@inproceedings{wu-etal-2025-bringing,
title = "Bringing Suzhou Numerals into the Digital Age: A Dataset and Recognition Study on {A}ncient {C}hinese Trade Records",
author = "Wu, Ting-Lin and
Chen, Zih-Ching and
Chen, Chen-Yuan and
Chen, Pi-Jhong and
Wang, Li-Chiao",
editor = "Anderson, Adam and
Gordin, Shai and
Li, Bin and
Liu, Yudong and
Passarotti, Marco C. and
Sprugnoli, Rachele",
booktitle = "Proceedings of the Second Workshop on Ancient Language Processing",
month = may,
year = "2025",
address = "The Albuquerque Convention Center, Laguna",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.alp-1.13/",
doi = "10.18653/v1/2025.alp-1.13",
pages = "105--111",
ISBN = "979-8-89176-235-0",
abstract = "Suzhou numerals, a specialized numerical no-tation system historically used in Chinese com-merce and accounting, played a pivotal role in financial transactions from the Song Dynasty to the early 20th century. Despite their his-torical significance, they remain largely absent from modern OCR benchmarks, limiting com-putational access to archival trade documents. This paper presents a curated dataset of 773 expert-annotated Suzhou numeral samples ex-tracted from late Qing-era trade ledgers. We provide a statistical analysis of character distri-butions, offering insights into their real-world usage in historical bookkeeping. Additionally, we evaluate baseline performance with hand-written text recognition (HTR) model, high-lighting the challenges of recognizing low-resource brush-written numerals. By introduc-ing this dataset and initial benchmark results, we aim to facilitate research in historical doc-umentation in ancient Chinese characters, ad-vancing the digitization of early Chinese finan-cial records. The dataset is publicly available at our huggingface hub, and our codebase can be accessed at our github repository."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2025-bringing">
<titleInfo>
<title>Bringing Suzhou Numerals into the Digital Age: A Dataset and Recognition Study on Ancient Chinese Trade Records</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ting-Lin</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zih-Ching</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen-Yuan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pi-Jhong</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Li-Chiao</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Ancient Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Anderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shai</namePart>
<namePart type="family">Gordin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yudong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Passarotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">The Albuquerque Convention Center, Laguna</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-235-0</identifier>
</relatedItem>
<abstract>Suzhou numerals, a specialized numerical no-tation system historically used in Chinese com-merce and accounting, played a pivotal role in financial transactions from the Song Dynasty to the early 20th century. Despite their his-torical significance, they remain largely absent from modern OCR benchmarks, limiting com-putational access to archival trade documents. This paper presents a curated dataset of 773 expert-annotated Suzhou numeral samples ex-tracted from late Qing-era trade ledgers. We provide a statistical analysis of character distri-butions, offering insights into their real-world usage in historical bookkeeping. Additionally, we evaluate baseline performance with hand-written text recognition (HTR) model, high-lighting the challenges of recognizing low-resource brush-written numerals. By introduc-ing this dataset and initial benchmark results, we aim to facilitate research in historical doc-umentation in ancient Chinese characters, ad-vancing the digitization of early Chinese finan-cial records. The dataset is publicly available at our huggingface hub, and our codebase can be accessed at our github repository.</abstract>
<identifier type="citekey">wu-etal-2025-bringing</identifier>
<identifier type="doi">10.18653/v1/2025.alp-1.13</identifier>
<location>
<url>https://aclanthology.org/2025.alp-1.13/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>105</start>
<end>111</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bringing Suzhou Numerals into the Digital Age: A Dataset and Recognition Study on Ancient Chinese Trade Records
%A Wu, Ting-Lin
%A Chen, Zih-Ching
%A Chen, Chen-Yuan
%A Chen, Pi-Jhong
%A Wang, Li-Chiao
%Y Anderson, Adam
%Y Gordin, Shai
%Y Li, Bin
%Y Liu, Yudong
%Y Passarotti, Marco C.
%Y Sprugnoli, Rachele
%S Proceedings of the Second Workshop on Ancient Language Processing
%D 2025
%8 May
%I Association for Computational Linguistics
%C The Albuquerque Convention Center, Laguna
%@ 979-8-89176-235-0
%F wu-etal-2025-bringing
%X Suzhou numerals, a specialized numerical no-tation system historically used in Chinese com-merce and accounting, played a pivotal role in financial transactions from the Song Dynasty to the early 20th century. Despite their his-torical significance, they remain largely absent from modern OCR benchmarks, limiting com-putational access to archival trade documents. This paper presents a curated dataset of 773 expert-annotated Suzhou numeral samples ex-tracted from late Qing-era trade ledgers. We provide a statistical analysis of character distri-butions, offering insights into their real-world usage in historical bookkeeping. Additionally, we evaluate baseline performance with hand-written text recognition (HTR) model, high-lighting the challenges of recognizing low-resource brush-written numerals. By introduc-ing this dataset and initial benchmark results, we aim to facilitate research in historical doc-umentation in ancient Chinese characters, ad-vancing the digitization of early Chinese finan-cial records. The dataset is publicly available at our huggingface hub, and our codebase can be accessed at our github repository.
%R 10.18653/v1/2025.alp-1.13
%U https://aclanthology.org/2025.alp-1.13/
%U https://doi.org/10.18653/v1/2025.alp-1.13
%P 105-111
Markdown (Informal)
[Bringing Suzhou Numerals into the Digital Age: A Dataset and Recognition Study on Ancient Chinese Trade Records](https://aclanthology.org/2025.alp-1.13/) (Wu et al., ALP 2025)
ACL