@inproceedings{hua-xu-2025-less,
title = "When Less Is More: Logits-Constrained Framework with {R}o{BERT}a for {A}ncient {C}hinese {NER}",
author = "Hua, Wenjie and
Xu, Shenghan",
editor = "Anderson, Adam and
Gordin, Shai and
Li, Bin and
Liu, Yudong and
Passarotti, Marco C. and
Sprugnoli, Rachele",
booktitle = "Proceedings of the Second Workshop on Ancient Language Processing",
month = may,
year = "2025",
address = "The Albuquerque Convention Center, Laguna",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.alp-1.25/",
doi = "10.18653/v1/2025.alp-1.25",
pages = "192--196",
ISBN = "979-8-89176-235-0",
abstract = "This report presents our team{'}s work on ancient Chinese Named Entity Recognition (NER) for EvaHan 20251. We propose a two-stage framework combining GujiRoBERTa with a Logits-Constrained (LC) mechanism. The first stage generates contextual embeddings using GujiRoBERTa, followed by dynamically masked decoding to enforce valid BMES transitions. Experiments on EvaHan 2025 datasets demonstrate the framework{'}s effectiveness. Key findings include the LC framework{'}s superiority over CRFs in high-label scenarios and the detrimental effect of BiLSTM modules. We also establish empirical model selection guidelines based on label complexity and dataset size."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hua-xu-2025-less">
<titleInfo>
<title>When Less Is More: Logits-Constrained Framework with RoBERTa for Ancient Chinese NER</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Hua</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shenghan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Ancient Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Anderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shai</namePart>
<namePart type="family">Gordin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yudong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Passarotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">The Albuquerque Convention Center, Laguna</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-235-0</identifier>
</relatedItem>
<abstract>This report presents our team’s work on ancient Chinese Named Entity Recognition (NER) for EvaHan 20251. We propose a two-stage framework combining GujiRoBERTa with a Logits-Constrained (LC) mechanism. The first stage generates contextual embeddings using GujiRoBERTa, followed by dynamically masked decoding to enforce valid BMES transitions. Experiments on EvaHan 2025 datasets demonstrate the framework’s effectiveness. Key findings include the LC framework’s superiority over CRFs in high-label scenarios and the detrimental effect of BiLSTM modules. We also establish empirical model selection guidelines based on label complexity and dataset size.</abstract>
<identifier type="citekey">hua-xu-2025-less</identifier>
<identifier type="doi">10.18653/v1/2025.alp-1.25</identifier>
<location>
<url>https://aclanthology.org/2025.alp-1.25/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>192</start>
<end>196</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T When Less Is More: Logits-Constrained Framework with RoBERTa for Ancient Chinese NER
%A Hua, Wenjie
%A Xu, Shenghan
%Y Anderson, Adam
%Y Gordin, Shai
%Y Li, Bin
%Y Liu, Yudong
%Y Passarotti, Marco C.
%Y Sprugnoli, Rachele
%S Proceedings of the Second Workshop on Ancient Language Processing
%D 2025
%8 May
%I Association for Computational Linguistics
%C The Albuquerque Convention Center, Laguna
%@ 979-8-89176-235-0
%F hua-xu-2025-less
%X This report presents our team’s work on ancient Chinese Named Entity Recognition (NER) for EvaHan 20251. We propose a two-stage framework combining GujiRoBERTa with a Logits-Constrained (LC) mechanism. The first stage generates contextual embeddings using GujiRoBERTa, followed by dynamically masked decoding to enforce valid BMES transitions. Experiments on EvaHan 2025 datasets demonstrate the framework’s effectiveness. Key findings include the LC framework’s superiority over CRFs in high-label scenarios and the detrimental effect of BiLSTM modules. We also establish empirical model selection guidelines based on label complexity and dataset size.
%R 10.18653/v1/2025.alp-1.25
%U https://aclanthology.org/2025.alp-1.25/
%U https://doi.org/10.18653/v1/2025.alp-1.25
%P 192-196
Markdown (Informal)
[When Less Is More: Logits-Constrained Framework with RoBERTa for Ancient Chinese NER](https://aclanthology.org/2025.alp-1.25/) (Hua & Xu, ALP 2025)
ACL