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Abstract

This study evaluates large language models
(LLMs) for automated essay scoring (AES) in
comparison with a traditional feature-based sys-
tem (PEG) and human ratings. Drawing on 541
essays from Grades 3—4, we examined three
generative LLMs (including GPT-40, Gemini
2.5 Flash and Claude Sonnet 4) under base-
line, context-enhanced, and few-shot chain-of-
thought prompting strategies. Results show
that carefully designed prompting, particularly
context-enhanced few-shot chain-of-thought,
substantially improved LLM performance, ap-
proaching PEG in human-machine agreement
and human—human agreement. Fairness anal-
yses revealed that PEG produced larger dis-
parities for English language learners (ELLs),
while LLMs showed smaller but still persistent
subgroup bias. Beyond these findings, the study
contributes recent evidence on fairness and va-
lidity in LLM-based AES and extends research
to younger students, a group rarely examined
in prior work. Together, these results highlight
both the promise and the challenges of integrat-
ing LLMs into educational assessment.

1 Introduction

Automated essay scoring (AES) refers to the use
of computational methods and/or Al techniques
to evaluate student-generated writing and assign
scores in place of or alongside human raters (Uto
and Okano, 2020). In the field of educational mea-
surement, automatic scoring has become a cutting-
edge approach to evaluating written content with-
out manual grading. This strategy is especially
valuable in large-scale assessments and classroom
contexts where manual scoring is impractical (Latif
and Zhai, 2024; Susanti et al., 2023). Early AES
systems were built on natural language processing
(NLP) and machine learning methods with hand-
crafted features and large labeled datasets (Uto,
2021). More recently, deep learning models such
as recurrent and transformer-based architectures

71

Joshua Wilson
School of Education
University of Delaware
joshwils@udel.edu

have improved scoring performance by leveraging
text embeddings and contextual representations (El-
Massry et al., 2025). Still, these approaches face
limitations in interpretability, scalability, and fair-
ness.

The rise of large language models (LLMs) of-
fers new potential for AES. Pretrained on mas-
sive corpora, LLMs capture sophisticated seman-
tic and discourse-level features, eliminating the
need for manual feature engineering. With care-
ful prompt design or fine-tuning, these models can
be guided to produce not only holistic scores but
also rubric-aligned scores. However, critical chal-
lenges remain: model outputs can vary depending
on prompt engineering, and concerns about fair-
ness, subgroup performance, and transparency per-
sist (Huang et al., 2025).

This paper addresses these gaps by system-
atically evaluating several LLM-based AES ap-
proaches and comparing them with a more tradi-
tional feature-based AES system. We examined:
(1) accuracy, measured by their alignment with hu-
man ratings; (2) fairness, focusing on differences
between English language learners (ELLs) and non-
ELLs. By analyzing prompting strategies across
different LLMs and subgroup outcomes, we con-
tribute empirical evidence to guide both AES re-
search and educational assessment practice.

2 Related Work

2.1 AES in Educational Assessment

Research on automated essay scoring (AES) has
a long history in educational assessment, begin-
ning with the initial version of Project Essay Grade
(PEG; Page, 1966) scoring engine. PEG relied on
surface-level textual features, such as word counts,
sentence length, and syntactic structures, combined
with statistical modeling to predict scores. Sub-
sequent systems, such as e-rater, extended this
approach by incorporating more linguistically in-
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formed features grounded in NLP, including gram-
mar, usage, mechanics, style, and organizational
development (Hussein et al., 2019). These early
systems demonstrated that linguistic features, when
coupled with statistical models, could produce lev-
els of agreement with human raters comparable to
inter-rater reliability, establishing the feasibility of
automated scoring for constructed responses, short
answers, and essays.

With advances in artificial intelligence, AES
shifted toward feature-rich regression and classifi-
cation models trained on large corpora during the
mid-2010s. The adoption of deep neural networks,
particularly recurrent architectures (such as LSTM)
and convolutional neural networks (CNN), enabled
models to capture sequential dependencies in stu-
dent writing (Dong et al., 2017; Taghipour and
Ng, 2016). The emergence of transformer-based
large language models (LLMs), including BERT
and XLNet, further advanced AES by leveraging
contextual embeddings that outperformed prior
deep learning methods (Rodriguez et al., 2019;
Uto, 2021). Building on this foundation, Yang
et al. (2020) introduced R?BERT, a BERT-based
model that combined regression and ranking objec-
tives, achieving strong performance on the widely
used Automated Student Assessment Prize (ASAP)
dataset (Hamner et al., 2012). Extending this line
of work, Xie et al. (2022) proposed Neural Pair-
wise Contrastive Regression (NPCR), a contrastive
learning approach that modeled score differences
across essay pairs and achieved state-of-the-art re-
sults. These models reduced reliance on manual
feature engineering and improved generalizability
across essay tasks.

Despite notable advances, AES still faces impor-
tant limitations. First, systems struggle to capture
the full range of features that characterize high-
quality writing, particularly when holistic scoring
and rubric-based analytic scoring demand differ-
ent forms of feature representation (Kumar and
Boulanger, 2021). Elements such as rhetorical in-
tent, coherence, and creativity remain especially
difficult to model (Huang et al., 2025). Second,
much empirical research relies heavily on bench-
mark datasets such as the ASAP corpus (focusing
on essays from students in Grades 7-8), which fa-
cilitate standardized comparisons but offer limited
insight into writing at earlier developmental stages
where challenges are most acute. Finally, fairness
continues to be a major concern. Feature-based
AES systems frequently inherit biases present in
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the human ratings used for training, leading to sys-
tematically different outcomes for subgroups such
as ELLs (Wilson and Huang, 2024). Ensuring eq-
uitable scoring across diverse student populations
therefore remains a central challenge for AES in
educational measurement.

2.2 Generative Large Language Models for
AES

The recent development of generative LLMs such
as GPT-4 and Llama-3 (referred to hereafter as
GPT-family models for simplicity) has demon-
strated remarkable capabilities in language under-
standing, reasoning, and text generation. Unlike
earlier encoder-based LL.Ms, GPT-family models
adopt decoder-based, autoregressive architectures
(Minaee et al., 2025). This design enables them to
generate coherent and contextually rich text, cap-
ture nuanced semantic relationships, and adapt flex-
ibly to varied writing genres and proficiency levels,
which holds particular promise for evaluating es-
says in ways that attend not only to surface features
but also to deeper rhetorical and logical structures.

A growing body of research has examined the
performance of generative LLMs for AES, though
findings remain mixed. Results vary depending
on prompting strategies, fine-tuning methods, and
system adaptation (Huang et al., 2025). Propri-
etary models such as GPT-3.5 and GPT-4 show
reasonable performance with few-shot prompting,
especially when combined with rubric descriptions,
explicit task instructions, and/or chain-of-thought
(CoT) reasoning (Mansour et al., 2024; Quah et al.,
2024; Wei et al., 2022). However, they often under-
perform compared to fine-tuned models and raise
concerns about transparency and replicability. De-
signing prompts that ensure reliability remain an
open challenge.

Open-source models such as Llama-3 introduce
new opportunities. Research by Ormerod and
Kwako (2024) demonstrated that smaller open-
source models, when fine-tuned, can achieve perfor-
mance comparable to traditional best-performing
models while running on modest hardware. This
approach enhances transparency and allows re-
searchers to integrate explainable Al methods, ad-
dressing some of the limitations of closed GPT-
family models. Yet, fine-tuning requires technical
expertise, and performance still lags behind state-
of-the-art models on benchmark datasets.

As with earlier LLMs, the adoption of GPT-
family models raises broader concerns about fair-



ness and validity (Huang et al., 2025). Few studies
have examined subgroup differences, and those that
exist focus mainly on multilingual learners (e.g.,
Tate et al., 2024). Ethical concerns are also mount-
ing, particularly around data privacy, consent, and
intellectual property.

Overall, research on LLM-based AES is still
emerging. Current evidence suggests that while
LLMs can approximate human scoring with care-
ful prompt design or fine-tuning, their performance
remains inconsistent across contexts, and fairness
outcomes are underexplored. The next phase of re-
search must therefore integrate technical advances
with principles of educational measurement to en-
sure that LLM-based automated scoring is both
effective and equitable. The present study con-
tributes to this effort by examining LLM scoring
across student subgroups, specifically ELLs versus
non-ELLs.

3 Research Questions

This study evaluates three large language models
(LLMs) alongside a traditional feature-based AES
system (PEG) to examine their alignment with hu-
man ratings and their fairness for ELLs compared
to non-ELLs, under three different prompt engi-
neering strategies.

RQ1: How do prompt engineering strategies
affect human-machine agreement across LLMs,
PEG, and human raters?

RQ2: Do LLMs exhibit performance differences
or subgroup bias between ELL and non-ELL stu-
dents?

4 Methods
4.1 Sample

This study draws on data from an evaluation of an
automated writing evaluation system in Grades 3-5
in a U.S. school district in school year 2017-2018.
The district implemented the system in conjunction
with a Common Core—aligned English language
arts curriculum to support writing instruction for
all students. A subsample of 541 de-identified es-
says from third and fourth graders (N = 233 and
308, respectively) written between April 1 to May
31, 2018, was analyzed; each grade responded to
a separate grade-level informative essay task. For
the writing tasks, Grade 3 students read two short
texts about national parks—one emphasizing their
value for recreation, wildlife protection, and sci-
ence, and the other highlighting challenges such
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as pollution and overcrowding—and were asked to
write an informative essay explaining what national
parks are and why they matter. Similarly, Grade
4 students read texts introducing invertebrates and
describing the features, habitats, and life cycle of
crabs, and were asked to write an informative essay
about the key characteristics of crabs and how they
live. Essays were scored by six approaches (see
details below). Ten percent of the essays (N = 57)
were randomly double scored by a second human
rater. ELLs comprised 32% of third graders and
46% of fourth graders.

4.2 Measures

Six scoring approaches were evaluated: (1) human
rater 1, (2) human rater 2 (10% of the sample), (3)
PEG, (4) LLMs with baseline CoT prompting, (5)
LLMs with context-enhanced CoT prompting, and
(6) LLMs with context-enhanced + few-shot CoT
prompting. Three LLMs were considered: GPT-4o,
Gemini 2.5 Flash and Claude Sonnet 4.

Human raters were professional scorers em-
ployed by the company operating the automated
writing evaluation system. They received extensive
training and were continuously monitored through
rater management systems designed to ensure scor-
ing accuracy and consistency. Human raters ap-
plied a six-trait rubric assessing development of
ideas, organization, style, sentence fluency, word
choice, and conventions. Each trait was scored on
a 1-5 scale, and a holistic score was obtained by
summing the six traits (range = 6-30).

The most recent PEG scoring engine has ad-
vanced substantially beyond its earlier, simpler ver-
sions. Current PEG scores are produced using a
proprietary model that integrates more than 800
linguistic features with deep learning algorithms,
trained on a large corpus of historical student es-
says from the same grade band and curriculum-
aligned tasks.

Figure 1 presents the flowchart for the three
prompting strategies. In the baseline CoT condi-
tion, prompts included the scoring task instructions,
essay task description, rubric details, and a CoT
component guiding the model to reason step by
step about how to apply the rubric. The system was
then asked to generate a score and provide the scor-
ing output as specified. For the context-enhanced
CoT strategy, one additional component was in-
troduced: the model was assigned the role of an
experienced essay rater familiar with the writing
proficiency levels of third- and fourth-grade stu-
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Figure 1: Flow Chart for the Design of Prompt Engi-
neering Strategies Using LLMs

dents. For the context-enhanced + few-shot CoT
strategy, another component was added: the model
was provided with five sample essays along with
their corresponding trait-level and holistic scores
to guide its scoring decisions. All prompts were ex-
ecuted iteratively for each individual essay through
API interactions with the models using Python.

4.3 Data Analysis

For RQ1, we evaluated human-machine agree-
ment by calculating Quadratic Weighted Kappa
(QWK) and exact/adjacent agreement rates be-
tween each scoring method (S: PEG and all LLMs
across prompting strategies, as well as human rater
2) and human scores (H, from rater 1). QWK, a
widely used reliability index, ranges from O to 1,
with higher values indicating stronger alignment
between two sets of ratings. Exact agreement re-
flects the proportion of cases where the AES score
matches the human score exactly, while adjacent
agreement reflects cases where the AES score is
within +1 point of the human score. Together, these
measures provide complementary perspectives on
model accuracy relative to human raters.

For RQ2, QWKs were calculated separately for
ELL and non-ELL students to assess subgroup-
specific performance. To further evaluate fairness,
we applied Litman et al.’s (2021) metrics:

e Overall Score Accuracy (OSA): Measures
whether AES scores are equally accurate
across groups by regressing squared error (S
— H)? on student group. A significant positive
coefficient indicates systematic differences in
accuracy between groups.

Overall Score Difference (OSD): Assesses
whether AES scores are consistently higher or
lower than human scores for different groups
using the absolute difference IS — HI as the out-
come. Significant differences suggest system-
atic over- or under-prediction for a subgroup.
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* Conditional Score Difference (CSD): Extends
OSD by controlling for student proficiency
(approximated by human scores). Two mod-
els are compared—with and without student
group. A significant increase in R? indicates
that group membership affects AES accuracy
beyond proficiency, signaling potential sub-
group bias.

Based on RQI1 findings (see Results sec-
tion), only LLLM scores generated with context-
enhanced + few-shot CoT prompting—the highest-
performing strategy overall—were subjected to fair-
ness analyses (OSA, OSD, CSD).

5 Results

5.1 RQI1-Comparisons across Scoring
Approaches

Figure 2 shows QWK values for total scores. Hu-
man-human agreement was the highest benchmark
(QWK = 91), with PEG next in line (QWK =
.76). The LLMs, while trailing PEG, demonstrated
a clear upward trend across prompting strategies:
GPT-40 improved from .46 under baseline CoT to
.72 with context-enhanced + few-shot prompting,
Gemini 2.5 Flash rose from .43 to .60, and Claude
Sonnet 4 from .30 to .69. These results indicate
that structured prompts, especially those combin-
ing context and few-shot examples, substantially
strengthen the alignment of LLM-generated scores
with human ratings.

Trait-level analyses (Figure 3) reveal similar pat-
terns. PEG maintained strong agreement across
all traits (QWK = .61-.74), consistently falling
between human—human agreement (.77—.86) and
LLM performance. Among the LLMs, GPT-40
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across Prompt Engineering Strategies and LLMs — Total
Score
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Prompt Engineering Strategies and LLMs — by Trait

again showed the highest alignment, particularly
for development of ideas (.70) and organization
(.71), while Claude Sonnet 4 performed competi-
tively for development of ideas (.70). Gemini 2.5
Flash generally lagged behind, though its agree-
ment improved under structured prompting.

Patterns in exact and adjacent agreement (see
Appendix A) further support these findings. Ex-
act agreement was highest for human—human (.28
for total score) and PEG (.21), with LLMs show-
ing smaller but improving proportions as prompt-
ing strategies became more structured (e.g., GPT-
40 rising from .14 to .20). Adjacent agreement
was consistently stronger for total scores and trait
scores. For example, human—-human reached .63 in
total score, PEG achieved .44, and LLMs again im-
proved with prompting, with GPT-40 and Claude
Sonnet 4 approaching PEG’s level for traits includ-
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ing development of ideas, organization, style and
word choice. Overall, these results suggest that
while PEG remains the most reliable automated
scorer, LLMs (particularly GPT-40) can achieve
meaningful gains through contextually enriched,
few-shot prompting, with the largest improvements
seen on traits tied to style and conventions.

5.2 RQ2-Fairness across ELL Group

Figures 4 and 5 show QWK comparisons by ELL
status. Across nearly all models and traits, agree-
ment between AES scores and human ratings was
higher for non-ELLs than for ELLs, indicating
modest subgroup disparities. For total scores,
GPT-human agreement reached .74 for non-ELLs
versus .67 for ELLs under context-enhanced +
few-shot prompting, Claude—human agreement
achieved .71 versus .61, and Gemini—-human agree-
ment .63 versus .54, while PEG-human agreement
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Metric Human Rater 2 PEG GPT-40 (Context+Few-Shot CoT) Gemini (Context+Few-Shot CoT) Claude (Context+Few-Shot CoT)
Total Score

OSA -ELL 1.047 6.293" -0.077 0.658 1.502
OSD - ELL -0.014 0.693" -0.211 -0.240 -0.354
CSD - AR? 0.001 0.006 0.010" 0.009* 0.016*
Trait 1 — Development of Ideas

OSA -ELL 0.260" 0.146 -0.008 0.072 0.080
OSD - ELL 0.262* 0.133* -0.098 -0.073 -0.039
CSD - AR? 0.064 0.004 0.012" 0.006 0.006
Trait 2 — Organization

OSA -ELL -0.003 0.198* 0.061 0.043 0.040
OSD - ELL -0.146 0.105 0.004 -0.079 -0.120"
CSD - AR? 0.033 0.001 0.002 0.008* 0.018*
Trait 3 — Style

OSA -ELL 0.128 0.214* -0.026 -0.115 -0.031
OSD - ELL -0.043 0.124" -0.001 -0.019 -0.113
CSD - AR? 0.003 0.002 0.006 0.008* 0.026"
Trait 4 — Word Choice

OSA -ELL 0.040 0.137 0.028 0.056 0.080
OSD - ELL 0.073 0.124* -0.005 -0.027 -0.024
CSD - AR? 0.000 0.002 0.007* 0.008* 0.009*
Trait 5 — Sentence Fluency

OSA -ELL -0.077 0.200* -0.004 0.097 0.014
OSD - ELL -0.072 0.117* -0.054 -0.034 -0.023
CSD - AR? 0.008 0.001 0.016" 0.009* 0.009*
Trait 6 — Conventions

OSA -ELL -0.208 0.165" 0.030 -0.054 -0.013
OSD - ELL -0.088 0.090 -0.057 -0.007 -0.036
CSD - AR? 0.019 0.000 0.012* 0.006" 0.009*

Table 1: Fairness Evaluation Results by ELL Status. Values are coefficients for OSA and OSD (ELL effect) and
AR? for CSD. Significant values are in bold and marked with * (p < .05).

also favored non-ELLs (.80 vs. .69). Gaps between
ELL and non-ELL for human—human agreement
also varied somewhat across traits, with smaller
subgroup differences for organization, word choice,
and sentence fluency. Notably, prompting did not
eliminate subgroup gaps, and both LLMs and PEG
continued to score ELLs less consistently than non-
ELLs. These comparisons with human—-human
agreements should be interpreted cautiously, how-
ever, given the limited size of the double-scored
sample (10%) by a second human rater.

Table 1 presents results from the fairness evalu-
ation. Based on RQI1 findings, only LLM scores
generated with context-enhanced + few-shot CoT
prompting—the most accurate overall—were ex-
amined further. Specifically, PEG showed sig-
nificant ELL-based differences in both OSA and
OSD for most traits, but these differences were not
significant regarding CSD. In contrast, the three
LLMs with context-enhanced + few-shot prompt-
ing displayed few significant results for OSA and
OSD, implying more balanced performance across
groups at the overall level. Yet, CSD revealed per-
sistent disparities: GPT-40 showed effects for total
score, development of ideas, style, word choice,
sentence fluency, and conventions; Gemini 2.5
Flash for total score, organization, style, word
choice, and conventions; and Claude Sonnet 4 for
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nearly all traits except development of ideas. These
findings suggest that while LLMs reduced overt
subgroup bias relative to PEG, subtler inequities
remained once proficiency was considered.

6 Conclusions and Implications

This study provides early empirical evidence that
large language models (LLMs), specifically gen-
erative LLMs such as GPT-family models, when
combined with carefully designed prompting strate-
gies, can approach the performance of feature-
based AES systems such as PEG. This study com-
pared not only multiple LLMs but also different
prompting strategies, offering valuable insights and
practical guidance for future research on prompt
design. Context-enhanced + few-shot chain-of-
thought prompting consistently outperformed base-
line approaches, highlighting the central role of
prompt engineering in optimizing LLM-based scor-
ing for both accuracy and consistency.

At the same time, fairness analyses revealed that
neither PEG nor LLMs fully eliminated subgroup
disparities. PEG exhibited larger discrepancies
for ELLs in overall accuracy and error magnitude,
whereas LLMs appeared more balanced at the sur-
face level. However, conditional score difference
analyses showed that subtle, proficiency-adjusted



disparities persisted across traits, suggesting that
fairness concerns remain in LLMs. Importantly,
this study examined both holistic scores and rubric-
based analytical scores, contributing evidence on
how LLMs perform across different scoring di-
mensions. Furthermore, it provides some of the
most up-to-date findings on subgroup fairness in
LLM-based scoring, adding important validity evi-
dence to ongoing debates about their educational
use. These findings underscore the importance of
evaluating LLMs with multiple fairness metrics
and designing safeguards that ensure equitable per-
formance across student populations.

Finally, this study focused on students in Grades
3-5, a population often overlooked in AES re-
search, thereby extending the scope of evidence to
younger learners who are at a critical stage in writ-
ing development. Future work should extend these
findings to additional grade levels, writing gen-
res, and more diverse student populations. There
is also a need for clearer evaluation frameworks
and design guidelines to ensure prompt quality
and subgroup fairness in LLM-based scoring. As
LLMs gain traction in educational measurement,
this study underscores the need to pair advanced
modeling with thoughtful design to support scoring
accuracy, fairness, and validity.

7 Limitations

Several limitations should be acknowledged. First,
only 10% of essays were double-scored, limiting
the reliability of human—human benchmarks, partic-
ularly for subgroup comparisons. Second, the anal-
ysis focused solely on informative writing tasks,
leaving other genres such as argumentative or nar-
rative unexamined. Finally, only three prompting
strategies were tested, while other approaches, such
as extended rubric prompts or fine-tuning, remain
unexplored. These constraints suggest caution in
interpreting findings and point to directions for fu-
ture research.
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