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Abstract

Video-to-text and text-to-video retrieval
are dominated by English benchmarks (e.g.
DiDeMo, MSR-VTT) and recent multilingual
corpora (e.g. RUDDER), yet Arabic remains
underserved, lacking localized evaluation
metrics. We introduce a three-stage frame-
work, AUTOARABIC, utilizing state-of-the-art
large language models (LLMs) to translate
non-Arabic benchmarks into Modern Stan-
dard Arabic, reducing the manual revision
required by nearly fourfold. The framework
incorporates an error detection module that
automatically flags potential translation errors
with 97% accuracy. Applying the framework
to DiDeMo, a video retrieval benchmark
produces DiDeMo-AR, an Arabic variant
with 40,144 fluent Arabic descriptions. An
analysis of the translation errors is provided
and organized into an insightful taxonomy
to guide future Arabic localization efforts.
We train a CLIP-style baseline with identical
hyperparameters on the Arabic and English
variants of the benchmark, finding a moderate
performance gap (∆ ≈ 3 pp at Recall@1),
indicating that Arabic localization preserves
benchmark difficulty. We evaluate three post-
editing budgets (zero/ flagged-only/ full) and
find that performance improves monotonically
with more post-editing, while the raw LLM
output (zero-budget) remains usable. To
ensure reproducibility to other languages, we
made the code available at https://github.
com/Tahaalshatiri/AutoArabic.

1 Introduction

The exponential growth of online video has cre-
ated an urgent demand for accurate retrieval sys-
tems that can find relevant moments within long
streams of visual content. On YouTube alone,

Figure 1: A sample of English captions and their MSA
translations for three moments in the same video.

more than 500 hours of video are uploaded every
minute (Shepherd, 2025).

Over the past decade, the research commu-
nity has released a flood of English-centric bench-
marks like DiDeMo (Anne Hendricks et al., 2017),
MSR-VTT (Xu et al., 2016), the bilingual VATEX
(Wang et al., 2019) and the multilingual RUDDER
(Dabral et al., 2021).

Although these benchmarks have become stan-
dard for text-to-video and video-to-text retrieval,
all of them completely omit Arabic. Subsequently,
Arab researchers are forced to evaluate their re-
trieval models on English data, literally translated
data, or private translations. This slows progress
in Arabic multimodal research and questions the
reproducibility of their results.

Our work helps fill this gap with a three-stage
Large Language Models (LLMs) framework that
localizes any non-Arabic retrieval benchmark into
Modern Standard Arabic (MSA) with minimal hu-
man effort. The framework (i) uses a large lan-
guage model to translate captions into Modern
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Table 1: Video-text retrieval benchmarks. This table highlights a language gap: existing retrieval benchmarks
are almost entirely English (with limited Chinese) and lack Arabic coverage. To our knowledge, only our DiDeMo-
AR offers Modern Standard Arabic captions. "Moment-level" 3 indicates that the dataset provides temporally-
localized descriptions (segment boundaries).

Dataset #Videos Clip Len. Languages Moment-level Arabic?
MSR-VTT (Xu et al., 2016) 10,000 15s EN 7 7
VATEX (Wang et al., 2019) 41,250 10s EN / ZH 7 7
DiDeMo (Anne Hendricks et al., 2017) 10,464 30s EN 3 7
LSMDC (Rohrbach et al., 2015) 118,081 4-5s EN 7 7
ActivityNet (Caba Heilbron et al., 2015) 19,994 120s EN 3 7
RUDDER (Dabral et al., 2021) 100 k / lang. 5-10s EN / ZH / FR / DE / RU 7 7
DiDeMo-AR 10,464 30s AR 3 3

Table 2: Arabic corpora with different modalities (non-retrieval). This highlights a task gap: prior corpora focus
on speech, sentiment, or QA and do not provide videotext retrieval benchmarks. DiDeMo-AR is the first publicly
released Arabic dataset dedicated to retrieval.

Dataset Modality Primary Task Size / Hours Retrieval?

AmdSaEr (Haouhat et al., 2023) Video + Audio + Text Multimodal Sentiment 540 clips 7
MGB-2 (Ali et al., 2016) Audio + Subtitles ASR (broadcast MSA) ∼1200 h 7
MASC (Al-Fetyani et al., 2023) Audio ASR (speech corpus) ∼1000 h 7
GALE Arabic (Glenn et al., 2017) Audio + Text ASR/MT (news/talk) multi-year 7
ArabicaQA (Abdallah et al., 2024) Text QA / Dense Retrieval 92k Q/A 7
ANAD (Elnagar and Gouza, 2020) Audio Speech Emotion Rec. 1,700 utt. 7
AVSD-Arabic (Elhaj and Abdulla, 2021) Video + Audio Lip-reading 1,100 vids 7
DiDeMo-AR (ours) Video + Text Video Retrieval 40,144 caps 3

Standard Arabic, (ii) utilizes a second LLM to au-
tomatically flag lexical, grammatical, and format-
ting errors, and (iii) sends only flagged samples to
expert annotators for final verification. The work-
flow has been applied to the Distinct Describable
Moments corpus (DiDeMo), resulting in DiDeMo-
AR, the first Arabic video retrieval benchmark,
consisting of 10,464 videos and 40,144 fluent
Arabic descriptions. We further contribute the
first systematic taxonomy of LLM translation er-
rors for Arabic benchmark creation, intended as a
reusable checklist for future translation efforts.

To ensure that localization preserves the orig-
inal benchmark’s difficulty, we finetune a Con-
trastive Language-Image Pre-training (CLIP)
baseline (Radford et al., 2021) that uses a Vision
Transformer (ViT-B/16 and ViT-B/32) image en-
coder (Dosovitskiy et al., 2020) and a Masked
and Permuted Pre-training (MPNet) text encoder
(Song et al., 2020), optimized with the symmet-
ric InfoNCE contrastive loss (van den Oord et al.,
2018), on both the English and Arabic variants of
DiDeMo. Although Arabic has a complex word
structure, the model shows only a ≈ 3-point drop
in Recall@1 (R@1, higher is better). This re-
sult suggests that LLM-based translation, com-
bined with light expert correction, can preserve
benchmark difficulty without requiring language-

specific pre-training.
We believe this workflow, benchmark, and error

analysis will help guide future Arabic benchmark
localization research.

2 Background & Related Work

Early attempts to translate multimodal datasets re-
lied either on direct machine translation of English
captions or on small teams of human annotators.
The MSVD-Indonesian corpus (Hendria, 2023),
for example, was created by translating the origi-
nal MSVD sentences into Indonesian with Google
Translate and then finetuning a CLIP baseline. VA-
TEX offers English-Chinese captions produced by
human experts, but no Arabic version, and its cap-
tions are sentence-level rather than moment-level
(Wang et al., 2019). RUDDER combines Google-
translated captions with expert annotations and
adds five additional languages, yet still omits Ara-
bic entirely (Dabral et al., 2021). None of these
projects publishes a detailed taxonomy of transla-
tion errors, so their contributions remain dataset-
specific and provide little guidance for researchers
who intend to localize new benchmarks.

Table 1 lists the retrieval benchmarks that have
driven progress during the last decade. Corpora
such as MSR-VTT (Xu et al., 2016) and LSMDC
(Rohrbach et al., 2015) are clip-based and En-
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Figure 2: AUTOARABIC three-stage localization work-
flow: translation, error detection, and human post-
editing.

glish only. DiDeMo (Anne Hendricks et al., 2017)
introduced moment-level ground-truth in ∼10k
unedited Flickr videos, followed by ActivityNet
Captions, which applies the same idea to long
YouTube clips (Caba Heilbron et al., 2015).

Table 1 highlights a simple fact: not one public
retrieval benchmark offers Modern Standard Ara-
bic (MSA) captions, and only two (DiDeMo, Ac-
tivityNet) provide moment-level ground truth.

Looking into Arabic multimodal benchmarks, it
can be seen that such benchmarks exist but they
target tasks very different from retrieval. MGB-3
focuses on broadcast speech and automatic speech
recognition (Ali et al., 2017). MASC provides
more than 1,000 hours of YouTube audio for large-
scale ASR experiments, again without video cap-
tions (Al-Fetyani et al., 2023). AmdSaEr utilizes
short YouTube clips for sentiment and emotion
recognition (Haouhat et al., 2023) . Large text
corpora such as ArabicaQA push reading compre-
hension research forward (Abdallah et al., 2024)
, yet contain no video. Table 2 summarizes the
information from these datasets. To the best of
our knowledge, DiDeMo-AR is therefore the first
publicly released benchmark that pairs Arabic sen-
tences with temporally grounded video moments.

3 The AUTOARABIC Framework

Figure 2 shows AUTOARABIC, a three-stage
framework that can turn any English video-text
benchmark into Modern Standard Arabic (MSA).
In this section we describe the framework in gen-
eral terms. Its output for DiDeMo is analyzed in
the next sections.

First, every English caption is sent to Gemini
2.0 Flash (Cloud, 2025) with this prompt:

"You will receive an English sentence that
serves as a caption for a short video clip.

Your task is to translate this caption
into Modern Standard Arabic while ensuring
that the translation remains suitable
and appropriate as a caption.
The English caption: {caption}
Arabic caption:"

Gemini is run with temperature=0.7 and
top-p=1.0. Next, each Arabic output is processed
by GPT-4o (OpenAI, 2025) for automatic error de-
tection, tagging six categories: lexical, literal,
hallucination, tense_shift, loanword, and
diacritics (summarized in Table 3).

Finally, captions flagged by the detector are
reviewed by five native-speaker annotators. Al-
though the framework supports selective post-
editing, we performed a full revision in this study,
where annotators reviewed every caption rather
than only the flagged ones. We compared the er-
ror detection performance of the LLM against that
of the annotators and found that the LLM success-
fully identified over 97% of the actual mistakes.

Using these reviewed captions, we evaluated
caption quality under three post-editing budgets:
(i) Raw LLM output (zero), (ii) Fix only LLM-
flagged (few), and (iii) Fix all (full). Results show
that performance improves monotonically with
greater post-editing (zero→ few→ full), while the
raw LLM output remains usable.

It is worth mentioning that the framework is
provider-agnostic: the prompting, validation, and
post-processing steps do not depend on a spe-
cific API and can be run with open or proprietary
LLMs. In this paper, we used high-performing
commercial models to maximize one-time local-
ization quality.

Additionally, diacritics themselves are not er-
rors; inconsistency across samples is. We inten-
tionally did not constrain diacritics in the trans-
lation prompt to observe natural model behavior,
then enforced uniformity post hoc via determinis-
tic stripping.

4 The DIDEMO-AR Dataset

The Distinct Describable Moments (DiDeMo)
dataset (Anne Hendricks et al., 2017) is one of the
largest and most diverse datasets for the temporal
localization of events in videos given natural lan-
guage descriptions. The videos are collected from
Flickr and each video is trimmed to a maximum of
30 seconds. The videos in the dataset are divided
into 5-second segments to reduce the complexity
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Table 3: Error categories identified by the automated detector and addressed through manual post-editing.

Error Type Definition Example (English / Arabic)

Lexical Selection of uncommon or overly formal
words instead of familiar alternatives.

EN: first time we see an otter swim by

AR-poor: ૭૜ٴں. ١ຐո۠ؓ ؇ዛዀڣ ߖߵى ਵਦة أول ۱ڍه
AR-improved: ૭૏ٴں. اոिऻء ׅ֔ڪ֦ ߖߵى ਵਦة أول ۱ڍه

Literal Word-for-word structural translation that
produces unnatural Arabic phrasing.

EN: The man raises onto his knees to crawl.

AR-poor: زۋڰ؇ً. ر܋ٴٺ۬ আॻ༟ ྘ܳފྥٷڎ ۬༟ڍ༥ ا༥ීෂܭ ߌߵڣؕ
AR-improved: ଩ଃܳۋژ. ر܋ٴྥ٭۬ আॻ༟ ا༥ීෂܭ ዛዊᚬݥ

Hallucination Addition of content not present in the
original English text.

EN: The girl starts speaking.

AR-poor: .١ॴ఩اڤ֔ۑ ١֏቞ቘոּ ً؇ܳٺ༲ڎث ਊಾڎأ اܳڰٺ؇ة
AR-improved: ً؇ܳٺ༲ڎث. ਊಾڎأ اܳڰٺ؇ة

Tense Shift Incorrect temporal rendering of present
actions in past tense.

EN: Person in black exits frame to left.

AR-poor: ا྘ܳފ؇ر. ިොຶ اዝདྷৎ৊ڎ ݆݁ ا৙৑ݿިد اይዧٴ؇س ذو اܳލۛݧ ബഎج
AR-improved: ިොຶ اዝདྷৎ৊ڎ ݆݁ ا৙৑ݿިد اይዧٴ؇س ذو اܳލۛݧ ൌฝۑج
ا྘ܳފ؇ر.

Loanword Inconsistent use of transliterated terms
versus established Arabic equivalents.

EN: The camera zooms up on the players.

AR-poor: .ඔ൹؜ٴఈዳዧا আॻ༟ ଫଃܳٺܝٴ؇ً اڤပ࿮ڲજੴا ّگଫଐب
AR-improved: .ඔ൹؜ٴఈዳዧا আॻ༟ ଫଃܳٺܝٴ؇ً اڤ׫ۢܙܽݦ ႞႐آ ّگଫଐب

Diacritics Inconsistent application of diacritical
marks across words and captions.

EN: The gentleman puts his left arm under his right arm.

AR-poor: .ปَฃُْࢦ اࡺࢋْ ِ ِ۬༟َذرِا ොູب ا๤ْཏُ྘ْܳىَ ُ َ۬༟َذرِا ༥ܭُُ ّ֟ ීෂا ُؕ لݯ
AR-improved: .ปฃاࡺࢋࢦ ۬༟ذرا ොູب ا๤ཏ྘ܳى ۬༟ذرا ا༥ීෂܭ لݯؕ

of annotation. The dataset is split into training, val-
idation and test sets containing 8,395, 1,065 and
1,004 videos respectively. The dataset contains a
total of 26,892 moments and one moment could be
associated with descriptions from multiple annota-
tors. The total number of captions in DiDeMo is
40,144. The descriptions in DiDeMo dataset are
detailed and contain camera movement, temporal
transition indicators, and activities. Moreover, the
descriptions in DiDeMo are verified so that each
description refers to a single moment.

Applying the translation framework to DiDeMo
yields DiDeMo-AR with the same 10,464 videos
and 26,892 moments, but now 40,144 fluent MSA
captions. Arabic captions are slightly shorter, 5.6
words on average versus 7.5 in English. Figure
3 plots the word-per-caption distribution for both
languages on the top, while Figure 4 visualizes the
most frequent content words. It can be seen that
the most common words in English also appear
in the Arabic figure with nearly the same size, in-
dicating consistent translation and semantic map-

ping across languages.

Table 4 reports unique n-gram and POS counts.
While Arabic and English share a similar 1-gram
vocabulary count, the counts diverge as we move
to longer n-gram. Regarding POS tokens, Arabic
shows a smaller set of distinct POS tokens com-
pared to English. Achieving performance close
to the English baseline with a smaller lexical set
shows the concise expressive power of Arabic.

During manual revision, we logged the errors
found in every caption. Their distribution is shown
in Table 5, where error rate denotes the percentage
of captions containing ≥1 instance of the category
(totals can exceed 100% because a caption may
contain multiple categories). The most frequent
issue is inconsistent use of diacritics (some cap-
tions contain full diacritics while others have none)
accounting for 27.8% of the entire dataset. Loan-
word handling ranks second (12.7%), followed by
tense shifts (3.4%). Literal translations, rare lex-
ical choices, and hallucinations together occur in
fewer than 5% of captions.
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Word-Count Distributions

(a) English wordcount distribution (b) Arabic wordcount distribution

Part-of-Speech Distributions

(c) EN adjectives (d) EN nouns (e) EN verbs

(f) AR adjectives (g) AR nouns (h) AR verbs

Figure 3: Top: Wordcount distributions per caption for English (left) and Arabic (right) in DiDeMo vs. DiDeMo-
AR. Middle: Distributions of unique adjectives, nouns, and verbs per caption in English (DiDeMo). Bottom:
Same distributions for Arabic (DiDeMo-AR).

Table 4: Unique n-grams and POS-tag counts in
DiDeMo vs. DiDeMo-AR.

Language 1-gram 2-gram 3-gram 4-gram

English 5,358 67,698 140,387 163,841

Arabic 5,205 75,904 151,943 176,369

POS verbs nouns adj. adv.

English 1,320 3,605 891 333

Arabic 1,145 2,822 713 17

Table 5: Top: exclusive single-error rates on the
DiDeMo-AR dataset. Bottom: distribution of captions
that shows multiple error types simultaneously.

Error Type %

Diacritics 27.8
Loanwords 12.7
Literal / weak phrasing 5.0
Tense shift 3.4
Hallucination 1.8

Total error rate (overlapped) 41.7

Overlap Type %

Loanword + Diacritics 7.1
Tense shift + Diacritics 1.6
Tense shift + Loanword 0.4
Tense + Loan + Diac. 0.1
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(a) English (b) Arabic

Figure 4: Word cloud visualization in English and Arabic captions.

Combinations of these errors occur in a small
portion of the data, with the most common over-
lap being loanword + diacritics (7.1%), followed
by tense shift + diacritics (1.6%) and tense shift
+ loanword (0.4%). Only 0.1% of captions show
more than two error types simultaneously.

Annotators resolved the diacritics issue by strip-
ping all diacritics, ensuring consistent style across
the corpus. For loanwords, annotators kept terms
that are widely used in Modern Standard Arabic,
for example, "ଫଃ݁Ⴄ၍ا" is already commonly used and
preferred over the more formal اܳٺݱިߌߵ" ᄭᄟآ" All re-
maining errors were manually corrected.

We also noticed that Gemini occasionally in-
serts the phrase "۰ਃಸاܳأݠ "ً؇ይዧ؞۰ ("in Arabic") at the
end of a few captions. This seems to happen when
the model treats the final words of the prompt
as part of the source text. Annotators removed
these additions manually, but future work should
craft prompts carefully, by ensuring source text
and prompt are clearly distinguishable, to avoid
similar issues.

Finally, Gemini sometimes translates only part
of a caption if it contains verbs such as "is shown"
or "appears." For example:

• English: "The words ’the gossip’ are shown
first."

• Incorrect AR: اࡺ࢕ࢦ٭۰݄
• Correct AR: .ً৖৑أو "اࡺ࢕ࢦ٭۰݄" ۰గၵ၍ ّޙ۳ݠ

These partial translations were also fixed during
post-editing.

We also experimented with different tempera-
tures values to test the translations sensitivity to
the decoding settings. Temperature primarily con-
trols sampling randomness, where higher values
encourage more lexical variety, while lower val-
ues make outputs more deterministic. We tested
{0.0, 0.1, . . . , 1.0}, but the outputs differed only
in minor synonym choices (e.g., ّߺࠊحّ vs. ,(ّߺࠊح con-
firming that Gemini’s Arabic translation remains
stable across all settings.

Some noise also stems from the English side of
DiDeMo itself. A few captions are simply ambigu-
ous, for instance "they zoom back in at the end"
gives no clue who performs the action, so even a
perfect translator cannot disambiguate it. On the
other hand, most plain grammar or spelling mis-
takes in the source are corrected automatically: "a
car drive under and overpass" is translated fluently

as ༟ߺࠊي" ٍ๤ཏۏ ොູب ݿ٭؇رةٌ ّ֡ ."ஓ஄ݠ Gemini, likewise, re-
solves DiDeMo shortcuts such as "ppl", which was
translated to ."اܳٷ؇س" In short, some inherited flaws
remain, but many are silently repaired in the Ara-
bic version, and although there is some transla-
tion noise, Gemini’s raw output is already usable.
Diacritics can be removed programmatically, and
other post-editing fixes are needed for only 22.9%
of captions (after diacritic stripping).
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(a) Text-to-Video Retrieval (b) Video-to-Text Retrieval

Figure 5: English vs. Arabic performance comparison in text-video and video-text retrieval (Recall@K).

Table 6: Text-to-Video retrieval performance on DiDeMo test split. ∆: the Arabic-English performance gap.

Model Lang. R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓ MeanR ↓

ViT-B-32 + MPNet EN 0.158 0.390 0.512 10 48.2
AR 0.127 (∆-0.031) 0.329 (∆-0.061) 0.463 (∆-0.049) 13 (∆+3) 55.7 (∆+7.5)

ViT-B-16 + MPNet EN 0.171 0.401 0.543 8 45.9
AR 0.143 (∆-0.028) 0.358 (∆-0.043) 0.489 (∆-0.055) 11 (∆+3) 50.6 (∆+4.7)

Table 7: Video-to-Text retrieval performance on DiDeMo test split. ∆: the Arabic-English performance gap.

Model Lang. R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓ MeanR ↓

ViT-B-32 + MPNet EN 0.166 0.385 0.524 9 48.3
AR 0.142 (∆-0.024) 0.332 (∆-0.053) 0.464 (∆-0.060) 13 (∆+4) 54.3 (∆+6.0)

ViT-B-16 + MPNet EN 0.178 0.418 0.545 8 44.9
AR 0.154 (∆-0.025) 0.368 (∆-0.050) 0.483 (∆-0.062) 11 (∆+3) 49.8 (∆+4.9)

5 Experiments & Results

5.1 Setup & Baselines

We fine-tune two CLIP backbones ViT-
B/32 and ViT-B/16, while freezing the
vision tower and updating only a 256-
d projection head. The text branch is
paraphrase-multilingual-mpnet-base-v2
(768 d; 110 M parameters). Training follows a
symmetric InfoNCE loss, batch size 64, AdamW
(lr = 1e−4, weight-decay 1e−2) and runs for six
epochs on one A100-80 GB. Input videos are
down-sampled to eight uniformly spaced frames
(224 × 224). We train identical scripts on the
original English captions and on the new Arabic
set, so any gap is purely linguistic. Our CLIP
baseline is deliberately lightweight. Its role is to
verify that the Arabic variant remains comparably
difficult, not to exhaustively benchmark Arabic
video-retrieval models.

5.2 Overall Retrieval Scores

Tables 6 and 7 report Recall@K, Median Rank,
and Mean Rank on the DiDeMo test split. Despite
Arabic captions being 25% shorter, the absolute
drop is small: ∆R@1< 3 pp for both ViT back-
bones in text-to-video and video-to-text directions.
Median rank increases by three to four positions
on average, but still stays below 15.

Figure 5 overlays English and Arabic curves.
The shaded area highlights the gap. It never ex-
ceeds 0.07 at R@10. This shows that performance
gaps remain nearly parallel across R@1, 5, 10.

Using the fully post-edited Arabic captions, a
frozen CLIP backbone recovers 85-90% of its En-
glish Recall@10. This confirms that metric local-
ization using our framework preserves benchmark
difficulty without extra Arabic pre-training, with
most of the English retrieval strength transferring
directly to Arabic.

294



Table 8: Text-to-Video retrieval across post-editing levels on DiDeMo-AR.

Model Post-Editing R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓ MeanR ↓

ViT-B-16 + MPNet
Raw (zero) 0.1196 0.3230 0.4676 13.0 55.9
Flagged-only (few) 0.1316 0.3121 0.4556 12.0 55.3
Fix all (full) 0.1426 0.3579 0.4885 11.0 50.6

ViT-B-32 + MPNet
Raw (zero) 0.1176 0.3270 0.4636 13.0 55.2
Flagged-only (few) 0.1157 0.3310 0.4646 13.0 54.9
Fix all (full) 0.1266 0.3290 0.4626 13.0 55.7

Table 9: Video-to-Text retrieval across post-editing levels on DiDeMo-AR.

Model Post-Editing R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓ MeanR ↓

ViT-B-16 + MPNet
Raw (zero) 0.1306 0.3519 0.4835 11.0 53.2
Flagged-only (few) 0.1236 0.3500 0.4726 12.0 54.2
Fix all (full) 0.1535 0.3679 0.4826 11.0 49.8

ViT-B-32 + MPNet
Raw (zero) 0.1296 0.3420 0.4646 12.0 54.6
Flagged-only (few) 0.1286 0.3450 0.4646 13.0 54.4
Fix all (full) 0.1416 0.3320 0.4636 13.0 54.3

5.3 Effect of Post-Editing Effort

To understand how human post-editing impacts re-
trieval performance, we evaluate three levels of
manual correction on Arabic captions:
• Raw (zero): Direct LLM output without human

intervention.
• Flagged-only (few): Corrections applied only

to LLM-flagged captions.
• Fix all (full): Comprehensive manual review

and correction of all captions.
Tables 8 and 9 show that even raw LLM trans-

lations achieve reasonable performance. However,
increasing post-editing effort yields consistent im-
provements, with full correction typically provid-
ing ≈ 2 percentage points gains in R@1 across
both retrieval directions.

Notably, if raw translations already work,
then benchmark replication becomes language-
agnostic, no per-language retraining or major hu-
man effort required, provided a capable translation
LLM.

5.4 Automated Error-Flagging Quality

We evaluate the LLM-based error detector on our
human-reviewed dataset. The automated system
achieves strong agreement with human annota-
tors: 97% accuracy and 91% F1-score (macro-
averaged).

Table 10 shows the detector performs perfectly
on diacritics and achieves high precision for hal-
lucination detection. Tense shifting proves most

challenging (F1=0.80), reflecting the complexity
of Arabic temporal expressions.

Table 10: Per-class precision, recall, and F1-score of
the automated error-flagging system.

Class Precision Recall F1

Diacritics 1.00 1.00 1.00
Hallucination/Literal 1.00 0.92 0.96
Loanword 0.91 0.82 0.86
No Error 0.93 0.97 0.95
Tense Shifting 0.77 0.84 0.80

Overall (macro-avg) 0.92 0.91 0.91

Limitations & Future Work

Our study takes a first step toward Arabic-centric
video-text retrieval, but richer domains, dialects
and modalities remain wide open for exploration.

Generalization. Our findings suggest that direct
machine translation may enable language-agnostic
benchmark replication without per-language re-
training. Extending this beyond DiDeMo and
MSA, across datasets, domains, and dialects, re-
mains an open direction for future work.

Dataset Scope. DiDeMo-AR covers short clips
(30 s) captured in real-world conditions. Long-
form videos such as movies, lectures, or sports
broadcasts are out of scope. Future work could
localize MAD corpus (Soldan et al., 2022) or the
LOVR benchmark (Cai et al., 2025), for example,
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to MSA and dialects, giving researchers a bench-
mark for long-video retrieval.

Language Coverage. We focus on Modern Stan-
dard Arabic. Dialects, like: Egyptian, Gulf and
Maghrebi, are still missing, yet they dominate so-
cial media videos (Guellil et al., 2021). A fruitful
extension is to repeat the framework for dialectal
captions.
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