@inproceedings{brisson-etal-2025-named,
title = "Named Entity Recognition in Context: {E}dit{\_}{D}unhuang team Technical Report for Evahan2025 {NER} Competition",
author = "Brisson, Colin and
Kahfy, Ayoub and
Bui, Marc and
Constant, Fr{\'e}d{\'e}ric",
editor = "Anderson, Adam and
Gordin, Shai and
Li, Bin and
Liu, Yudong and
Passarotti, Marco C. and
Sprugnoli, Rachele",
booktitle = "Proceedings of the Second Workshop on Ancient Language Processing",
month = may,
year = "2025",
address = "The Albuquerque Convention Center, Laguna",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.alp-1.22/",
doi = "10.18653/v1/2025.alp-1.22",
pages = "176--181",
ISBN = "979-8-89176-235-0",
abstract = "We present the Named Entity Recognition sys-tem developed by the Edit Dunhuang team for the EvaHan2025 competition. Our approach in-tegrates three core components: (1) Pindola, a modern transformer-based bidirectional en-coder pretrained on a large corpus of Classi-cal Chinese texts; (2) a retrieval module that fetches relevant external context for each target sequence; and (3) a generative reasoning step that summarizes retrieved context in Classical Chinese for more robust entity disambiguation. Using this approach, we achieve an average F1 score of 85.58, improving upon the competition baseline by nearly 5 points."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="brisson-etal-2025-named">
<titleInfo>
<title>Named Entity Recognition in Context: Edit_Dunhuang team Technical Report for Evahan2025 NER Competition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Colin</namePart>
<namePart type="family">Brisson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ayoub</namePart>
<namePart type="family">Kahfy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Bui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Constant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Ancient Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Anderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shai</namePart>
<namePart type="family">Gordin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yudong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Passarotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">The Albuquerque Convention Center, Laguna</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-235-0</identifier>
</relatedItem>
<abstract>We present the Named Entity Recognition sys-tem developed by the Edit Dunhuang team for the EvaHan2025 competition. Our approach in-tegrates three core components: (1) Pindola, a modern transformer-based bidirectional en-coder pretrained on a large corpus of Classi-cal Chinese texts; (2) a retrieval module that fetches relevant external context for each target sequence; and (3) a generative reasoning step that summarizes retrieved context in Classical Chinese for more robust entity disambiguation. Using this approach, we achieve an average F1 score of 85.58, improving upon the competition baseline by nearly 5 points.</abstract>
<identifier type="citekey">brisson-etal-2025-named</identifier>
<identifier type="doi">10.18653/v1/2025.alp-1.22</identifier>
<location>
<url>https://aclanthology.org/2025.alp-1.22/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>176</start>
<end>181</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Named Entity Recognition in Context: Edit_Dunhuang team Technical Report for Evahan2025 NER Competition
%A Brisson, Colin
%A Kahfy, Ayoub
%A Bui, Marc
%A Constant, Frédéric
%Y Anderson, Adam
%Y Gordin, Shai
%Y Li, Bin
%Y Liu, Yudong
%Y Passarotti, Marco C.
%Y Sprugnoli, Rachele
%S Proceedings of the Second Workshop on Ancient Language Processing
%D 2025
%8 May
%I Association for Computational Linguistics
%C The Albuquerque Convention Center, Laguna
%@ 979-8-89176-235-0
%F brisson-etal-2025-named
%X We present the Named Entity Recognition sys-tem developed by the Edit Dunhuang team for the EvaHan2025 competition. Our approach in-tegrates three core components: (1) Pindola, a modern transformer-based bidirectional en-coder pretrained on a large corpus of Classi-cal Chinese texts; (2) a retrieval module that fetches relevant external context for each target sequence; and (3) a generative reasoning step that summarizes retrieved context in Classical Chinese for more robust entity disambiguation. Using this approach, we achieve an average F1 score of 85.58, improving upon the competition baseline by nearly 5 points.
%R 10.18653/v1/2025.alp-1.22
%U https://aclanthology.org/2025.alp-1.22/
%U https://doi.org/10.18653/v1/2025.alp-1.22
%P 176-181
Markdown (Informal)
[Named Entity Recognition in Context: Edit_Dunhuang team Technical Report for Evahan2025 NER Competition](https://aclanthology.org/2025.alp-1.22/) (Brisson et al., ALP 2025)
ACL