@inproceedings{zadworny-gordin-2025-assignment,
title = "Assignment of account type to proto-cuneiform economic texts with Multi-Class Support Vector Machines",
author = "Zadworny, Piotr and
Gordin, Shai",
editor = "Anderson, Adam and
Gordin, Shai and
Li, Bin and
Liu, Yudong and
Passarotti, Marco C. and
Sprugnoli, Rachele",
booktitle = "Proceedings of the Second Workshop on Ancient Language Processing",
month = may,
year = "2025",
address = "The Albuquerque Convention Center, Laguna",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.alp-1.3/",
doi = "10.18653/v1/2025.alp-1.3",
pages = "22--30",
ISBN = "979-8-89176-235-0",
abstract = "We investigate the use of machine learning for classifying proto-cuneiform economic texts (3,500-3,000 BCE), leveraging Multi-Class Support Vector Machines (MSVM) to assign text type based on content. Proto-cuneiform presents unique challenges, as it does not en-code spoken language, yet is transcribed into linear formats that obscure original structural elements. We address this by reformatting tran-scriptions, experimenting with different tok-enization strategies, and optimizing feature ex-traction. Our workflow achieves high label-ing reliability and enables significant metadata enrichment. In addition to improving digital corpus organization, our approach opens the chance to identify economic institutions in an-cient Mesopotamian archives, providing a new tool for Assyriological research."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zadworny-gordin-2025-assignment">
<titleInfo>
<title>Assignment of account type to proto-cuneiform economic texts with Multi-Class Support Vector Machines</title>
</titleInfo>
<name type="personal">
<namePart type="given">Piotr</namePart>
<namePart type="family">Zadworny</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shai</namePart>
<namePart type="family">Gordin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Ancient Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Anderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shai</namePart>
<namePart type="family">Gordin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yudong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Passarotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">The Albuquerque Convention Center, Laguna</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-235-0</identifier>
</relatedItem>
<abstract>We investigate the use of machine learning for classifying proto-cuneiform economic texts (3,500-3,000 BCE), leveraging Multi-Class Support Vector Machines (MSVM) to assign text type based on content. Proto-cuneiform presents unique challenges, as it does not en-code spoken language, yet is transcribed into linear formats that obscure original structural elements. We address this by reformatting tran-scriptions, experimenting with different tok-enization strategies, and optimizing feature ex-traction. Our workflow achieves high label-ing reliability and enables significant metadata enrichment. In addition to improving digital corpus organization, our approach opens the chance to identify economic institutions in an-cient Mesopotamian archives, providing a new tool for Assyriological research.</abstract>
<identifier type="citekey">zadworny-gordin-2025-assignment</identifier>
<identifier type="doi">10.18653/v1/2025.alp-1.3</identifier>
<location>
<url>https://aclanthology.org/2025.alp-1.3/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>22</start>
<end>30</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Assignment of account type to proto-cuneiform economic texts with Multi-Class Support Vector Machines
%A Zadworny, Piotr
%A Gordin, Shai
%Y Anderson, Adam
%Y Gordin, Shai
%Y Li, Bin
%Y Liu, Yudong
%Y Passarotti, Marco C.
%Y Sprugnoli, Rachele
%S Proceedings of the Second Workshop on Ancient Language Processing
%D 2025
%8 May
%I Association for Computational Linguistics
%C The Albuquerque Convention Center, Laguna
%@ 979-8-89176-235-0
%F zadworny-gordin-2025-assignment
%X We investigate the use of machine learning for classifying proto-cuneiform economic texts (3,500-3,000 BCE), leveraging Multi-Class Support Vector Machines (MSVM) to assign text type based on content. Proto-cuneiform presents unique challenges, as it does not en-code spoken language, yet is transcribed into linear formats that obscure original structural elements. We address this by reformatting tran-scriptions, experimenting with different tok-enization strategies, and optimizing feature ex-traction. Our workflow achieves high label-ing reliability and enables significant metadata enrichment. In addition to improving digital corpus organization, our approach opens the chance to identify economic institutions in an-cient Mesopotamian archives, providing a new tool for Assyriological research.
%R 10.18653/v1/2025.alp-1.3
%U https://aclanthology.org/2025.alp-1.3/
%U https://doi.org/10.18653/v1/2025.alp-1.3
%P 22-30
Markdown (Informal)
[Assignment of account type to proto-cuneiform economic texts with Multi-Class Support Vector Machines](https://aclanthology.org/2025.alp-1.3/) (Zadworny & Gordin, ALP 2025)
ACL