@inproceedings{ersoy-etal-2025-tool,
title = "Tool Calling for {A}rabic {LLM}s: Data Strategies and Instruction Tuning",
author = "Ersoy, As{\i}m and
Altinisik, Enes and
Darwish, Kareem Mohamed and
Sencar, Husrev Taha",
editor = "Darwish, Kareem and
Ali, Ahmed and
Abu Farha, Ibrahim and
Touileb, Samia and
Zitouni, Imed and
Abdelali, Ahmed and
Al-Ghamdi, Sharefah and
Alkhereyf, Sakhar and
Zaghouani, Wajdi and
Khalifa, Salam and
AlKhamissi, Badr and
Almatham, Rawan and
Hamed, Injy and
Alyafeai, Zaid and
Alowisheq, Areeb and
Inoue, Go and
Mrini, Khalil and
Alshammari, Waad",
booktitle = "Proceedings of The Third Arabic Natural Language Processing Conference",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.arabicnlp-main.28/",
pages = "347--358",
ISBN = "979-8-89176-352-4",
abstract = "Tool calling is a critical capability that allows Large Language Models (LLMs) to interact with external systems, significantly expanding their utility. However, research and resources for tool calling are predominantly English-centric, leaving a gap in our understanding of how to enable this functionality for other languages, such as Arabic. This paper investigates three key research questions: (1) the necessity of in-language (Arabic) tool-calling data versus relying on cross-lingual transfer, (2) the effect of general-purpose instruction tuning on tool-calling performance, and (3) the value of fine-tuning on specific, high-priority tools. To address these questions, we conduct extensive experiments using base and post-trained variants of an open-weight Arabic LLM. To enable this study, we bridge the resource gap by translating and adapting two open-source tool-calling datasets into Arabic. Our findings provide crucial insights into the optimal strategies for developing robust tool-augmented agents for Arabic."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ersoy-etal-2025-tool">
<titleInfo>
<title>Tool Calling for Arabic LLMs: Data Strategies and Instruction Tuning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Asım</namePart>
<namePart type="family">Ersoy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enes</namePart>
<namePart type="family">Altinisik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kareem</namePart>
<namePart type="given">Mohamed</namePart>
<namePart type="family">Darwish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Husrev</namePart>
<namePart type="given">Taha</namePart>
<namePart type="family">Sencar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Third Arabic Natural Language Processing Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kareem</namePart>
<namePart type="family">Darwish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Ali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ibrahim</namePart>
<namePart type="family">Abu Farha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samia</namePart>
<namePart type="family">Touileb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Imed</namePart>
<namePart type="family">Zitouni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Abdelali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sharefah</namePart>
<namePart type="family">Al-Ghamdi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakhar</namePart>
<namePart type="family">Alkhereyf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wajdi</namePart>
<namePart type="family">Zaghouani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salam</namePart>
<namePart type="family">Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Badr</namePart>
<namePart type="family">AlKhamissi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rawan</namePart>
<namePart type="family">Almatham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Injy</namePart>
<namePart type="family">Hamed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zaid</namePart>
<namePart type="family">Alyafeai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Areeb</namePart>
<namePart type="family">Alowisheq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Go</namePart>
<namePart type="family">Inoue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalil</namePart>
<namePart type="family">Mrini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Waad</namePart>
<namePart type="family">Alshammari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-352-4</identifier>
</relatedItem>
<abstract>Tool calling is a critical capability that allows Large Language Models (LLMs) to interact with external systems, significantly expanding their utility. However, research and resources for tool calling are predominantly English-centric, leaving a gap in our understanding of how to enable this functionality for other languages, such as Arabic. This paper investigates three key research questions: (1) the necessity of in-language (Arabic) tool-calling data versus relying on cross-lingual transfer, (2) the effect of general-purpose instruction tuning on tool-calling performance, and (3) the value of fine-tuning on specific, high-priority tools. To address these questions, we conduct extensive experiments using base and post-trained variants of an open-weight Arabic LLM. To enable this study, we bridge the resource gap by translating and adapting two open-source tool-calling datasets into Arabic. Our findings provide crucial insights into the optimal strategies for developing robust tool-augmented agents for Arabic.</abstract>
<identifier type="citekey">ersoy-etal-2025-tool</identifier>
<location>
<url>https://aclanthology.org/2025.arabicnlp-main.28/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>347</start>
<end>358</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Tool Calling for Arabic LLMs: Data Strategies and Instruction Tuning
%A Ersoy, Asım
%A Altinisik, Enes
%A Darwish, Kareem Mohamed
%A Sencar, Husrev Taha
%Y Darwish, Kareem
%Y Ali, Ahmed
%Y Abu Farha, Ibrahim
%Y Touileb, Samia
%Y Zitouni, Imed
%Y Abdelali, Ahmed
%Y Al-Ghamdi, Sharefah
%Y Alkhereyf, Sakhar
%Y Zaghouani, Wajdi
%Y Khalifa, Salam
%Y AlKhamissi, Badr
%Y Almatham, Rawan
%Y Hamed, Injy
%Y Alyafeai, Zaid
%Y Alowisheq, Areeb
%Y Inoue, Go
%Y Mrini, Khalil
%Y Alshammari, Waad
%S Proceedings of The Third Arabic Natural Language Processing Conference
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-352-4
%F ersoy-etal-2025-tool
%X Tool calling is a critical capability that allows Large Language Models (LLMs) to interact with external systems, significantly expanding their utility. However, research and resources for tool calling are predominantly English-centric, leaving a gap in our understanding of how to enable this functionality for other languages, such as Arabic. This paper investigates three key research questions: (1) the necessity of in-language (Arabic) tool-calling data versus relying on cross-lingual transfer, (2) the effect of general-purpose instruction tuning on tool-calling performance, and (3) the value of fine-tuning on specific, high-priority tools. To address these questions, we conduct extensive experiments using base and post-trained variants of an open-weight Arabic LLM. To enable this study, we bridge the resource gap by translating and adapting two open-source tool-calling datasets into Arabic. Our findings provide crucial insights into the optimal strategies for developing robust tool-augmented agents for Arabic.
%U https://aclanthology.org/2025.arabicnlp-main.28/
%P 347-358
Markdown (Informal)
[Tool Calling for Arabic LLMs: Data Strategies and Instruction Tuning](https://aclanthology.org/2025.arabicnlp-main.28/) (Ersoy et al., ArabicNLP 2025)
ACL