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Abstract

Speech emotion recognition is vital for human-
computer interaction, particularly for low-
resource languages like Arabic, which face
challenges due to limited data and research. We
introduce ArabEmoNet, a lightweight architec-
ture designed to overcome these limitations and
deliver state-of-the-art performance. Unlike
previous systems relying on discrete MFCC fea-
tures and 1D convolutions, which miss nuanced
spectro-temporal patterns, ArabEmoNet uses
Mel spectrograms processed through 2D convo-
lutions, preserving critical emotional cues often
lost in traditional methods. While recent mod-
els favor large-scale architectures with millions
of parameters, ArabEmoNet achieves superior
results with just 1 million parameters, which
is 90 times smaller than HuBERT base and 74
times smaller than Whisper. This efficiency
makes it ideal for resource-constrained environ-
ments. ArabEmoNet advances Arabic speech
emotion recognition, offering exceptional per-
formance and accessibility for real-world appli-
cations.

1 Introduction

Speech Emotion Recognition (SER) is essential
for improving human-computer interaction, partic-
ularly in linguistically diverse contexts like Arabic
speech. The complexity of detecting emotions from
speech arises from variations in prosody, phonet-
ics, and speaker expression. Over time, SER has
evolved from statistical approaches to deep learn-
ing, significantly enhancing recognition accuracy.

Early SER systems relied on handcrafted acous-
tic features (e.g., pitch, energy, and MFCCs) pro-
cessed using classical machine learning models like
Support Vector Machines (SVMs) and Gaussian
Mixture Models (GMMs) (Lieskovska et al., 2021).
While effective, these methods struggled with
cross-dataset generalization, particularly in Arabic
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speech, which exhibits rich phonetic and prosodic
diversity. Deep learning mitigated these limita-
tions by enabling automatic feature extraction, with
CNNs capturing localized spectro-temporal pat-
terns and LSTMs modeling sequential dependen-
cies (Fayek et al., 2017). However, many Arabic
SER systems still rely on MFCCs and 1D con-
volutions, which fail to capture essential spectral-
temporal structures for robust emotion recognition.

Transformer-based models (Vaswani et al., 2017)
introduced attention mechanisms to dynamically
focus on emotionally salient speech segments (Mir-
samadi et al., 2017). While effective in modeling
long-range dependencies and parallelizing compu-
tations across emotional speech sequences, their
high computational complexity (O(n2) for self-
attention) and substantial memory requirements
render them impractical for resource-constrained
environments. To address these constraints, we
propose ArabEmoNet, a lightweight architecture
leveraging Mel spectrograms with 2D convolu-
tions, effectively capturing both fine-grained spec-
tral features and global contextual relationships
(Kurpukdee et al., 2017).

Our model achieves competitive accuracy with
just 0.97M parameters, making it significantly
more efficient than HuBERT (Hsu et al., 2021)
and Whisper (Radford et al., 2022) while maintain-
ing state-of-the-art performance. Additionally, we
augmented the data by integrating SpecAugment
(Park et al., 2019) and Additive White Gaussian
Noise (AWGN), which enhances the robustness of
our model (Huh et al., 2024).

Experiments on KSUEmotions (Meftah et al.,
2021) and KEDAS (Belhadj et al., 2022) datasets
confirm that ArabEmoNet surpasses prior archi-
tectures while maintaining efficiency, marking a
significant step forward in Arabic SER.

The main contributions of this paper can be sum-
marized as follows:
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Figure 1: ArabEmoNet:2D CNN-Attention and BiLSTM Model Architecture.

• We propose ArabEmoNet: a novel lightweight
hybrid architecture combining 2D Convolu-
tional Neural Networks (CNN) with Bidirec-
tional Long Short-Term Memory (BiLSTM)
and an attention mechanism

• ArabEmoNet (1M parameters) achieves supe-
rior results with just 1 million parameters—90
times smaller than HuBERT base (95M pa-
rameters) and 74 times smaller than Whisper
(74M parameters).

• We demonstrate ArabEmoNet’s superior per-
formance by achieving state-of-the-art results
on the KSUEmotion and KEDAS datasets,
surpassing previous benchmark models.

2 Related Work

Speech Emotion Recognition (SER) has been an
active area of research for decades. Traditional
approaches often relied on statistical evaluations
of handcrafted speech features like pitch, energy,
and spectral coefficients, combined with classifiers
such as Support Vector Machines (SVMs) or Hid-
den Markov Models (HMMs) (Nwe et al., 2003;
Schuller et al., 2011). Although these methods pro-
vided foundational insights, they often struggled
to generalize across different datasets, speakers,
and languages, motivating the shift towards feature
learning with deep neural networks (Jahangir et al.,
2021).

The advent of deep learning has established hy-
brid architectures combining Convolutional Neu-
ral Networks (CNNs) and Recurrent Neural Net-
works (RNNs) as a standard approach in SER
(Sainath et al., 2015; Trigeorgis et al., 2016). In
this paradigm, exemplified by recent studies from
(Khan et al., 2024) and (Mishra et al., 2024), CNNs

extract local features which are then modeled over
time by an RNN. A key limitation in these models,
however, is the common use of 1D convolutions,
which process spectral and temporal information
separately, potentially limiting their ability to cap-
ture intertwined spectro-temporal patterns.

To enhance the performance of these hybrid
models, researchers have incorporated additional
mechanisms. Attention mechanisms, introduced
by (Bahdanau et al., 2015) and popularized by
(Vaswani et al., 2017), have shown significant
promise by allowing models to focus on the most
salient segments of a speech utterance. A prior
study by (Hifny and Ali, 2019b) successfully in-
tegrated an attention mechanism with a CNN
and BiLSTM for an efficient Arabic SER sys-
tem. While achieving state-of-the-art results on
the KSUEmotions dataset (Hifny and Ali, 2019a),
their approach was based on 13-feature Mel Fre-
quency Cepstral Coefficients (MFCCs) and 1D con-
volutions, which may restrict the richness of the
learned features.

Other works have explored more complex archi-
tectural variations to better exploit feature repre-
sentations. For example, (Poorna et al., 2025) in-
troduced a parallel model that processes Mel spec-
trograms through a CNN with a Time-Frequency
Attention mechanism, while simultaneously feed-
ing MFCC features to an attention-based BiLSTM.
The learned features from these separate streams
are then fused for final classification. While in-
novative, such parallel models can introduce sig-
nificant complexity and may not fully exploit the
intertwined nature of spectral and temporal patterns
that exist within a single, rich input representation.

Building on these insights, our work addresses
the limitations of prior approaches. We propose a
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unified, sequential architecture that diverges from
the parallel processing of (Poorna et al., 2025)
and the 1D convolutional layers used by (Mishra
et al., 2024), (Khan et al., 2024), and (Hifny and
Ali, 2019b). By employing 2D convolutions di-
rectly on Log-Mel spectrograms, our model is
designed to more effectively capture the critical
spectro-temporal dependencies in a single process-
ing stream. This architectural choice, combined
with modern data augmentation techniques to en-
hance generalization, aims to provide a more robust
and effective solution for SER.

3 Proposed Approach

In this work, we introduce ArabEmoNet, a dedi-
cated 2D NN-Attention and BiLSTM framework
optimized for Arabic Speech Emotion Recogni-
tion. Our model processes Log-Mel spectrograms
to effectively capture the multifaceted nature of
emotional speech through three complementary
components: 2D convolutional layers that identify
emotion-specific spectral patterns, bidirectional
LSTMs that model the temporal evolution of emo-
tional cues, and an attention mechanism that high-
lights emotionally salient segments within utter-
ances. This integrated approach addresses the
unique challenges of recognizing Arabic emotional
expressions while maintaining a lightweight, effi-
cient architecture. Figure 1 illustrates our complete
model design.

3.1 Input Prepossessing
For our classification model, raw audio signals are
transformed into Log-Mel spectrograms. This pro-
cess involves computing the Mel spectrogram using
a Fast Fourier Transform (FFT) window length of
2048 samples and a hop length of 256 samples. We
generate 128 Mel bands across a frequency range
from 80 Hz to 7600 Hz . A Hann window is applied
to each frame to minimize spectral leakage. Subse-
quently, the resulting Mel spectrogram is converted
to a logarithmic scale (decibels), referenced to the
maximum power, to optimize the dynamic range
for neural network processing.

3.2 Data Augmentation
To improve the generalization ability of the model
and mitigate overfitting, we incorporate Gaussian
noise augmentation during training. This technique
simulates variations in the input data and leads to
a more robust model. Optimization is performed
using the Adam optimizer, which adapts learning

rates for each parameter based on the first and
second moments of the gradients. Additionally,
we utilize batch normalization and early stopping
based on validation loss to further stabilize the
training process and prevent overfitting.

3.3 Feature Extraction via Convolutional
Layers

The initial stage of the model employs a series of
convolutional layers to extract high-level represen-
tations from the input Mel spectrograms. These
layers are responsible for detecting local time-
frequency patterns that are crucial for emotion dis-
crimination. Mathematically, the feature maps Fl

at layer l are computed as:

Fl = σ (Conv2D(Fl−1,Wl, padding = pl) + bl)

where Fl−1 represents the input to the current layer
(with the initial input being the spectrogram S), Wl

and bl denote the learnable weights and biases, re-
spectively, pl is the specified padding, and σ is the
ReLU activation function. It is important to note
that we employ 2D CNNs rather than 1D CNNs be-
cause Mel spectrograms provide a two-dimensional
(time-frequency) representation. This allows the
model to capture both temporal and spectral de-
pendencies more effectively. The use of multiple
convolutional layers, combined with max-pooling
and dropout, enhances the network’s ability to learn
robust, hierarchical feature representations while
mitigating overfitting. Following the convolutional
layers, the extracted features are passed through a
fully connected layer before being passed to the
next stage.

3.4 Temporal Modeling with Bidirectional
LSTM

After the convolutional layers, the network inte-
grates a Bidirectional LSTM to model the temporal
structure and contextual dependencies across time
frames. By processing the sequential output in both
forward and backward directions, the BiLSTM ef-
fectively captures transitions between emotional
states, ensuring a more nuanced understanding of
temporal variations in speech. The hidden state at
time step t is given by:

ht =
[−→
h t;
←−
h t

]
,

where
−→
h t and

←−
h t denote the forward and back-

ward hidden states, respectively. This bidirectional
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processing is particularly important for SER tasks,
as emotions in speech often evolve gradually rather
than appearing in isolation. Capturing the transi-
tions between emotional states allows the model
to account for contextual cues, such as shifts in
pitch, intensity, and rhythm, which are crucial for
accurately interpreting emotional expressions over
time.

3.5 Attention Mechanism

To enhance the model’s ability to distinguish subtle
variations in emotional expressions, an attention
mechanism is integrated atop the BiLSTM outputs.
This mechanism computes a context vector c that
selectively aggregates the BiLSTM hidden states,
assigning higher importance to frames that carry
more salient emotional cues, thereby improving
emotion classification. The context vector is de-
fined as:

c =
∑

t

αtht, with αt =
exp(et)∑
k exp(ek)

,

where the attention score et is computed as:

et = tanh
(
w⊤

e ht + be

)
.

Here, we and be are learnable parameters that
transform the hidden states into a scalar score, and
the softmax function normalizes these scores into a
probability distribution over time steps. By dynami-
cally focusing on the most emotionally informative
segments of the speech signal, this mechanism en-
hances the model’s ability to capture key variations
in tone, prosody, and intensity that define differ-
ent emotional states, making it more effective for
Speech Emotion Recognition (SER).

3.6 Classification Layer:

Finally, the context vector is passed through one
fully connected layer, culminating in an output
layer that produces the logits corresponding to the
target emotion classes:

o = Woc+ bo.

The logits are then typically passed through a soft-
max function during training to compute the cross-
entropy loss for classification. The entire architec-
ture is illustrated in Figure 1.

Component Configuration

Convolutional Layers 3 stages with filters: 32, 64, 128
Kernel: 7× 7, ReLU activation
Max pooling: 2× 2, dropout: 0.3

Fully Connected Input: 128×H ′; Output: 128
ReLU activation; dropout: 0.3

BiLSTM 2 layers, 64 hidden units per direction
Dropout: 0.3

Attention Applied to 128-dim BiLSTM output

Classification Units equal to number of emotion categories

Table 1: Model Hyperparameter Configuration

4 Experimental setup

4.1 Training Platform
Training was done on a single Nvidia RTX 4090
GPU with 24 GB of memory. The training process
utilized the Adam optimizer with an initial learning
rate of 1× 10−4 and a weight decay of 1× 10−5.
An adaptive learning rate scheduler that reduces the
learning rate when a metric’s improvement plateaus
was incorporated to adjust the learning rate during
training, and the Adam optimizer was included.

4.2 Baselines
For our baseline models, we used Whisper-base,
Whisper-small, and HuBERT-base speech encoders
due to their vast popularity in the speech domain.
We applied two identical feed-forward sublayers,
each comprising a fully connected layer followed
by a ReLU activation function and a dropout layer.
This feed-forward block is repeated twice. After
the feed-forward modules, the output is passed to
a final classification layer that maps the learned
features to the desired output classes. We trained
the models using Adam optimizer with learning
rate 1 × 10−3 and dropout 0.5. In addition to
these general speech encoders, we also compared
ArabEmoNet against several dataset-specific base-
line models from the literature:

• For the KSUEmotion dataset, we compared
against the ResNet-based Architecture (Mef-
tah et al., 2021) and the CNN-BLSTM-DNN
Model (Hifny and Ali, 2019b).

• For the KEDAS dataset, baseline (Belhadj
et al., 2022) reported in the original dataset
paper.

4.3 Datasets
In this work, we utilized two Arabic emotional
speech datasets: the KSUEmotions corpus and
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KEDAS, both designed to advance speech emotion
recognition (SER) research in Arabic, addressing
the scarcity of non-English SER resources. We
sampled both datasets at their native frequencies:
16kHz for KSUEmotions and 48kHz for KEDAS.
To handle varying sequence lengths in the dataset,
shorter sequences within a batch were padded with
zeros to match the longest sequence.

4.3.1 KSUEmotions Dataset
The KSUEmotions corpus (Meftah et al., 2021) pro-
vides recordings from 23 native Arabic speakers
(10 males, 13 females) representing diverse dialec-
tal backgrounds from Yemen, Saudi Arabia, and
Syria. The corpus was collected in two phases:

1) Phase 1: Included 20 speakers (10 males, 10
females) recording five emotions: neutral, sad-
ness, happiness, surprise, and questioning, to-
taling 2 hours and 55 minutes of high-quality
audio recorded in controlled environments.

2) Phase 2: Featured 14 speakers (7 males and
4 females from Phase 1, plus 3 new Yemeni
females), replacing the questioning emotion
with anger, contributing an additional 2 hours
and 15 minutes of recordings.

4.3.2 KEDAS Dataset
The KEDAS dataset (Belhadj et al., 2022) com-
prises 5000 audio recording files in standard Ara-
bic, featuring five emotional states: anger, happi-
ness, sadness, fear, and neutrality. The recordings
were collected from 500 actors within the univer-
sity community, including students, professors, and
staff. The dataset is based on 10 carefully selected
phrases commonly used in communication, chosen
through literary and scientific studies. The data col-
lection and validation process involved 55 evalua-
tors, including Arabic linguists, literary researchers,
and clinical psychology specialists, ensuring high-
quality emotional content and linguistic accuracy.

4.4 Evaluation
To evaluate our classification model’s performance,
we used two key metrics: Macro F1-score and Mi-
cro F1-score. Since no specific train-test split was
provided for the datasets, we follow (Hifny and Ali,
2019b) and report the average of a 5-fold cross-
validation with stratified splits on both datasets.

4.4.1 Macro F1-Score
The macro F1-score (Sokolova et al., 2009) calcu-
lates the unweighted mean of F1-scores for each

class. It treats all classes equally, regardless of their
size, making it suitable for imbalanced datasets.

4.4.2 Micro F1-Score
The micro F1-score (Sokolova et al., 2009) aggre-
gates the contributions of all classes to compute
the average metric. Instead of treating all classes
equally, it is weighted by the number of instances
in each class, making it more suitable for balanced
datasets.

5 Results

The results presented in Table 2 demonstrate the
effectiveness and efficiency of the ArabEmoNet
architecture for Arabic speech emotion recogni-
tion across two distinct datasets: KSUEmotion and
KEDAS.

On the KSUEmotion dataset, ArabEmoNet
achieves an accuracy of 91.48%, which represents
state-of-the-art performance. This significantly out-
performs previously established benchmarks for
this dataset, including the CNN-BLSTM-DNN
model (Hifny and Ali, 2019b) and the ResNet-
based architecture (Meftah et al., 2021). Further-
more, ArabEmoNet also surpasses the performance
of larger, pre-trained models such as HuBERT-base
(Hsu et al., 2021) and Whisper-small (Radford
et al., 2022), despite its significantly smaller pa-
rameter count.

Similarly, on the KEDAS dataset, our model
achieves an exceptional accuracy of 99.46%. This
result substantially surpasses the original Base-
line Model (Belhadj et al., 2022) and demonstrates
competitive performance even when compared to
highly resource-intensive pre-trained models like
Whisper-small (Radford et al., 2022) and HuBERT-
base (Hsu et al., 2021). Notably, ArabEmoNet
achieves these superior or competitive results with
significantly fewer parameters (0.97M) compared
to pretrained models such as HuBERT-base (95M)
and Whisper-small (74M).

6 Discussion and Analysis

6.1 CNN Kernel Size

Table 3 shows the impact of kernel size on ArabE-
moNet’s performance for the KSUEmotion Dataset.
As the kernel size increases from 3 to 7, the model’s
accuracy steadily improves, peaking at 91.48%
with a kernel size of 7 and a corresponding padding
of 3. Beyond this point, increasing the kernel size
further (to 9 and 11) leads to a decline in accuracy.
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Dataset Model Accuracy
(%) ↑

Micro F1
(%)

Macro
F1 (%)

Params
(M)

KSUEmotion

Whisper-base (Radford et al., 2022) 78.81 76.77 78.81 74
Hubert-base-Emotion 84.30 83.00 84.00 95
ResNet-based Architecture (Meftah et al., 2021) 85.53 85.53 85.53 25
Whisper-small (Radford et al., 2022) 85.98 85.96 85.98 244
Hubert-base (Hsu et al., 2021) 87.04 87.22 87.04 95
ArabEmoNet (Transformer) - Ours 86.66 86.66 86.66 1
CNN-BLSTM-DNN Model (Hifny and Ali, 2019b) 87.20 87.20 87.20 -
ArabEmoNet - Ours 91.48 91.48 91.46 1

KEDAS
Baseline Model (Belhadj et al., 2022) 75.00 75.00 75.00 -
Whisper-base (Radford et al., 2022) 97.60 97.56 97.60 74
Hubert-base-Emotion 98.00 97.98 98.00 95
Hubert-base (Hsu et al., 2021) 99.35 99.48 99.50 95
Whisper-small (Radford et al., 2022) 99.40 99.38 99.40 244
ArabEmoNet - Ours 99.46 99.46 99.42 1

Table 2: Comparison of Models on KSUEmotion and KEDAS Datasets

Kernel Size Padding Accuracy (%) Params (M)

11 5 89.90 1.71
9 4 91.15 1.29
7 3 91.48 0.97
5 2 90.08 0.71
3 1 89.71 0.55

Table 3: Impact of Changing Kernel Size for CNN
Layers (KSUEmotion Dataset)

Emotion Accuracy (%)

Neutral 93.75
Happy 88.37
Sad 95.38
Surprise 90.70
Angry 90.32
Fear 96.92

Table 4: Per-emotion results on the KSUEmotion
dataset.

Larger kernels, while increasing the receptive field,
may introduce too much noise or become less adept
at capturing fine-grained details, leading to a dip in
accuracy. Conversely, smaller kernels might not en-
compass enough contextual information to achieve
optimal recognition. Therefore, the kernel size of 7
represents the best trade-off between performance
and model complexity in this experimental setup.

6.2 Data Augmentation

To assess the contribution of data augmentation to
the model’s robustness and generalization, we com-

Training Strategy Accuracy (%)

Without Augmentation 89.10
With Augmentation 91.48

Table 5: Impact of Data Augmentation on Model Per-
formance (KSUEmotion Dataset)

pared the performance of our model trained with
and without augmentation techniques on the KSUE-
motion dataset. As shown in Table 5, employing
data augmentation leads to a significant improve-
ment in test accuracy, increasing from 89.10% to
91.48%. This improvement demonstrates the ef-
fectiveness of data augmentation in enhancing the
model’s generalization capabilities.

6.3 Transformer-Based Architecture
To evaluate different architectural configurations,
we performed further experiments with a CNN-
Transformer model while keeping the remaining
components unchanged. The Transformer-based
architecture achieved an accuracy of 86.66% on the
KSUEmotion dataset, as shown in Table 2, which is
lower than ArabEmoNet’s performance of 91.48%.
This comparison suggests that the BiLSTM-based
approach is more effective for Arabic dialectical
speech emotion recognition tasks.

7 Conclusion

This study introduces ArabEmoNet, a lightweight
yet highly effective architecture for Arabic Speech
Emotion Recognition. By integrating 2D CNN
layers, BiLSTM networks, and an attention mecha-
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nism with Mel spectrogram inputs, ArabEmoNet
significantly advances the state-of-the-art, achiev-
ing a remarkable 4% improvement over existing
models on the KSUEmotions dataset. Our results
demonstrate that 2D convolutions substantially out-
perform traditional approaches using 1D convo-
lutions and MFCC features, capturing richer and
more nuanced acoustic patterns essential for emo-
tion classification.

Furthermore, employing Gaussian noise aug-
mentation successfully enhanced the model’s ro-
bustness and addressed data imbalance issues, un-
derscoring the importance of effective augmenta-
tion strategies. Comparative experiments revealed
that transformer-based architectures, while power-
ful in other contexts, were less effective for this
task, highlighting the particular suitability of BiL-
STM layers in capturing temporal emotional dy-
namics.

In future work, we aim to extend ArabEmoNet’s
training to larger, multilingual datasets, validating
its applicability and generalizability across diverse
linguistic and cultural contexts. This expansion
promises significant contributions toward more in-
clusive and effective global emotion recognition
systems.

8 Limitations

A potential limitation to our architecture arises
from the method used to handle variable audio
lengths. To standardize the input size for model
processing, the architecture employs zero-padding.
Specifically, shorter audio sequences within any
given batch are padded with zeros to equal the
length of the longest sequence in that same batch.
While this is a standard technique, it can introduce
a limitation if there is significant variance in the
duration of audio clips within a batch. In such
cases, shorter clips will be appended with a large
amount of non-informative zero values, which can
lead to unnecessary computational processing and
potentially impact the model’s learning efficiency
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