@inproceedings{ogawa-etal-2025-detecting,
title = "Detecting Honkadori based on {W}aka Embeddings",
author = "Ogawa, Hayato and
Horio, Kaito and
Kawahara, Daisuke",
editor = "Anderson, Adam and
Gordin, Shai and
Li, Bin and
Liu, Yudong and
Passarotti, Marco C. and
Sprugnoli, Rachele",
booktitle = "Proceedings of the Second Workshop on Ancient Language Processing",
month = may,
year = "2025",
address = "The Albuquerque Convention Center, Laguna",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.alp-1.14/",
doi = "10.18653/v1/2025.alp-1.14",
pages = "112--119",
ISBN = "979-8-89176-235-0",
abstract = "We develop an embedding model specifically designed for Waka poetry and use it to build a model for detecting Honkadori. Waka is a tradi-tional form of old Japanese poetry that has been composed since ancient times. Honkadori is a sophisticated poetic technique in Japanese clas-sical literature where poets incorporate words or poetic sentiments from old Wakas (Honka) into their own work. First, we fine-tune a pre-trained language model using contrastive learn-ing to construct a Waka-specialized embedding model. Then, using the embedding vectors ob-tained from this model and features extracted from them, we train a machine learning model to detect the Honka (original poem) of Wakas that employ the Honkadori technique. Using paired data of Honka and Wakas that are consid-ered to use Honkadori, we evaluated the Honka detection model and demonstrated that it can detect Honka with reasonable accuracy."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ogawa-etal-2025-detecting">
<titleInfo>
<title>Detecting Honkadori based on Waka Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hayato</namePart>
<namePart type="family">Ogawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaito</namePart>
<namePart type="family">Horio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daisuke</namePart>
<namePart type="family">Kawahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Ancient Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Anderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shai</namePart>
<namePart type="family">Gordin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yudong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Passarotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">The Albuquerque Convention Center, Laguna</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-235-0</identifier>
</relatedItem>
<abstract>We develop an embedding model specifically designed for Waka poetry and use it to build a model for detecting Honkadori. Waka is a tradi-tional form of old Japanese poetry that has been composed since ancient times. Honkadori is a sophisticated poetic technique in Japanese clas-sical literature where poets incorporate words or poetic sentiments from old Wakas (Honka) into their own work. First, we fine-tune a pre-trained language model using contrastive learn-ing to construct a Waka-specialized embedding model. Then, using the embedding vectors ob-tained from this model and features extracted from them, we train a machine learning model to detect the Honka (original poem) of Wakas that employ the Honkadori technique. Using paired data of Honka and Wakas that are consid-ered to use Honkadori, we evaluated the Honka detection model and demonstrated that it can detect Honka with reasonable accuracy.</abstract>
<identifier type="citekey">ogawa-etal-2025-detecting</identifier>
<identifier type="doi">10.18653/v1/2025.alp-1.14</identifier>
<location>
<url>https://aclanthology.org/2025.alp-1.14/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>112</start>
<end>119</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Honkadori based on Waka Embeddings
%A Ogawa, Hayato
%A Horio, Kaito
%A Kawahara, Daisuke
%Y Anderson, Adam
%Y Gordin, Shai
%Y Li, Bin
%Y Liu, Yudong
%Y Passarotti, Marco C.
%Y Sprugnoli, Rachele
%S Proceedings of the Second Workshop on Ancient Language Processing
%D 2025
%8 May
%I Association for Computational Linguistics
%C The Albuquerque Convention Center, Laguna
%@ 979-8-89176-235-0
%F ogawa-etal-2025-detecting
%X We develop an embedding model specifically designed for Waka poetry and use it to build a model for detecting Honkadori. Waka is a tradi-tional form of old Japanese poetry that has been composed since ancient times. Honkadori is a sophisticated poetic technique in Japanese clas-sical literature where poets incorporate words or poetic sentiments from old Wakas (Honka) into their own work. First, we fine-tune a pre-trained language model using contrastive learn-ing to construct a Waka-specialized embedding model. Then, using the embedding vectors ob-tained from this model and features extracted from them, we train a machine learning model to detect the Honka (original poem) of Wakas that employ the Honkadori technique. Using paired data of Honka and Wakas that are consid-ered to use Honkadori, we evaluated the Honka detection model and demonstrated that it can detect Honka with reasonable accuracy.
%R 10.18653/v1/2025.alp-1.14
%U https://aclanthology.org/2025.alp-1.14/
%U https://doi.org/10.18653/v1/2025.alp-1.14
%P 112-119
Markdown (Informal)
[Detecting Honkadori based on Waka Embeddings](https://aclanthology.org/2025.alp-1.14/) (Ogawa et al., ALP 2025)
ACL
- Hayato Ogawa, Kaito Horio, and Daisuke Kawahara. 2025. Detecting Honkadori based on Waka Embeddings. In Proceedings of the Second Workshop on Ancient Language Processing, pages 112–119, The Albuquerque Convention Center, Laguna. Association for Computational Linguistics.