ArabJobs: A Multinational Corpus of Arabic Job Ads

Mo El-Haj

VinUniversity, Vietnam
Lancaster University, UK
elhaj.m@vinuni.edu.vn
m.el-haj@lancaster.ac.uk

Abstract

ArabJobs is a publicly available corpus of Arabic job advertisements collected from Egypt, Jordan, Saudi Arabia, and the United Arab Emirates. Comprising over 8,500 postings and more than 550,000 words, the dataset captures linguistic, regional, and socio-economic variation in the Arab labour market. present analyses of gender representation and occupational structure, and highlight dialectal variation across ads, which offers opportunities for future research. We also demonstrate applications such as salary estimation and job category normalisation using large language models, alongside benchmark tasks for gender bias detection and profession classification. The findings show the utility of ArabJobs for fairness-aware Arabic NLP and labour market research. The dataset is publicly available on GitHub: https://github.com/ drelhaj/ArabJobs.

1 Introduction

The expansion of Arabic Natural Language Processing (NLP) research has supported progress in areas such as sentiment analysis, named entity recognition, and machine translation (Antoun et al., 2020). However, the field continues to face a shortage of datasets that are both linguistically diverse and representative of socio-economic realities. Job advertisements offer a valuable lens into labour market discourse, often encoding assumptions about gender roles, social hierarchies, and regional language practices. Prior research has demonstrated the presence of gender bias in such texts and stressed the importance of computational techniques to detect and reduce these biases (Dikshit et al., 2024a).

Despite the importance of employment-related text for sociolinguistic and fairness-oriented NLP, no publicly available Arabic corpus exists that captures the structure and linguistic diversity of job advertisements across multiple Arab countries. To our knowledge, no prior datasets have been released in this domain, and existing work on Arabic job-related text is either non-existent or inaccessible. To address this gap, we present **ArabJobs**, a corpus of Arabic job advertisements collected from four countries—Egypt, Jordan, the United Arab Emirates, and Saudi Arabia. The dataset includes structured fields such as job title, location, and salary, as well as unstructured job descriptions, offering broad coverage across sectors and dialects.

2 Literature Review

Despite recent advances in Arabic NLP, the field continues to face a shortage of domain-specific and socio-linguistically diverse corpora. While general-purpose datasets and language models have been developed for Arabic (Antoun et al., 2020; El-Haj, 2020; Alhafni et al., 2024; Daoud et al., 2025; El-Haj and Ezzini, 2024; Elmadani et al., 2025; El-Haj et al., 2024), resources grounded in real-world contexts—such as employment, health, or finance—remain rare. This limits the development of systems capable of modelling Arabic in ways that reflect regional variation, social practices, and occupational language.

For English, job advertisement datasets have enabled a range of impactful studies, particularly in the analysis of bias, fairness, and labour market discourse. For example, recruitment corpora have been used to reveal implicit gender stereotypes in job descriptions (Dikshit et al., 2024b), providing empirical foundations for bias detection tools and fairness-aware text generation. Such work has underscored the value of job ads as a lens into both linguistic and socio-economic structures. However, no comparable resource exists for Arabic, leaving a significant gap in our ability to conduct similar analyses across the Arab region. The Arab-Jobs corpus fills this gap by introducing the first

publicly available, multi-country corpus of Arabic job advertisements. Covering posts from Egypt, Jordan, Saudi Arabia, and the UAE, it enables the study of regional dialect use, gender representation, and occupational framing in real-world labour discourse. The corpus is designed to support downstream NLP tasks and facilitate investigations into sociolinguistic variation in a structured, professionally relevant setting.

Prior work on gender and dialect in Arabic NLP further highlights the importance of such domaingrounded corpora (Alhafni et al., 2022). Bias detection and mitigation strategies have largely been confined to general-purpose or translated datasets, with limited exploration of high-stakes, real-world domains like employment. Tools such as AraWEAT (Lauscher et al., 2020) and the Arabic Parallel Gender Corpus (Alhafni et al., 2022) provide important foundations for modelling gender sensitivity, while dialect classification benchmarks like MADAR (Bouamor et al., 2019), NADI (Abdul-Mageed et al., 2020), and ALDi (Keleg et al., 2023) offer frameworks for analysing linguistic variation. Yet, these efforts often operate independently of professional or institutional contexts. By anchoring linguistic analysis in the domain of job advertising—where language directly impacts access to opportunity—the ArabJobs corpus offers a new lens for examining structural inequality, dialectal salience, and cultural norms embedded in Arabic textual data. Our study explores how gendered language and job category structures manifest in Arabic job advertisements. We also extend research directions commonly pursued in English NLP, such as implicit gender bias detection and the use of LLMs for salary estimation and job classification—demonstrating how a domain-specific corpus can support analogous investigations in Arabic and open new avenues for NLP research in the region.

3 ArabJobs Corpus

The ArabJobs corpus is the first large-scale, publicly available dataset of Arabic job advertisements, supporting research in NLP, labour market analysis, sociolinguistics, and computational social science. It contains **8,546** ads totalling over **550,000 words**, collected from Egypt, Jordan, Saudi Arabia, and the UAE. These cover a wide range of sectors and reflect regional linguistic and socio-economic variation.

Each entry includes structured fields such as job title, location, salary (or estimate), gender preference, and free-text descriptions. Table 1 presents a breakdown by country, showing the number of ads, gender targeting (male, female, or neutral), and average word count per post. This dataset enables nuanced analyses of how job markets communicate expectations and supports investigations into gendered language, occupational framing, and fairness in employment discourse.

Country	Ads	Male	Female	Neutral	Avg. Word Count
Egypt	3,598	2,085	313	1,200	58.88
Jordan	1,147	498	370	279	47.49
Saudi Arabia	1,854	972	264	618	116.65
UAE	1,947	1,212	427	308	28.57

Table 1: Job Advertisement Statistics by Country

As shown in Figure 1, Egypt and the UAE account for the largest number of job advertisements in the corpus, followed by Saudi Arabia and Jordan. These differences likely reflect underlying labour market dynamics and platform usage across the region. The breakdown also reveals notable variation in posting volume and length, both of which are relevant for downstream analyses of language use and content structure.

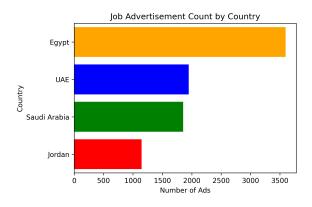


Figure 1: Distribution of job advertisements across four countries in the ArabJobs corpus.

3.1 Data Collection

The ArabJobs corpus was constructed by scraping Arabic job advertisements from seven publicly accessible recruitment platforms across the MENA region. We complied with all robots.txt restrictions, excluded paywalled or login-protected content, and implemented rate limiting to ensure respectful data collection. All personally identifiable information—such as names, emails, and phone numbers—was removed during post-processing

(see Section 8 for further details).

Each job entry in the corpus includes structured fields such as job_title, location, salary, gender, description, and country. Additionally, the dataset contains fields generated via LLM-based inference—profession, salary_local, salary_usd, job_category, and sub_category—which were subsequently verified by native Arabic-speaking annotators.

4 Dialectal Variation and Code-Switching Analysis

Although ArabJobs does not explicitly annotate dialects, its multinational scope naturally captures regional linguistic variation. To explore this, we conducted an unsupervised analysis using job descriptions from Egypt, Jordan, Saudi Arabia, and the UAE.

We sampled 1,500 ads per country to ensure a balanced dataset and represented job descriptions using TF-IDF features. Dimensionality reduction via Truncated Singular Value Decomposition (SVD) revealed clear regional clusters (Figure 2). Saudi and Emirati ads (Gulf dialects) clustered closely, while Egyptian and Jordanian postings formed separate regions, reflecting variation in dialect and register. For instance, Jordanian ads for female beauty salons often use صالون سيدات, صالون whereas terms preferred in Gulf ads include and صالون نسائي. Dialectal differences also appear in barbering roles (مصفف شعر ,حلاق, and کوافیر), as well as in transport-related terms such as and ,رخصة سواقة ,ليسن ,سكوتر ,دراجة هوائية ,عجلة ,درايفر رخصة قيادة.

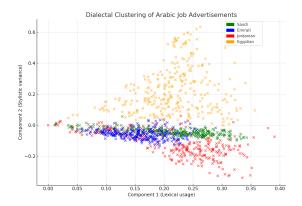


Figure 2: Dialectal clustering. Component 1 captures lexical variation; Component 2 reflects stylistic differences.

We also analysed code-switching—English word usage within Arabic descriptions. As shown

in Figure 3, ads from Jordan, Egypt, and Saudi Arabia featured more English terms (e.g., "Sales Executive", "Supervisor"), especially in sales and admin roles. In contrast, UAE postings more consistently used Arabic or Arabised terms such as 'السيرة الذاتية' and 'السي في', 'البريد الإلكتروني', 'الميرة الذاتية' and 'السي في', 'البريد الإلكتروني', 'الميرة الذاتية'

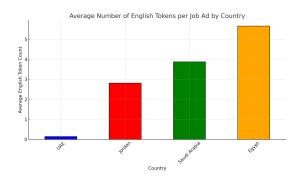


Figure 3: ArabJobs: Arabic-English Code Switching.

While job advertisements are typically composed in Modern Standard Arabic (MSA), dialectal features frequently appear, often unintentionally, even in contexts considered formal. This reflects the broader phenomenon of diglossia in Arabic, where speakers regularly shift between MSA and regional varieties. For instance, Egyptian ads may include everyday colloquialisms such as علا ("bike"), while Jordanian postings might سكوتر favour Arabised English borrowings like سكوتر ("scooter"). These variations do not necessarily index prestige or class, but rather highlight the influence of local linguistic norms and digital writing practices. Similarly, ads for the beauty sector in Jordan may adopt familiar, communityoriented phrasing, whereas Gulf postings lean towards more formal or gender-specific expressions. These linguistic patterns reflect how Arabic speakers naturally draw from their dialects-even in written form—using them to convey relatability, express culturally grounded meanings, or enhance the communicative effectiveness of the advertisement.

5 Corpus Processing and Normalisation

To enable structured analysis and downstream NLP tasks, we applied several post-processing steps to enrich the raw job advertisements with additional metadata. This included inferring missing salary information, normalising inconsistent job categories, and generating standardised labels. These steps combined rule-based procedures, large language model prompting, and manual verifica-

tion to improve the corpus's analytical utility.

5.1 Salary Estimation

The salary field records the original salary information when provided, either as a single figure (e.g., 3000 Emirati Dirham) or a range (e.g., 9000-11100 Egyptian Pound). However, only 3,265 job advertisements included this information. To address the substantial number of missing values, we used GPT-4 (OpenAI, 2023) to estimate salaries based on other job attributes. Rather than using the model interactively via a conversational interface, we adopted a prompt-based inference approach. Specifically, we constructed structured prompts that included 3 in-context examples drawn from the 3,265 salary-annotated ads, followed by a new instance requiring prediction (See Appendix A). Examples were reused across prompts, sampled by country and job category to maintain relevance. Our aim was not to introduce a novel estimation method, but to show that the dataset is structured and unambiguous enough to support downstream tasks with state-of-the-art LLMs.

To evaluate the model's predictive performance, we tested its output against the full set of 3,265 job ads with known salary values. As shown in Table 2, the model achieved a low mean absolute error (MAE) of 11.83 and a root mean square error (RMSE) of 14.84. Additionally, 98.5% of predictions fell within $\pm 10\%$ of the true salary, and 99.45% fell within $\pm 20\%$. The Pearson correlation coefficient was 0.997, indicating a linear alignment in this simulated setup. These results demonstrate that the model performs reliably in structured inference tasks, with prediction quality that aligns well with the distribution of true values.

Metric	Value
Number of Samples Evaluated	3,265
Mean Absolute Error (MAE)	11.83
Root Mean Square Error (RMSE)	14.84
Pearson Correlation (r)	0.997
Within ±10% of Actual Salary	98.50%
Within ±20% of Actual Salary	99.45%

Table 2: Evaluation results for simulated salary estimation using GPT-4

To further validate the reliability of these estimates, we conducted a human evaluation. Two native Arabic-speaking annotators (Annotator 1 and Annotator 2), both fluent in Modern Standard Arabic—independently estimated salaries for a ran-

dom sample of 500 job ads each. Both annotators had access to the full set of 3,265 salary-annotated ads, excluding the 500 samples they were asked to label. As with the model evaluation, salary ranges (e.g., 1000–2000) were reduced to their midpoints for comparison.

Inter-annotator agreement was high: 93% of estimates matched within a ±20% margin, and 89% within ±10%. GPT-4's predictions also aligned well with human judgement. Agreement between GPT-4 and Annotator 1 reached 85% within ±20% and 81% within ±10%, while alignment with Annotator 2 was slightly lower at 81% and 78%, respectively. These results, shown in Table 3, demonstrate that the model's estimates are both stable and broadly comparable in quality to human annotation.

Comparison	Agreement
A1 vs A2 @ ±10%	0.89
A1 vs A2 @ ±20%	0.93
GPT-4 vs A1 @ ±10%	0.81
GPT-4 vs A1 @ ±20%	0.85
GPT-4 vs A2 @ ±10%	0.78
GPT-4 vs A2 @ ±20%	0.81

Table 3: Inter-annotator agreement for salary estimation(A1, A2: Annotators 1 and 2.)

The salary_local and salary_usd columns were generated for all 8,546 job advertisements as explained above. salary_local reflects the salary in the original currency of the job post (e.g., Jordanian Dinar, Saudi Riyal, Emirati Dirham, Egyptian Pound), while salary_usd provides the corresponding amount converted to US Dollars. 1

5.2 Job Category Unification

The job_category field captures the functional sector of each job advertisement (e.g., Customer Service, Engineering). These labels were originally assigned by the source platforms² but varied significantly across sites due to inconsistent taxonomies—for example, موظف استقبال (Receptionist), مساعد إداري (Administrative Assistant), and سرتير (Secretary) all describe similar roles but were labelled differently. First, all raw category names were aggregated to capture the full range of sectoral variation. Then, GPT-4 was used

¹Conversion rates used: 1 JOD = 1.41 USD, 1 SAR = 0.27 USD, 1 AED = 0.27 USD, 1 EGP = 0.032 USD.

²We preserved the original categorisation in the profession field, as shown in Section 3.1.

when needed. For example, خدمة العملاء, , and Customer Service / Call Centre were merged under عدمة عملاء (Customer Service).

To reduce fragmentation, rare or overlapping categories were merged under broader labels. For example, علوم ورعاية صحية and ميدلة , تمريض ,طب were unified under الرعاية الصحية (Healthcare). To retain granularity, the original profession labels were preserved in a separate sub_category column, enabling both general and detailed analyses (e.g., comparing nurses and pharmacists).

This process yielded a coherent taxonomy of Arabic job sectors. Table 4 summarises the resulting category distribution.

Arabic Category	English Translation	Ad Count
مبيعات	Sales	1783
فنيين وحرفيين	Technicians and Craftsmen	960
إدارة وسكرتارية	Admin and Secretarial	777
سياحة ومطاعم	Tourism and Restaurants	733
مالية ومحاسبة	Finance and Accounting	579
سيارات وميكانيك	Automotive and Mechanics	460
تسويق	Marketing	447
خدمة عملاء	Customer Service	428
هندسة	Engineering	360
خدمات تنظیف	Cleaning Services	290
موارد بشرية	Human Resources	272
رعاية صحية	Healthcare	260
صناعة وتجزئة	Manufacturing and Retail	251
صحة وجمال	Health and Beauty	221
إعلام وتصميم	Media and Design	220
أمن وحراسة ٰ	Security	145
سائقين وتوصيل	Drivers and Delivery	145
تعليم	Education	108
تكنولوجيا المعلومات	Information Technology	69
قانون ومحاماة	Law and Legal Services	38
Total	-	8,546

Table 4: Distribution of job advertisements by unified job category

6 Gender Representation and Occupational Trends

The frequent use of gendered language in the ArabJobs corpus makes gender representation and bias a central focus of analysis. Gender is often explicitly stated—e.g., addep of implied through gendered job titles and descriptions. This enables a detailed analysis of both explicit and implicit gender preferences across countries and job sectors.

It is important to note that gender labels in the dataset are drawn directly from the original job platforms (see Table 1). Our use of the term "implicit gender" does not refer to inferred labels, but rather to gendered language that appears in job descriptions, such as عميلة ("beautiful") or غيلة ("well-mannered"). By contrast, "explicit gender" refers to ads that state a gender requirement directly, such as through the use of morphologically marked job titles or phrases like مطلوب موظفة ("female employee required").

6.1 Gender Label Distribution Across Countries

As shown in Figure 4, most job postings are directed at men, with far fewer targeting women or using neutral language. While this imbalance is consistent across countries, its extent varies, reflecting national labour market dynamics and cultural norms, highlighting the need to examine how gender is encoded in recruitment language.

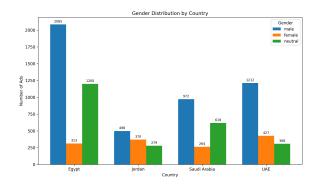


Figure 4: Gender distribution in Arabic job advertisements by country.

6.2 Gendered Occupational Patterns

The corpus spans a wide range of occupational diversity making it suitable for downstream NLP tasks involving profession classification, summarisation, and thematic bias detection. A closer analysis, however, reveals clear gender-based occupational segregation.

As shown in Figure 5, male-targeted job ads disproportionately reference technical, physical, and logistical professions—such as فنيين (technicians), فنيين (engineers), سائقين (drivers), and سائقين (sales agents). Industry-related roles such as مندوب مبيعات (mechanical work), إنتاج (construction) are also dominant. These roles tend to prioritise skills related to physical labour, trade certifications, and lo-

In Arabic, grammatical gender is marked morphologically. For instance, موظفة (male employee) becomes موظفة (female employee) with the suffix عدم الله عند ا

gistics.

Figure 5: Word clouds of male-targeted job advertisements. Left: professions extracted from job titles. Right: weighted job categories (category size reflects its relative frequency across male-targeted ads.).

In contrast, the female-targeted word clouds in Figure 6 reveal a concentration in service, administrative, and care-related roles. Commonly mentioned positions include سرتارية (secretarial work), مساعد (beauty), خدمة العملاء (customer service), مساعد (administrative assistant), and اواري (receptionist). These roles typically emphasise communication, hospitality, appearance, and interpersonal skills—reinforcing prevailing gender norms in the professional landscape.

Figure 6: Word clouds of female-targeted job advertisements. Left: professions from job titles. Right: genderweighted job categories.

6.3 Gender-Based Salary Disparity

The descriptive statistics in Table 5 reveal a consistent salary gap across the dataset. While maletargeted job ads not only dominate in number and occupational variety, they also tend to offer higher average salaries compared to those aimed at women.

To quantify gender-based pay disparities, we compute the gender pay gap as the difference between the average salaries of male- and female-targeted job advertisements, relative to the female average:

$$Pay Gap = \frac{Avg Salary_{male} - Avg Salary_{female}}{Avg Salary_{female}}$$
(1)

Country	Gender	AvgLoc	AvgUSD	N
Egypt	female	7079.29	226.54	313
Egypt	male	8080.22	258.57	2085
Egypt	neutral	8078.95	258.53	1200
Jordan	female	358.92	505.98	370
Jordan	male	412.73	581.95	498
Jordan	neutral	403.48	568.92	279
Saudi Arabia	female	4057.12	1095.43	264
Saudi Arabia	male	4356.65	1176.3	972
Saudi Arabia	neutral	4060.97	1096.47	618
UAE	female	3092.28	834.96	427
UAE	male	2641.01	713.08	1212
UAE	neutral	2998.43	809.61	308

Table 5: Average salary by country and gender. **Av-gLoc**: Average salary in local currency; **AvgUSD**: Average salary in USD; **N**: Number of ads.

A positive gap indicates that men are offered higher average salaries than women, while a negative value signals the reverse. As shown in Table 6, male-targeted roles have higher average pay in Egypt (14.14%), Jordan (15.01%), and Saudi Arabia (7.38%). The UAE is the exception, showing a negative gap of -14.6%, where female-targeted roles offer slightly higher salaries. This is largely due to sectoral distribution: the most common category in UAE ads is فنين وحوفين (Technicians and Craftsmen), comprising 18% of all postings and offering the lowest average pay—mostly targeted at men.

Country	M-USD	F-USD	Gap\$	Gap%
Egypt	258.57	226.54	32.03	14.14%
Jordan	581.95	505.98	75.97	15.01%
Saudi Arabia	1176.3	1095.43	80.88	7.38%
UAE	713.08	834.96	-121.88	-14.6%

Table 6: Gender pay gap in average salaries by country. **M-USD**: Male average salary in USD; **F-USD**: Female average salary in USD; **Gap**\$: Difference (M - F); **Gap**%: Percentage gap relative to female salary. Positive values indicate higher male pay.

6.4 Structural Gender Representation Across Job Categories

To investigate structural gender imbalances, we analysed the proportion of explicitly male- and female-targeted ads across job categories, excluding neutral listings. For each category, we calculated the percentage of male- and female-targeted ads, identified the dominant gender, and computed a **gender skew metric**—the absolute difference be-

³These figures reflect unregulated online job postings and may not represent official labour market policies.

tween male and female shares—to capture the degree of gender exclusivity.

Table 7 presents the results, ranked by descending gender skew. Certain fields show extreme male dominance, such as أمن وحراسة (Security) and أمن وحراسة (Technicians and Craftsmen), with over 96% of postings targeting men. Others, like صناعة المسائقين وتوصيل (Manufacturing and Retail) and وتجزئة (Drivers and Delivery), also display substantial male bias.

In contrast, categories like صحة وجمال (Health and Beauty) and تعليم (Education) are predominantly female-oriented, with over 70% of postings directed at women. These patterns reflect deeply embedded gender norms around occupational roles.

The analysis shows that gender disparity is not limited to salaries—it is structurally rooted in the allocation of roles. Addressing gender equity in the labour market requires tackling both pay gaps and access to opportunity.

Arabic Category	English	All	%Male	%Female	Dominance	Skew (%)
سيارات وميكانيك	Automotive and Mechanics	425	98.4	1.6	Male	96.8
أمن وحراسة	Security	118	98.3	1.7	Male	96.6
سائقين وتوصيل	Drivers and Delivery	124	97.6	2.4	Male	95.2
فنيين وحرفيين	Technicians and Craftsmen	869	96.5	3.5	Male	93.0
هندسة	Engineering	309	91.3	8.7	Male	82.6
موارد بشرية	Human Resources	184	89.1	10.9	Male	78.2
صناعة وتجزئة	Manufacturing and Retail	196	88.3	11.7	Male	76.6
مالية ومحاسبة	Finance and Accounting	306	81.4	18.6	Male	62.8
سياحة ومطاعم	Tourism and Restaurants	499	79.8	20.2	Male	59.6
تكنولوجيا المعلومات	Information Technology	34	79.4	20.6	Male	58.8
تعليم	Education	66	22.7	77.3	Female	54.6
خدمات تنظیف	Cleaning Services	231	74.9	25.1	Male	49.8
مبيعات	Sales	1082	74.5	25.5	Male	49.0
إعلام وتصميم	Media and Design	93	74.2	25.8	Male	48.4
تسويق	Marketing	304	74.0	26.0	Male	48.0
رعاًية صحية	Healthcare	192	66.1	33.9	Male	32.2
صحة وجمال	Health and Beauty	206	36.4	63.6	Female	27.2
خدمة عملاء	Customer Service	297	37.0	63.0	Female	26.0
إدارة وسكرتارية	Admin and Secretarial	587	62.9	37.1	Male	25.8
قانون ومحاماة	Law and Legal Services	19	57.9	42.1	Male	15.8

Table 7: Gender skew across job categories, measured as the absolute difference between male and female ad proportions.

To better understand salary distribution across job categories, we visualised the average salaries for male- and female-targeted job advertisements, paying particular attention to dominant gender representation. Many professions show strong gender imbalances—for example, 98% of ads target men—so simply averaging all ads could produce misleading results. To account for this, we applied a dominance-aware adjustment strategy.

We began by computing the average salaries separately for male-targeted and female-targeted ads within each category. For each category, we identified the dominant gender based on the number of advertisements. The dominant gender's average salary was then given greater interpretive weight to minimise distortion from underrepresented groups. Figure 7 illustrates this compari-

son. The salary lines for men (solid) and women (dashed) vary across categories, with the grey bars showing the adjusted category-wise averages weighted by gender dominance.

The analysis reveals that high-paying fields like are (تكنولوجيا المعلومات) and IT (هندسة) are predominantly male-targeted, with female ads in these sectors offering considerably lower average salaries—though such cases are few. In contrast, Education (تعليم), typically female-dominated, shows higher average pay for women, likely due to a small number of well-paid positions. Sales are (خدمة عملاء) and Customer Service more gender-balanced and exhibit narrower salary gaps. Security (أمن وحراسة) and Drivers and Delivery (سائقین وتوصیل) remain male-exclusive, rendering female salary data in these fields negligible. Interestingly, sectors like Marketing (تسويق) and Health and Beauty (صحة وجمال) offer higher average pay for female-targeted roles, though male participation in these fields is limited. Overall, gender disparities persist not only in pay but also in access to lucrative professions, with many seemingly positive trends for women arising from isolated cases rather than systemic equality.

7 Linguistic Bias in Arabic Job Ads

To better understand the linguistic framing surrounding gender-targeted language in Arabic job advertisements, we conducted a concordance analysis using a window of ±4 words around selected gendered or appearance-related terms. The analysis was based on tokenisation using the CAMeL Tools Arabic tokenizer for improved segmentation quality (Obeid et al., 2020). Our analysis of Arabic job advertisements reveals a concerning pattern of linguistic bias, especially in job posts targeting women. A range of ads explicitly require candidates to meet criteria unrelated to professional qualifications or experience, focusing instead on appearance, age, and marital status. Table 8 summarises the most frequent patterns we observed.

جميلة، حسنة المظهر، and expressions that أنيقة، شابة، عزباء، غير محجبة and expressions that specify age limits (e.g., 30 و 22 و العمر بين 22 و i.e., fully available), sometimes adding that they must be not married (single) غير متزوجة.

Such language reinforces stereotypes about physical attractiveness and gender roles, particularly in roles such as receptionist, sales assistant,

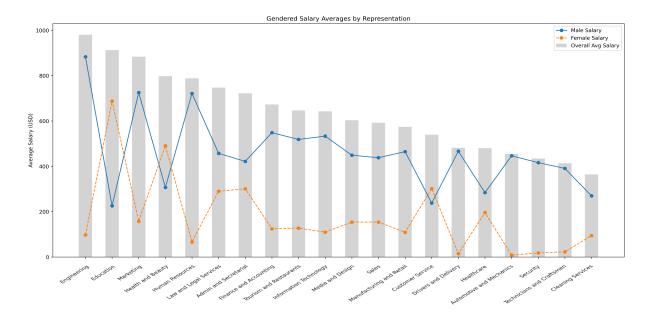


Figure 7: Average salaries in USD by job category, separated by gender and normalised for representation. Bars show overall average; lines indicate male and female-specific averages.

Bias Type	Examples from Ads
Appearance	جميلة، أنيقة، حسنة المظهر، مظهر لائق، مرتبة، غير محجبة
	beautiful, elegant, good-looking, decent appearance, tidy, not veiled
Personality	لبقة، لبق، لبقة في التعامل، شخصية قيادية، لبقة بالتحدث
	polite, articulate, good at interaction, leadership personality, well- spoken
Age Limits	العمر لا يتجاوز 52 سنة، من 18 إلى 30 سنة، العمر بين 22 و 35 age must not exceed 52, from 18 to 30, age between 22 and 35
Marital/Availability Status	عزباء، متفرغة للعمل، غير متزوجة single, available for work, not married
Gender Filters	ذكور فقط، إناث فقط، مطلوب شاب، يفضل شابة
	males only, females only, young man wanted, young woman pre- ferred
Emotion/Soft Skill Framing	لبقة، حسنة السلوك، وجه بشوش، حنونة، لبقة مع الزبائن
	articulate, well-behaved, cheerful face, kind-hearted, good with customers

Table 8: Examples of Biased Criteria in Arabic Job Advertisements

or spa worker. Furthermore, certain phrases demand emotional traits like being لغة (polite/eloquent), which often surface alongside gendered expectations. These requirements, especially when associated with low-skilled roles, suggest systemic patterns of bias and discrimination in hiring.

These phrases indicate structured and recurring forms of discrimination in employment language. A larger sample of concordance examples is included in Appendix **B** to support transparency and enable further qualitative inspection.

8 Conclusion

This paper introduced **ArabJobs**, the first large-scale, publicly available corpus of Arabic job advertisements spanning four Arab countries. The dataset captures linguistic, regional, and socioeconomic variation across over 8,500 postings and

provides a valuable resource for studying gender representation, dialectal diversity, and occupational language in Arabic. The findings not only validate the quality and versatility of the corpus but also highlight its broader potential to support fairness-aware NLP in under-resourced, real-world contexts. Through a series of experiments, we demonstrated the utility of the dataset for downstream tasks such as salary estimation, job classification, and bias detection. Our analyses revealed systematic gender disparities in both language use and pay, along with clear patterns of occupational segregation. We further showed that large language models like GPT-4 can reliably estimate missing salary information and produce predictions closely aligned with human judgement, reinforcing the value of LLMs in socio-economic text analysis and structured inference.

Ethical Considerations

The ArabJobs corpus was collected from publicly accessible websites that did not require authentication or payment. Although available in the public domain in practice, the listings are not covered by formal open data licences (e.g., Creative Commons), so the corpus is distributed under a research-only licence for non-commercial academic use. We do not claim ownership of the original content.

All scraping was conducted in compliance with the robots.txt directives of the source sites, and no automated access was made to restricted paths. Personally identifiable information was stripped from all records to ensure responsible and ethical data handling.

Table 9 lists the data sources and scraping constraints observed at the time of collection.

Website	Scraping Allowed?	Notes
naukrigulf.com	Yes	Avoid listed disallowed paths
gulftalent.com	Yes	Do not impersonate blocked bots
dubizzle.com	Yes	Avoid disallowed paths, rate-limited
tanqeeb.com	Yes	Avoid URLs with parameters
jordanrec.com	Yes	Avoid admin/plugin paths
forasna.com	Yes	Avoid query filters in URLs
sabbar.com	Yes	Fully allowed; provides job sitemaps

Table 9: Scraping permissions and constraints for the ArabJobs corpus sources.

References

Muhammad Abdul-Mageed, Chiyu Zhang, Houda Bouamor, and Nizar Habash. 2020. NADI 2020: The first nuanced Arabic dialect identification shared task. In *Proceedings of the Fifth Arabic Natural Language Processing Workshop*, pages 97–110, Barcelona, Spain (Online). Association for Computational Linguistics.

Bashar Alhafni, Nizar Habash, and Houda Bouamor. 2022. The Arabic parallel gender corpus 2.0: Extensions and analyses. In *Proceedings of the Thirteenth Language Resources and Evaluation Conference*, pages 1870–1884, Marseille, France. European Language Resources Association.

Bashar Alhafni, Reem Hazim, Juan Piñeros Liberato, Muhamed Al Khalil, and Nizar Habash. 2024. The samer arabic text simplification corpus. *arXiv* preprint arXiv:2404.18615.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020. Arabert: Transformer-based model for arabic language understanding. In *Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools*, pages 9–15.

Houda Bouamor, Sabit Hassan, and Nizar Habash. 2019. The MADAR shared task on Arabic finegrained dialect identification. In *Proceedings of the* Fourth Arabic Natural Language Processing Workshop, pages 199–207, Florence, Italy. Association for Computational Linguistics.

Mouath Abu Daoud, Chaimae Abouzahir, Leen Kharouf, Walid Al-Eisawi, Nizar Habash, and Farah E Shamout. 2025. Medarabiq: Benchmarking large language models on arabic medical tasks. arXiv preprint arXiv:2505.03427.

Malika Dikshit, Houda Bouamor, and Nizar Habash. 2024a. Investigating gender bias in stem job advertisements. In *Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)*, pages 1–10.

Malika Dikshit, Houda Bouamor, and Nizar Habash. 2024b. Investigating gender bias in STEM job advertisements. In *Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)*, pages 179–189, Bangkok, Thailand. Association for Computational Linguistics.

Mahmoud El-Haj. 2020. Habibi-a multi dialect multi national arabic song lyrics corpus. In *Proceedings* of the Twelfth Language Resources and Evaluation Conference, pages 1318–1326.

Mo El-Haj, Sultan Almujaiwel, Damith Premasiri, Tharindu Ranasinghe, and Ruslan Mitkov. 2024. Dares: Dataset for arabic readability estimation of school materials. In *Proceedings of the Workshop on DeTermIt! Evaluating Text Difficulty in a Multilingual Context@ LREC-COLING 2024*, pages 103–113.

Mo El-Haj and Saad Ezzini. 2024. The multilingual corpus of world's constitutions (mcwc). In *Proceedings of the 6th Workshop on Open-Source Arabic Corpora and Processing Tools (OSACT) with Shared Tasks on Arabic LLMs Hallucination and Dialect to MSA Machine Translation@ LREC-COLING 2024*, pages 57–66.

Khalid N Elmadani, Nizar Habash, and Hanada Taha-Thomure. 2025. A large and balanced corpus for fine-grained arabic readability assessment. *arXiv* preprint arXiv:2502.13520.

Amr Keleg, Sharon Goldwater, and Walid Magdy. 2023. ALDi: Quantifying the Arabic level of dialectness of text. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 10597–10611, Singapore. Association for Computational Linguistics.

Anne Lauscher, Rafik Takieddin, Simone Paolo Ponzetto, and Goran Glavaš. 2020. AraWEAT: Multidimensional analysis of biases in Arabic word embeddings. In *Proceedings of the Fifth Arabic Natural Language Processing Workshop*, pages 192–199, Barcelona, Spain (Online). Association for Computational Linguistics.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl Eryani, Alexander Erdmann, and Nizar Habash. 2020. Camel tools: An open source python toolkit for arabic natural language processing. In *Proceedings of the twelfth language resources and evaluation conference*, pages 7022–7032.

OpenAI. 2023. Gpt-4 technical report. ArXiv:2303.08774.

Appendix A: Example Prompt for Salary Estimation

Below is a simplified illustration of the structured few-shot prompt used with GPT-4. Three examples with known salaries are provided, followed by one target ad requiring prediction.

SYSTEM: You are an assistant that predicts monthly salaries for job ads in Arabic-speaking countries

Always return the salary as <number> < currency>.

EXAMPLE 1

Title: Accountant Location: Cairo, Egypt

Category: Finance and Accounting

Gender: Any

Description: Responsible for financial

reports and invoices.

Salary: 9,500 EGP

EXAMPLE 2

Title: Sales Executive

Location: Riyadh, Saudi Arabia

Category: Sales

Gender: Male

Description: Outdoor sales for

electronics company.

Salary: 6,500 SAR

EXAMPLE 3

Title: Nurse

Location: Amman, Jordan Category: Healthcare

Gender: Female

Description: Provide patient care in

hospital setting.

Salary: 720 JOD

PREDICT

Title: HR Assistant Location: Dubai, UAE Category: Human Resources

Gender: Any

Description: Support recruitment and

employee records.

Salary:

Appendix B: Job Ads Bias Concordances

التفاصيا	الصفة	التفاصيا
المظهر للعمل في شركة مقاولات	حسنة	مؤهل عالى- اعمال ادارية مطلوب سكرتيرة
المظهر • استقبال وتوجيه الزوار والضيوف •	حسنة	الْإَلكَترونَيَّة. المهام الرئيُّسية تشمُّل: • لبَّاقَّة و
المظهر لها خبرة في التحدث	حسنة	استقبال في معرض جريئة في التعامل
المظهر البقه التفرغ العمل بمؤسسة	حسنة	عبر مديرة مكتب بالشروط التالية:خبرة.
المظهر داخل مدينة أبوظبي قريب	حسنة	شارع المطار مطلوب سكرتيرة خدمة عملاء
المظهر متفرغه للعمل تجيد مهارات	حسنة	لشركة استثمار في أبوظبي آل نهيان
مظهر وتتكلم انجليزي راتب اقامة	حسنة	المطار مطلوب سُكرتيرة على وجه سرعة
المظهر وتتمتع بدقة العمل والالتزام	حسنة	والتنفيذ واعداد التقارير والبحث عبر الانترنت
المظهر نبحث عن سكرتيرة جادة أ	حسنة	دوار الساعة تجيد التسويق والتصميم تكون
المظهر مطلوب موظفة للعمل وايتر	حسنة	في كوفي شوب داخل المضفح 54 شرط
المظهر مطلوبة عاملة منزلية مبيت	حسنة	منزليه لمنزل في أبوظبي شارع الدفاع
المظهر لبقه عدد ساعات العمل 10	حسنة	للعمل بكافية في عجماًن راشيديه 1 الراتب 2800
في التعامل وذات مظهر لائق.	لبقة	فقط)، وفق الشروط التالية: أن تكون
بألتعامل براتب شهري ومكافئات شهرية	لبقة	خبرةً في الاستقبال والتعامل مع العملاء
ومهارات تواصل وتنظيم عالية. التوظيف	لبقة	الشركات العالمية والتعامل معهآ باحترافية. شخصية
في التعامل ومظهر مناسب الدوام	لبقة	اجادة استخدام الكمبيوتر وبرامج الأوفيس
مظهر أنيق واحترافي العمر لا	لبقة	الإنجليزية (قراءة وكتابة وتحدثًا) شخصية
في التعامل ذو مظهّر انيق -	لبقة	العُمر بين 22- 28 سنة - على أن تكون
الْمَتَقَدَم: خبرة في خدمة العملاء:	مرتبة	على جميع الوثائق في قسم الاستقبال
جميلة تجيد العمل في مجال	مرتبة	منطقة أم غافة بأن تكون أنيقة
للعمل في مؤسسة كالا للتجارة	مرتبة	الالكتروني بأن تكون حسنة المظهر أنيقة
8 سأعات عمل 6 ايام عمل ويوم راحة	بدُون حجاب	والعناية بالبشرة للرجال لبقة في التعامل وحسنة المظهر
كون بيئة العمل في بيوتي سنتر والتعامل مع العملاء	غير محجبة	المهام والتعامل مع الأولويات المتغيرة ان تكون حسنة المظهر و
مكان العمل: شارع الجاردنز - عمان الدوام:	بدون حجاب او حجاب Modern	مهارات تواصل ممتازة وقدرة على التنسيق والمتابعة.

Table 10: Biased Criteria in Arabic Job Advertisements - غير محجبة ، لبقة ، مرتبة، غير محجبة

التفاصيل	الصفة	التفاصيل
رقم التواصلقدم على الوظيفة لإظهار	عزباء	المنطقه اوالمناطق المجاوره يسطون ان تكون
معرفة جيدة في استخدام الكمبيوتر	عزباء	توفر لاب توب العمر بين 20-25 سنة
ومتفرغة للعمل ولديها معرفه باستخدامات	عزباء	شابه لمدرسة خاصه في الزرقاء ويفضل
للتواصل على الواتس اب مطلوب	عزباء	رصيفه من عمر 18-30 الشرط ان تكون
للعمل ألقدرة على ألعمل في	متفرغة	في العمل. الشروط المطلوبة: سعودية الجنسية
لبقة رد آلي واتسقدم على ً	متفرغة	مُوبايل يفضل من سكان جبل الحسين
للعمل تماما قدم على الوظيفة	متفرغة	ساكنة بالقرب من السوق * ان تكون
وسريعة التعلم (طبيعة العمل سكرتاريا	متفرغة	السبت للخميس براتب 290 على ان تكون
للعمل - تجيد التعامل مع العملاء -	متفرغة	وبرامج التواصل - شغف في مجال الأزياء -
وغير متزوجة . 3- لبقة في التعامل	متفرغة	المدينة الرياضية وضواحيها 2- ان تكون

Table 11: Biased Criteria in Arabic Job Advertisements - متفرغة ، عزباء

التفاصيل	الصفة	التفاصيل
بين 24 الى 28 سنة - أن يمتلك	العمر	يتوفر فيه الشروط التالية: - أن يتراوح
من 20 ل 30 * مكان السكن بالقرب	العمر	ان تتوفر الشروط التالية للمتقدم للوظّيفة *
لايقل عن25 -موظفين صالة خبرة	العمر	كباتن صالة خبرة سنتين على الاقل
لِايقل عن20 -موظفين باريستا بارد	العمر	موظفين صالة خبرة سنة على الاقل
أقلَّ من 30 - راتب اول ثلاث	العمر	في العبدلي - خبرة في المجال الطبي -
من 25 لغايه 35 سنه - أن يكون	العمر	يفضل وجود خبرة باستخدام الكمبيوتر الشروط: -
لايقل عن 22 عام -موظفين اراجيل	العمر	بارد وساخن خبرة سنتين علَى الاقل
من 25 سنة فما فوق رواتب	العمر	MV وواجهات خبرة ادارة والتنسيق والمشتريات
من 25 - 37 ذات مظهر لائق في	العمر	وساعات تمتلك خبرة في مجال المبيعات
بين 21-35 سنة 4. القدرة على التعامل	العمر	بحد أدنى في مجال اعداد المشاريب 3.
بين 25 و30 سنة يحمل رخصة	العمر	يكون متواجدا في عجمان أو الشارقة.
لا يزيد عن 45 سنة سكان	العمر	خبرة سابقة في أستخدام الرافعه الشوكية
من 18- 30 سنة للعمل بالقرب من	العمر	حلاق لبق في التعامل مع الزبائن
بين 20 30 سنة. مزايا العمل: رواتب	العمر	قوية واللباقة في التعامل مع العملاء.
أقل من 40 ولديها خبرة في	العمر	مطعم نسائي في العين في آلجاهلي
عن 35 عاما يفضل سكان عمان	العمر	عن سنة في نفس المجال لايزيد ً
من 22 الى 30 سنة- يفضل ان	العمر	صافى + العمولة.متطلبات الوظيفة :- مؤهل مناسب
من 18 إلى 27 سنه فقط • الالتزام	العمر	بالانضباط والقدرة على العمل الشروط العَّامة: •
من 22 الى 32 سنةمكان العمل : مدينة	العمر	المرتب ٠٠٣٤ صافى + العمولةمتطلبات الوظيفة :مؤهل مناسب .
لا يتجاوز 25 شرط سوري الجنسية	العمر	صناعية هيلي يحمل اقامة قابلة للإعارة
من 25 - 35 3-أن يمتلك الخبرة و	العمر	المدينة الرياضية و ضواحيها . 2- ان يكون
من 30 لغاية 50 الإلتزام و الجدية	العمر	تنظيف بمجال التنظيف المنزلي بالشروط التالية :
مطلوب 47 سنه فقط عداد السيدات	العمر	تسويق ومبيعات استيراد وتصدير العمل فوري
ما بين 30 إلى 40 سنة. خبرة	العمر	بكالوريوس في أي تخصص ذو صلة.
من 23 إلى 35 انضم إلينا كمدير	العمر	القدرة على إدارة الحسابات والمالية للشركة
حتى 35 على من تنطبق عليه	العمر	التدريب المهني * اجاده القرائه و الكتابه

Table 12: Biased Criteria in Arabic Job Advertisements - العمر