@inproceedings{lu-lei-2025-construction,
title = "Construction of {NER} Model in {A}ncient {C}hinese: Solution of {E}va{H}an 2025 Challenge",
author = "Lu, Yi and
Lei, Minyi",
editor = "Anderson, Adam and
Gordin, Shai and
Li, Bin and
Liu, Yudong and
Passarotti, Marco C. and
Sprugnoli, Rachele",
booktitle = "Proceedings of the Second Workshop on Ancient Language Processing",
month = may,
year = "2025",
address = "The Albuquerque Convention Center, Laguna",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.alp-1.20/",
doi = "10.18653/v1/2025.alp-1.20",
pages = "165--169",
ISBN = "979-8-89176-235-0",
abstract = "This paper introduces the system submit-ted for EvaHan 2025, focusing on the Named Entity Recognition (NER) task for ancient Chinese texts. Our solution is built upon two specified pre-trained BERT models, namely GujiRoBERTa{\_}jian{\_}fan and GujiRoBERTa{\_}fan, and further en-hanced by a deep BiLSTM network with a Conditional Random Field (CRF) decod-ing layer. Extensive experiments on three test dataset splits demonstrate that our system{'}s performance, 84.58{\%} F1 in the closed-modality track and 82.78{\%} F1 in the open-modality track, significantly out-performs the official baseline, achieving no-table improvements in F1 score."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lu-lei-2025-construction">
<titleInfo>
<title>Construction of NER Model in Ancient Chinese: Solution of EvaHan 2025 Challenge</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minyi</namePart>
<namePart type="family">Lei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Ancient Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Anderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shai</namePart>
<namePart type="family">Gordin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yudong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Passarotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">The Albuquerque Convention Center, Laguna</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-235-0</identifier>
</relatedItem>
<abstract>This paper introduces the system submit-ted for EvaHan 2025, focusing on the Named Entity Recognition (NER) task for ancient Chinese texts. Our solution is built upon two specified pre-trained BERT models, namely GujiRoBERTa_jian_fan and GujiRoBERTa_fan, and further en-hanced by a deep BiLSTM network with a Conditional Random Field (CRF) decod-ing layer. Extensive experiments on three test dataset splits demonstrate that our system’s performance, 84.58% F1 in the closed-modality track and 82.78% F1 in the open-modality track, significantly out-performs the official baseline, achieving no-table improvements in F1 score.</abstract>
<identifier type="citekey">lu-lei-2025-construction</identifier>
<identifier type="doi">10.18653/v1/2025.alp-1.20</identifier>
<location>
<url>https://aclanthology.org/2025.alp-1.20/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>165</start>
<end>169</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Construction of NER Model in Ancient Chinese: Solution of EvaHan 2025 Challenge
%A Lu, Yi
%A Lei, Minyi
%Y Anderson, Adam
%Y Gordin, Shai
%Y Li, Bin
%Y Liu, Yudong
%Y Passarotti, Marco C.
%Y Sprugnoli, Rachele
%S Proceedings of the Second Workshop on Ancient Language Processing
%D 2025
%8 May
%I Association for Computational Linguistics
%C The Albuquerque Convention Center, Laguna
%@ 979-8-89176-235-0
%F lu-lei-2025-construction
%X This paper introduces the system submit-ted for EvaHan 2025, focusing on the Named Entity Recognition (NER) task for ancient Chinese texts. Our solution is built upon two specified pre-trained BERT models, namely GujiRoBERTa_jian_fan and GujiRoBERTa_fan, and further en-hanced by a deep BiLSTM network with a Conditional Random Field (CRF) decod-ing layer. Extensive experiments on three test dataset splits demonstrate that our system’s performance, 84.58% F1 in the closed-modality track and 82.78% F1 in the open-modality track, significantly out-performs the official baseline, achieving no-table improvements in F1 score.
%R 10.18653/v1/2025.alp-1.20
%U https://aclanthology.org/2025.alp-1.20/
%U https://doi.org/10.18653/v1/2025.alp-1.20
%P 165-169
Markdown (Informal)
[Construction of NER Model in Ancient Chinese: Solution of EvaHan 2025 Challenge](https://aclanthology.org/2025.alp-1.20/) (Lu & Lei, ALP 2025)
ACL