@inproceedings{seo-2025-flavordiffusion,
title = "{F}lavor{D}iffusion: Modeling Food-Chemical Interactions with Diffusion",
author = "Seo, Junpyo and
Kim, Dongwan and
Jeong, Jaewook and
Park, Inkyu and
Min, Junho",
editor = "Jansen, Peter and
Dalvi Mishra, Bhavana and
Trivedi, Harsh and
Prasad Majumder, Bodhisattwa and
Hope, Tom and
Khot, Tushar and
Downey, Doug and
Horvitz, Eric",
booktitle = "Proceedings of the 1st Workshop on AI and Scientific Discovery: Directions and Opportunities",
month = may,
year = "2025",
address = "Albuquerque, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.aisd-main.7/",
doi = "10.18653/v1/2025.aisd-main.7",
pages = "70--77",
ISBN = "979-8-89176-224-4",
abstract = "The study of food pairing has evolved beyond subjective expertise with the advent of machine learning. This paper presents FlavorDiffusion, a novel framework leveraging diffusion models to predict food-chemical interactions and ingredient pairings without relying on chromatography. By integrating graph-based embeddings, diffusion processes, and chemical property encoding, FlavorDiffusion addresses data imbalances and enhances clustering quality. Using a heterogeneous graph derived from datasets like Recipe1M and FlavorDB, our model demonstrates superior performance in reconstructing ingredient-ingredient relationships. The addition of a Chemical Structure Prediction (CSP) layer further refines the embedding space, achieving state-of-the-art NMI scores and enabling meaningful discovery of novel ingredient combinations. The proposed framework represents a significant step forward in computational gastronomy, offering scalable, interpretable, and chemically informed solutions for food science."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="seo-2025-flavordiffusion">
<titleInfo>
<title>FlavorDiffusion: Modeling Food-Chemical Interactions with Diffusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Junpyo</namePart>
<namePart type="family">Seo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaewook</namePart>
<namePart type="family">Jeong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Inkyu</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junho</namePart>
<namePart type="family">Min</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on AI and Scientific Discovery: Directions and Opportunities</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Jansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bhavana</namePart>
<namePart type="family">Dalvi Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harsh</namePart>
<namePart type="family">Trivedi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bodhisattwa</namePart>
<namePart type="family">Prasad Majumder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Hope</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tushar</namePart>
<namePart type="family">Khot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Doug</namePart>
<namePart type="family">Downey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Horvitz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-224-4</identifier>
</relatedItem>
<abstract>The study of food pairing has evolved beyond subjective expertise with the advent of machine learning. This paper presents FlavorDiffusion, a novel framework leveraging diffusion models to predict food-chemical interactions and ingredient pairings without relying on chromatography. By integrating graph-based embeddings, diffusion processes, and chemical property encoding, FlavorDiffusion addresses data imbalances and enhances clustering quality. Using a heterogeneous graph derived from datasets like Recipe1M and FlavorDB, our model demonstrates superior performance in reconstructing ingredient-ingredient relationships. The addition of a Chemical Structure Prediction (CSP) layer further refines the embedding space, achieving state-of-the-art NMI scores and enabling meaningful discovery of novel ingredient combinations. The proposed framework represents a significant step forward in computational gastronomy, offering scalable, interpretable, and chemically informed solutions for food science.</abstract>
<identifier type="citekey">seo-2025-flavordiffusion</identifier>
<identifier type="doi">10.18653/v1/2025.aisd-main.7</identifier>
<location>
<url>https://aclanthology.org/2025.aisd-main.7/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>70</start>
<end>77</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FlavorDiffusion: Modeling Food-Chemical Interactions with Diffusion
%A Seo, Junpyo
%A Kim, Dongwan
%A Jeong, Jaewook
%A Park, Inkyu
%A Min, Junho
%Y Jansen, Peter
%Y Dalvi Mishra, Bhavana
%Y Trivedi, Harsh
%Y Prasad Majumder, Bodhisattwa
%Y Hope, Tom
%Y Khot, Tushar
%Y Downey, Doug
%Y Horvitz, Eric
%S Proceedings of the 1st Workshop on AI and Scientific Discovery: Directions and Opportunities
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico, USA
%@ 979-8-89176-224-4
%F seo-2025-flavordiffusion
%X The study of food pairing has evolved beyond subjective expertise with the advent of machine learning. This paper presents FlavorDiffusion, a novel framework leveraging diffusion models to predict food-chemical interactions and ingredient pairings without relying on chromatography. By integrating graph-based embeddings, diffusion processes, and chemical property encoding, FlavorDiffusion addresses data imbalances and enhances clustering quality. Using a heterogeneous graph derived from datasets like Recipe1M and FlavorDB, our model demonstrates superior performance in reconstructing ingredient-ingredient relationships. The addition of a Chemical Structure Prediction (CSP) layer further refines the embedding space, achieving state-of-the-art NMI scores and enabling meaningful discovery of novel ingredient combinations. The proposed framework represents a significant step forward in computational gastronomy, offering scalable, interpretable, and chemically informed solutions for food science.
%R 10.18653/v1/2025.aisd-main.7
%U https://aclanthology.org/2025.aisd-main.7/
%U https://doi.org/10.18653/v1/2025.aisd-main.7
%P 70-77
Markdown (Informal)
[FlavorDiffusion: Modeling Food-Chemical Interactions with Diffusion](https://aclanthology.org/2025.aisd-main.7/) (Seo et al., AISD 2025)
ACL