incorporate semantic information from item
content. For example, Khan et al. (2025)
introduced Text-LENS, which integrates text
embeddings from a transformer encoder. This
approach matched baseline ML performance on
known items but substantially outperformed it
when predicting responses to novel items (Khan et
al., 2025). Such embedding-based methods offer a
middle ground, more flexible than conventional
ML yet more efficient than large-scale LLM
simulations.

LLM-based approaches, in contrast, provide a
different kind of advantage. By simulating students
across ability levels, LLMs can produce synthetic
response distributions that reflect difficulty trends
and distractor functioning (Benedetto et al., 2024;
Shridhar et al., 2023). While not perfect substitutes,
these models allow test developers to “pre-pilot”
items at scale, discarding poor candidates before
committing resources to costly field testing.

ML, text embedding, and LLM approaches
reveal a spectrum of tradeoffs. ML methods that
rely on prior response patterns may be most
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effective when field testing items that are
structurally and conceptually like those previously
administered. Text embedding may provide
flexibility when items target new constructs within
an existing domain, enabling models to generalize
without extensive retraining. LLMs, while
computationally intensive, may be necessary when
item pools are entirely new or when the goal is to
approximate the variability and reasoning patterns
of real student responses. The choice among
methods may depend on the purpose of item
development as well as the need to balance
efficiency, fidelity, and generalizability in the
context of field testing.

2 Study Purpose

The purpose of this study is to compare three
approaches: ML, text embedding, and LLMs, in
generating synthetic responses to 10 field test items
from the Devereux Student Strengths Assessment
(DESSA), a standardized self-report of social-
emotional competence. We evaluate the accuracy
of the synthetic responses by comparing and
calibrating them with IRT to compare estimated
item parameters and thresholds to those derived
from actual student data.

3 Methods

3.1

The sample consists of student data (N = 3,982)
from an administration of the DESSA high school
student self-report form (Robitaille et al., 2025).
Students responded to 40 scored items and 10 field
test items using a five-point Likert scale ranging
from 0 (Never) to 4 (Almost Always). The
demographic information of the sample is
summarized in Table 1.

Sample

3.2

The DESSA (Robitaille et al., 2025) is a 50-item,
standardized, norm-referenced self-report behavior
rating scale for students in 9™ — 12" grades that
yields T-scores (M=50, SD=10) that are reported
into three descriptive categories, ‘“Need for
Instruction”, “Typical”, or “Strength”. The DESSA
measures six social emotional competencies,
Optimistic Thinking, Self-Awareness, Social
Awareness, Responsible Decision Making,
Relationship Skills, and Self-Management.

Measures
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Category Group N %

Gender Female 1995 50.10
Male 1987 49.90

Grade oh 1180 29.63
10" 1139 28.60
1" 883 22.17
12® 780 19.59

Race/ American

Ethnicity Indian 49 123
Asian 214 537
Black 1068 26.82
Hispanic 910 22.85
Hawaiian 6 15
White 1947 48.90
Other 159 3.99

Region Midwest 203 5.10
Northeast 970 24.36
South 2764 6941
West 45 1.1

Table 1. Demographic Information of the Sample.

3.3 Approach

We compared three methods for generating
synthetic responses to the 10-field test items from
the DESSA. First, we trained a Random Forest
classifier on real student responses, using stratified
sampling to balance classes. The model was fit to
training data (n = 3,186; ~80% of the dataset) and
then used to predict synthetic responses for the test
set (n = 796; ~20% of the dataset). Accuracy was
tracked both at the macro level and for each item.

Next, we used embeddings derived from the
item text and response options to inform
predictions. These embeddings were incorporated
into a predictive model that mapped semantic
similarity and structural features to likely student
responses. As with the ML approach, predictions
were generated for the 10 field-test items, with
evaluation against actual student responses.

Finally, we used FLAN-TS5, an instruction-tuned
transformer model, to simulate student responses.
The model was prompted with DESSA item stems
and Likert response options, framed as if it were a
high school student completing a social-emotional
self-report survey. Prompts included general
instructions to reflect variability in responses rather
than always producing the same option to
approximate realistic distributions. In addition, we



applied Low-Rank Adaptation (LoRA) fine-tuning
on the training data, using real student responses to
field-test items as supervised pairs, which allowed
the model to better align with the rating scale and
item content.

3.4 Graded Response Model

The Graded Response Model (GRM; Samejima,
1968), was employed to analyze polytomous
scored items intended to measure varying levels of
a latent trait. The GRM is appropriate for items
with ordered categorical response options, such as
those found in Likert-type scales. The probability
of endorsing a response category is calculated as
the difference between cumulative logistic
functions across thresholds. Item calibration and
model estimation were conducted using the mirt
package in R (Chalmers, 2012), facilitating a
robust evaluation of item functioning and trait
estimation.

To evaluate the fidelity of synthetic response
data generated for field items, the Pearson
correlation coefficient was computed between the
student-generated and synthetic response vectors
(Cohen, 1988). To evaluate and compare item
parameter estimates derived from synthetic data
generation methods, a free calibration was
conducted using the actual response dataset. From
this calibration, forty item parameters were
extracted and designated as anchor items. These
parameters were fixed across three separate
calibration conditions. The remaining ten field-test
items were calibrated independently using
synthetic response data. This procedure ensured
that all item parameters were aligned on a common
measurement scale, allowing for valid comparisons
across different synthetic methods.

4 Results

We first examined the accuracy of synthetic
responses generated by each approach. At the
macro level, ML achieved the highest test accuracy
(.62), followed closely by text embeddings (.61),
while the LLM approach showed lower
performance (.55). These differences were
consistent across most items, with the ML and text
embedding models producing comparable results,
and the LLM yielding weaker alignment with
observed student responses.
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At the micro level, item-specific test accuracies
further illustrated these trends (see Table 2).
Machine learning predictions for individual field
test items ranged from .50 to .71, with higher
accuracy observed for items Q15 (“respect a
person’s right to have a different opinion?””) and
Q35 (“make others feel welcome or included?”).
Text embedding results were similar, with item
accuracies ranging from .48 to .71, again showing
strength on items Q15 and Q35, but lower
performance on Q25  (“recognize  your
emotions?”’), and Q50 (“have a teacher or other
adult at school you can talk to?”).

LLM performance was consistently lower
across items, with test accuracies clustering in the
.49 to .63 range. Across all ten items, both ML and
text embedding methods maintained consistent
predictive performance, whereas the LLM tended
to underpredict or misalign with actual student
response patterns (Figure 1).

Item ML Text Embed LLM
Train Test Train Test Train Test
7 1.00 0.63 0.88 0.61 0.57 0.56
10 1.00 0.62 090 0.61 0.54 0.54
15 1.00 0.71 0.89 0.71 0.52 0.48
20 1.00 0.66 0.87 0.64 0.61 0.62
25 1.00 0.53 0.86 0.53 0.53 0.53
30 1.00 0.62 0.87 0.59 0.57 0.57
35 1.00 0.67 0.87 0.65 0.62 0.59
40 1.00 0.62 0.87 0.60 0.63 0.62
45 1.00 0.67 0.89 0.66 0.53 0.49
50 1.00 0.50 0.86 048 049 049

Table 2. Item level accuracies across ML, text
embedding and LLM approaches.
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Figure 1: Accuracy levels per item across ML, text-
embedding and LLM approaches.



4.1 IRT Calibration

To assess whether synthetic responses could
recover psychometric characteristics of the DESSA
field test items, we calibrated the 10 field items
under a GRM using synthetic data from each
method and compared the resulting discrimination
and threshold parameters with those obtained from
real student responses (Table 3).

Statistic Method Mean SD Bias RMSE r
a Actual 1.86 0.36

ML 3.16 0.63 1.30 1.86 0.76

Text 3.02 0.57 1.16 143 0.88

LLM  5.06 0.01 321 1041 -0.33
bl Actual -2.64  0.49

ML -2.59 041 0.05 0.06 0.87

Text -247 043 0.17 0.06 0.93

LLM  -232  0.03 032 033 -0.02
b2 Actual -1.67 048

ML -1.84 053 -0.17 0.05 0.95

Text -1.73  0.51 -0.07 0.01 0.98

LLM  -1.65 0.01 0.02 021 -0.07
b3 Actual -0.38  0.35

ML -0.41 0.39 -0.03 0.00 0.99

Text -042 040 -0.04 0.01 0.98

LLM  -030 0.01 0.08 0.12 0.36
b4 Actual 0.88 0.31

ML 0.87 0.30 -0.01 0.01 0.92

Text 0.81 0.30 -0.08 0.02 091

LLM  0.73 0.01 -0.15 0.10 0.48

Table 3. Estimation of Graded Response Model Item
parameters (10 field items).

Across items, the ML and text embedding
approaches showed broadly similar
correspondence with actual parameters; neither
consistently outperformed the other. By contrast,
the LLM simulations exhibited weaker alignment
with thresholds from actual student data and
greater instability across items, echoing their lower
classification accuracy. Overall while all three
methods produced plausible synthetic responses,
the ML and embedding approaches better
preserved psychometric fidelity relative to the
LLM.

5 Conclusion

This investigation highlights both the promise
and the limitations of synthetic data for
accelerating assessment development. Across the
three synthetic data approaches applied to the
DESSA field items, conventional machine learning
slightly outperformed the text-embedding model,
and both exceeded the LLM in aligning with
observed student responses and IRT-derived item
parameters. These findings indicate that ML and
embeddings can plausibly support early item
evaluation and calibration, while current LLM
outputs appear less reliable for parameter recovery
for assessments like the DESSA. Continued
investigation on novel field test items aligned with
different purposes (e.g., similar items for new
constructs within the same domain) will inform
when to use different approaches to generate
synthetic data. Overall, synthetic approaches hold
promise for reducing reliance on costly field
testing, but continued investigation, with larger
item sets, additional benchmarks, and rigorous IRT
comparisons, is needed before they can be used
with confidence in operational assessment.
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