@inproceedings{tonni-etal-2025-odd,
title = "Some Odd Adversarial Perturbations and the Notion of Adversarial Closeness",
author = "Tonni, Shakila Mahjabin and
Faustini, Pedro and
Dras, Mark",
editor = "Kummerfeld, Jonathan K. and
Joshi, Aditya and
Dras, Mark",
booktitle = "Proceedings of the 23rd Annual Workshop of the Australasian Language Technology Association",
month = nov,
year = "2025",
address = "Sydney, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.alta-main.3/",
pages = "28--44",
ISBN = "1834-7037",
abstract = "Deep learning models for language are vulnerable to adversarial examples. However, the perturbations introduced can sometimes seem odd or very noticeable to humans, which can make them less effective, a notion captured in some recent investigations as a property of `(non-)suspicion'. In this paper, we focus on three main types of perturbations that may raise suspicion: changes to named entities, inconsistent morphological inflections, and the use of non-English words. We define a notion of adversarial closeness and collect human annotations to construct two new datasets. We then use these datasets to investigate whether these kinds of perturbations have a disproportionate effect on human judgements. Following that, we propose new constraints to include in a constraint-based optimisation approach to adversarial text generation. Our human evaluation shows that these do improve the process by preventing the generation of especially odd or marked texts."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tonni-etal-2025-odd">
<titleInfo>
<title>Some Odd Adversarial Perturbations and the Notion of Adversarial Closeness</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shakila</namePart>
<namePart type="given">Mahjabin</namePart>
<namePart type="family">Tonni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pedro</namePart>
<namePart type="family">Faustini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Dras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Annual Workshop of the Australasian Language Technology Association</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="given">K</namePart>
<namePart type="family">Kummerfeld</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aditya</namePart>
<namePart type="family">Joshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Dras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Sydney, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">1834-7037</identifier>
</relatedItem>
<abstract>Deep learning models for language are vulnerable to adversarial examples. However, the perturbations introduced can sometimes seem odd or very noticeable to humans, which can make them less effective, a notion captured in some recent investigations as a property of ‘(non-)suspicion’. In this paper, we focus on three main types of perturbations that may raise suspicion: changes to named entities, inconsistent morphological inflections, and the use of non-English words. We define a notion of adversarial closeness and collect human annotations to construct two new datasets. We then use these datasets to investigate whether these kinds of perturbations have a disproportionate effect on human judgements. Following that, we propose new constraints to include in a constraint-based optimisation approach to adversarial text generation. Our human evaluation shows that these do improve the process by preventing the generation of especially odd or marked texts.</abstract>
<identifier type="citekey">tonni-etal-2025-odd</identifier>
<location>
<url>https://aclanthology.org/2025.alta-main.3/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>28</start>
<end>44</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Some Odd Adversarial Perturbations and the Notion of Adversarial Closeness
%A Tonni, Shakila Mahjabin
%A Faustini, Pedro
%A Dras, Mark
%Y Kummerfeld, Jonathan K.
%Y Joshi, Aditya
%Y Dras, Mark
%S Proceedings of the 23rd Annual Workshop of the Australasian Language Technology Association
%D 2025
%8 November
%I Association for Computational Linguistics
%C Sydney, Australia
%@ 1834-7037
%F tonni-etal-2025-odd
%X Deep learning models for language are vulnerable to adversarial examples. However, the perturbations introduced can sometimes seem odd or very noticeable to humans, which can make them less effective, a notion captured in some recent investigations as a property of ‘(non-)suspicion’. In this paper, we focus on three main types of perturbations that may raise suspicion: changes to named entities, inconsistent morphological inflections, and the use of non-English words. We define a notion of adversarial closeness and collect human annotations to construct two new datasets. We then use these datasets to investigate whether these kinds of perturbations have a disproportionate effect on human judgements. Following that, we propose new constraints to include in a constraint-based optimisation approach to adversarial text generation. Our human evaluation shows that these do improve the process by preventing the generation of especially odd or marked texts.
%U https://aclanthology.org/2025.alta-main.3/
%P 28-44
Markdown (Informal)
[Some Odd Adversarial Perturbations and the Notion of Adversarial Closeness](https://aclanthology.org/2025.alta-main.3/) (Tonni et al., ALTA 2025)
ACL