@inproceedings{dong-liu-2025-multi,
title = "Multi-Strategy Named Entity Recognition System for {A}ncient {C}hinese",
author = "Dong, Wenxuan and
Liu, Meiling",
editor = "Anderson, Adam and
Gordin, Shai and
Li, Bin and
Liu, Yudong and
Passarotti, Marco C. and
Sprugnoli, Rachele",
booktitle = "Proceedings of the Second Workshop on Ancient Language Processing",
month = may,
year = "2025",
address = "The Albuquerque Convention Center, Laguna",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.alp-1.28/",
doi = "10.18653/v1/2025.alp-1.28",
pages = "213--220",
ISBN = "979-8-89176-235-0",
abstract = "We present a multi-strategy Named Entity Recognition (NER) system for ancient Chi-nese texts in EvaHan2025. Addressing dataset heterogeneity, we use a Conditional Random Field (CRF) for Tasks A and C to handle six entity types' complex dependencies, and a lightweight Softmax classifier for Task B{'}s simpler three-entity tagset. Ablation studies on training data confirm CRF{'}s superiority in capturing sequence dependencies and Softmax{'}s computational advantage for simpler tasks. On blind tests, our system achieves F1-scores of 83.94{\%}, 88.31{\%}, and 82.15{\%} for Test A, B, and C{---}outperforming baselines by 2.46{\%}, 0.81{\%}, and 9.75{\%}. With an overall F1 improvement of 4.30{\%}, it excels across historical and medical domains. This adaptability enhances knowledge extraction from ancient texts, offering a scalable NER framework for low-resource, complex languages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dong-liu-2025-multi">
<titleInfo>
<title>Multi-Strategy Named Entity Recognition System for Ancient Chinese</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenxuan</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meiling</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Ancient Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Anderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shai</namePart>
<namePart type="family">Gordin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yudong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Passarotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">The Albuquerque Convention Center, Laguna</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-235-0</identifier>
</relatedItem>
<abstract>We present a multi-strategy Named Entity Recognition (NER) system for ancient Chi-nese texts in EvaHan2025. Addressing dataset heterogeneity, we use a Conditional Random Field (CRF) for Tasks A and C to handle six entity types’ complex dependencies, and a lightweight Softmax classifier for Task B’s simpler three-entity tagset. Ablation studies on training data confirm CRF’s superiority in capturing sequence dependencies and Softmax’s computational advantage for simpler tasks. On blind tests, our system achieves F1-scores of 83.94%, 88.31%, and 82.15% for Test A, B, and C—outperforming baselines by 2.46%, 0.81%, and 9.75%. With an overall F1 improvement of 4.30%, it excels across historical and medical domains. This adaptability enhances knowledge extraction from ancient texts, offering a scalable NER framework for low-resource, complex languages.</abstract>
<identifier type="citekey">dong-liu-2025-multi</identifier>
<identifier type="doi">10.18653/v1/2025.alp-1.28</identifier>
<location>
<url>https://aclanthology.org/2025.alp-1.28/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>213</start>
<end>220</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Strategy Named Entity Recognition System for Ancient Chinese
%A Dong, Wenxuan
%A Liu, Meiling
%Y Anderson, Adam
%Y Gordin, Shai
%Y Li, Bin
%Y Liu, Yudong
%Y Passarotti, Marco C.
%Y Sprugnoli, Rachele
%S Proceedings of the Second Workshop on Ancient Language Processing
%D 2025
%8 May
%I Association for Computational Linguistics
%C The Albuquerque Convention Center, Laguna
%@ 979-8-89176-235-0
%F dong-liu-2025-multi
%X We present a multi-strategy Named Entity Recognition (NER) system for ancient Chi-nese texts in EvaHan2025. Addressing dataset heterogeneity, we use a Conditional Random Field (CRF) for Tasks A and C to handle six entity types’ complex dependencies, and a lightweight Softmax classifier for Task B’s simpler three-entity tagset. Ablation studies on training data confirm CRF’s superiority in capturing sequence dependencies and Softmax’s computational advantage for simpler tasks. On blind tests, our system achieves F1-scores of 83.94%, 88.31%, and 82.15% for Test A, B, and C—outperforming baselines by 2.46%, 0.81%, and 9.75%. With an overall F1 improvement of 4.30%, it excels across historical and medical domains. This adaptability enhances knowledge extraction from ancient texts, offering a scalable NER framework for low-resource, complex languages.
%R 10.18653/v1/2025.alp-1.28
%U https://aclanthology.org/2025.alp-1.28/
%U https://doi.org/10.18653/v1/2025.alp-1.28
%P 213-220
Markdown (Informal)
[Multi-Strategy Named Entity Recognition System for Ancient Chinese](https://aclanthology.org/2025.alp-1.28/) (Dong & Liu, ALP 2025)
ACL